• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 *   Copyright (C) 2000-2016, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 **********************************************************************
8 *   file name:  ucnv_lmb.cpp
9 *   encoding:   UTF-8
10 *   tab size:   4 (not used)
11 *   indentation:4
12 *
13 *   created on: 2000feb09
14 *   created by: Brendan Murray
15 *   extensively hacked up by: Jim Snyder-Grant
16 *
17 * Modification History:
18 *
19 *   Date        Name             Description
20 *
21 *   06/20/2000  helena           OS/400 port changes; mostly typecast.
22 *   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
23 *                                Add comments to document LMBCS format and implementation
24 *                                restructured order & breakdown of functions
25 *   06/28/2000  helena           Major rewrite for the callback API changes.
26 */
27 
28 #include "unicode/utypes.h"
29 
30 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
31 
32 #include "unicode/ucnv_err.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
35 #include "cmemory.h"
36 #include "cstring.h"
37 #include "uassert.h"
38 #include "ucnv_imp.h"
39 #include "ucnv_bld.h"
40 #include "ucnv_cnv.h"
41 
42 #ifdef EBCDIC_RTL
43     #include "ascii_a.h"
44 #endif
45 
46 /*
47   LMBCS
48 
49   (Lotus Multi-Byte Character Set)
50 
51   LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
52   databases and in Lotus 1-2-3 files. Programmers who work with the APIs
53   into these products will sometimes need to deal with strings in this format.
54 
55   The code in this file provides an implementation for an ICU converter of
56   LMBCS to and from Unicode.
57 
58   Since the LMBCS character set is only sparsely documented in existing
59   printed or online material, we have added  extensive annotation to this
60   file to serve as a guide to understanding LMBCS.
61 
62   LMBCS was originally designed with these four sometimes-competing design goals:
63 
64   -Provide encodings for the characters in 12 existing national standards
65    (plus a few other characters)
66   -Minimal memory footprint
67   -Maximal speed of conversion into the existing national character sets
68   -No need to track a changing state as you interpret a string.
69 
70 
71   All of the national character sets LMBCS was trying to encode are 'ANSI'
72   based, in that the bytes from 0x20 - 0x7F are almost exactly the
73   same common Latin unaccented characters and symbols in all character sets.
74 
75   So, in order to help meet the speed & memory design goals, the common ANSI
76   bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
77 
78   The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79   follows:
80 
81   [G] D1 [D2]
82 
83   That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84   data bytes. The maximum size of a LMBCS character is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX      3
87 /*
88   The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89   We often have to figure out if byte values are below or above this, so we
90   use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
91   characters just above & below the common lower-ANSI  range */
92 #define ULMBCS_C0END           0x1F
93 #define ULMBCS_C1START         0x80
94 /*
95   Since LMBCS is always dealing in byte units. we create a local type here for
96   dealing with these units of LMBCS code units:
97 
98 */
99 typedef uint8_t ulmbcs_byte_t;
100 
101 /*
102    Most of the values less than 0x20 are reserved in LMBCS to announce
103    which national  character standard is being used for the 'D' bytes.
104    In the comments we show the common name and the IBM character-set ID
105    for these character-set announcers:
106 */
107 
108 #define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
109 #define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
110 #define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
111 #define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
112 #define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
113 #define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
114 #define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
115 #define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
116 #define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
117 #define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
118 #define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
119 #define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
120 
121 /*
122    So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
123    character is one of those 12 values, you can interpret the remaining bytes of
124    that character as coming from one of those character sets. Since the lower
125    ANSI bytes already are represented in single bytes, using one of the character
126    set announcers is used to announce a character that starts with a byte of
127    0x80 or greater.
128 
129    The character sets are  arranged so that the single byte sets all appear
130    before the multi-byte character sets. When we need to tell whether a
131    group byte is for a single byte char set or not we use this define: */
132 
133 #define ULMBCS_DOUBLEOPTGROUP_START  0x10
134 
135 /*
136 However, to fully understand LMBCS, you must also understand a series of
137 exceptions & optimizations made in service of the design goals.
138 
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to
143 count characters), we use a convention of doubling up on the group byte
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
146 same as '0xAE' in the Japanese code page 943.
147 
148 Next, you will notice that the list of group bytes has some gaps.
149 These are used in various ways.
150 
151 We reserve a few special single byte values for common control
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154 
155 #define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
157 #define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
158 
159 /* Then, 1-2-3 reserved a special single-byte character to put at the
160 beginning of internal 'system' range names: */
161 
162 #define ULMBCS_123SYSTEMRANGE  0x19
163 
164 /* Then we needed a place to put all the other ansi control characters
165 that must be moved to different values because LMBCS reserves those
166 values for other purposes. To represent the control characters, we start
167 with a first byte of 0xF & add the control character value as the
168 second byte */
169 #define ULMBCS_GRP_CTRL       0x0F
170 
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET      0x20
175 
176 /*
177 Where to put the characters that aren't part of any of the 12 national
178 character sets? The first thing that was done, in the earlier years of
179 LMBCS, was to use up the spaces of the form
180 
181   [G] D1,
182 
183  where  'G' was one of the single-byte character groups, and
184  D1 was less than 0x80. These sequences are gathered together
185  into a Lotus-invented doublebyte character set to represent a
186  lot of stray values. Internally, in this implementation, we track this
187  as group '0', as a place to tuck this exceptions list.*/
188 
189 #define ULMBCS_GRP_EXCEPT     0x00
190 /*
191  Finally, as the durability and usefulness of UNICODE became clear,
192  LOTUS added a new group 0x14 to hold Unicode values not otherwise
193  represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE    0x14
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO   0xF6
202 
203 /* It is also useful in our code to have a constant for the size of
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE      3
206 
207 /*
208 To squish the LMBCS representations down even further, and to make
209 translations even faster,sometimes the optimization group byte can be dropped
210 from a LMBCS character. This is decided on a process-by-process basis. The
211 group byte that is dropped is called the 'optimization group'.
212 
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
216 file.
217 
218  In any case, when using ICU, you either pass in the
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
220 etc.). Using plain 'LMBCS' as the name of the converter will give you
221 LMBCS-1.
222 
223 
224 *** Implementation strategy ***
225 
226 
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230 
231 /* As you can see, even though any byte below 0x20 could be an optimization
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234 
235 #define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
236 
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238    /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239    /* 0x0001 */ "ibm-850",
240    /* 0x0002 */ "ibm-851",
241    /* 0x0003 */ "windows-1255",
242    /* 0x0004 */ "windows-1256",
243    /* 0x0005 */ "windows-1251",
244    /* 0x0006 */ "ibm-852",
245    /* 0x0007 */ NULL,      /* Unused */
246    /* 0x0008 */ "windows-1254",
247    /* 0x0009 */ NULL,      /* Control char HT */
248    /* 0x000A */ NULL,      /* Control char LF */
249    /* 0x000B */ "windows-874",
250    /* 0x000C */ NULL,      /* Unused */
251    /* 0x000D */ NULL,      /* Control char CR */
252    /* 0x000E */ NULL,      /* Unused */
253    /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254    /* 0x0010 */ "windows-932",
255    /* 0x0011 */ "windows-949",
256    /* 0x0012 */ "windows-950",
257    /* 0x0013 */ "windows-936"
258 
259    /* The rest are null, including the 0x0014 Unicode compatibility region
260    and 0x0019, the 1-2-3 system range control char */
261 };
262 
263 
264 /* That's approximately all the data that's needed for translating
265   LMBCS to Unicode.
266 
267 
268 However, to translate Unicode to LMBCS, we need some more support.
269 
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets.  (If the character exists in both DBCS &
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279 
280 #define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one
281                                           LMBCS sbcs native encoding
282                                           (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one
284                                           LMBCS mbcs native encoding
285                                           (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL   0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289                   ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290                   (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291                   (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292                   (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293                   ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294 
295 
296 /* The table & some code to use it: */
297 
298 
299 static const struct _UniLMBCSGrpMap
300 {
301    const UChar uniStartRange;
302    const UChar uniEndRange;
303    const ulmbcs_byte_t  GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307 
308     {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
309     {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
310     {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS},
311     {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL},
312     {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS},
313     {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL},
314     {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS},
315     {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL},
316     {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS},
317     {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL},
318     {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS},
319     {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL},
320     {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS},
321     {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL},
322     {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
323     {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
324     {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
325     {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
326     {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
327     {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
328     {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
329     {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS},
330     {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL},
331     {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS},
332     {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL},
333     {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
334     {0x0400, 0x0400,  ULMBCS_GRP_RU},
335     {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL},
336     {0x0402, 0x040F,  ULMBCS_GRP_RU},
337     {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL},
338     {0x0432, 0x044E,  ULMBCS_GRP_RU},
339     {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL},
340     {0x0450, 0x0491,  ULMBCS_GRP_RU},
341     {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
342     {0x060C, 0x06AF,  ULMBCS_GRP_AR},
343     {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
344     {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
345     {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
346     {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS},
347     {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS},
348     {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
349     {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS},
350     {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL},
351     {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS},
352     {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL},
353     {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS},
354     {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL},
355     {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
356     {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
357     {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL},
358     {0x2027, 0x2027,  ULMBCS_GRP_TW},
359     {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL},
360     {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS},
361     {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS},
362     {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
363     {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
364     {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
365     {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT},
366     {0x2074, 0x2074,  ULMBCS_GRP_KO},
367     {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
368     {0x2081, 0x2084,  ULMBCS_GRP_KO},
369     {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
370     {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
371     {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS},
372     /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373     {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS},
374     {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
375     {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
376     {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
377     {0x2153, 0x2154,  ULMBCS_GRP_KO},
378     {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
379     {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
380     {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL},
381     {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT},
382     {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
383     {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
384     {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
385     {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT},
386     {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS},
387     {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT},
388     {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS},
389     {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT},
390     {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
391     {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS},
392     {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT},
393     {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS},
394     {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS},
395     {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT},
396     {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS},
397     {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT},
398     {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS},
399     {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
400     {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT},
401     {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS},
402     {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT},
403     {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS},
404     {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT},
405     {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS},
406     {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS},
407     {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
408     {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
409     {0x224C, 0x224C,  ULMBCS_GRP_TW},
410     {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
411     {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS},
412     {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT},
413     {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
414     {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS},
415     {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT},
416     {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS},
417     {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT},
418     {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
419     {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
420     {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
421     {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
422     {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
423     {0x2318, 0x2321,  ULMBCS_GRP_CN},
424     {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
425     {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
426     {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
427     {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL},
428     {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
429     {0x2504, 0x2505,  ULMBCS_GRP_TW},
430     {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL},
431     {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
432     {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS},
433     {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL},
434     {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS},
435     {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS},
436     {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS},
437     {0x266F, 0x266F,  ULMBCS_GRP_JA},
438     {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
439     {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
440     {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
441     {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
442     {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
443     {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
444     {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
445 };
446 
447 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)448 FindLMBCSUniRange(UChar uniChar)
449 {
450    const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451 
452    while (uniChar > pTable->uniEndRange)
453    {
454       pTable++;
455    }
456 
457    if (uniChar >= pTable->uniStartRange)
458    {
459       return pTable->GrpType;
460    }
461    return ULMBCS_GRP_UNICODE;
462 }
463 
464 /*
465 We also ask the creator of a converter to send in a preferred locale
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the
468 LMBCS groups. We use this table, and the associated code, to
469 do the lookup: */
470 
471 /**************************************************
472   This table maps locale ID's to LMBCS opt groups.
473   The default return is group 0x01. Note that for
474   performance reasons, the table is sorted in
475   increasing alphabetic order, with the notable
476   exception of zhTW. This is to force the check
477   for Traditonal Chinese before dropping back to
478   Simplified.
479 
480   Note too that the Latin-1 groups have been
481   commented out because it's the default, and
482   this shortens the table, allowing a serial
483   search to go quickly.
484  *************************************************/
485 
486 static const struct _LocaleLMBCSGrpMap
487 {
488    const char    *LocaleID;
489    const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492     {"ar", ULMBCS_GRP_AR},
493     {"be", ULMBCS_GRP_RU},
494     {"bg", ULMBCS_GRP_L2},
495    /* {"ca", ULMBCS_GRP_L1}, */
496     {"cs", ULMBCS_GRP_L2},
497    /* {"da", ULMBCS_GRP_L1}, */
498    /* {"de", ULMBCS_GRP_L1}, */
499     {"el", ULMBCS_GRP_GR},
500    /* {"en", ULMBCS_GRP_L1}, */
501    /* {"es", ULMBCS_GRP_L1}, */
502    /* {"et", ULMBCS_GRP_L1}, */
503    /* {"fi", ULMBCS_GRP_L1}, */
504    /* {"fr", ULMBCS_GRP_L1}, */
505     {"he", ULMBCS_GRP_HE},
506     {"hu", ULMBCS_GRP_L2},
507    /* {"is", ULMBCS_GRP_L1}, */
508    /* {"it", ULMBCS_GRP_L1}, */
509     {"iw", ULMBCS_GRP_HE},
510     {"ja", ULMBCS_GRP_JA},
511     {"ko", ULMBCS_GRP_KO},
512    /* {"lt", ULMBCS_GRP_L1}, */
513    /* {"lv", ULMBCS_GRP_L1}, */
514     {"mk", ULMBCS_GRP_RU},
515    /* {"nl", ULMBCS_GRP_L1}, */
516    /* {"no", ULMBCS_GRP_L1}, */
517     {"pl", ULMBCS_GRP_L2},
518    /* {"pt", ULMBCS_GRP_L1}, */
519     {"ro", ULMBCS_GRP_L2},
520     {"ru", ULMBCS_GRP_RU},
521     {"sh", ULMBCS_GRP_L2},
522     {"sk", ULMBCS_GRP_L2},
523     {"sl", ULMBCS_GRP_L2},
524     {"sq", ULMBCS_GRP_L2},
525     {"sr", ULMBCS_GRP_RU},
526    /* {"sv", ULMBCS_GRP_L1}, */
527     {"th", ULMBCS_GRP_TH},
528     {"tr", ULMBCS_GRP_TR},
529     {"uk", ULMBCS_GRP_RU},
530    /* {"vi", ULMBCS_GRP_L1}, */
531     {"zhTW", ULMBCS_GRP_TW},
532     {"zh", ULMBCS_GRP_CN},
533     {NULL, ULMBCS_GRP_L1}
534 };
535 
536 
537 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)538 FindLMBCSLocale(const char *LocaleID)
539 {
540    const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541 
542    if ((!LocaleID) || (!*LocaleID))
543    {
544       return 0;
545    }
546 
547    while (pTable->LocaleID)
548    {
549       if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550       {
551          /* First char matches - check whole name, for entry-length */
552          if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553             return pTable->OptGroup;
554       }
555       else
556       if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557          break;
558       pTable++;
559    }
560    return ULMBCS_GRP_L1;
561 }
562 
563 
564 /*
565   Before we get to the main body of code, here's how we hook up to the rest
566   of ICU. ICU converters are required to define a structure that includes
567   some function pointers, and some common data, in the style of a C++
568   vtable. There is also room in there for converter-specific data. LMBCS
569   uses that converter-specific data to keep track of the 12 subconverters
570   we use, the optimization group, and the group (if any) that matches the
571   locale. We have one structure instantiated for each of the 12 possible
572   optimization groups. To avoid typos & to avoid boring the reader, we
573   put the declarations of these structures and functions into macros. To see
574   the definitions of these structures, see unicode\ucnv_bld.h
575 */
576 
577 typedef struct
578   {
579     UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
580     uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
581     uint8_t    localeConverterIndex;      /* reasonable locale match for index */
582   }
583 UConverterDataLMBCS;
584 
585 U_CDECL_BEGIN
586 static void  U_CALLCONV _LMBCSClose(UConverter * _this);
587 U_CDECL_END
588 
589 #define DECLARE_LMBCS_DATA(n) \
590 static const UConverterImpl _LMBCSImpl##n={\
591     UCNV_LMBCS_##n,\
592     NULL,NULL,\
593     _LMBCSOpen##n,\
594     _LMBCSClose,\
595     NULL,\
596     _LMBCSToUnicodeWithOffsets,\
597     _LMBCSToUnicodeWithOffsets,\
598     _LMBCSFromUnicode,\
599     _LMBCSFromUnicode,\
600     NULL,\
601     NULL,\
602     NULL,\
603     NULL,\
604     _LMBCSSafeClone,\
605     ucnv_getCompleteUnicodeSet,\
606     NULL,\
607     NULL\
608 };\
609 static const UConverterStaticData _LMBCSStaticData##n={\
610   sizeof(UConverterStaticData),\
611  "LMBCS-"  #n,\
612     0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
613     { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
614 };\
615 const UConverterSharedData _LMBCSData##n= \
616         UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
617 
618  /* The only function we needed to duplicate 12 times was the 'open'
619 function, which will do basically the same thing except set a  different
620 optimization group. So, we put the common stuff into a worker function,
621 and set up another macro to stamp out the 12 open functions:*/
622 #define DEFINE_LMBCS_OPEN(n) \
623 static void U_CALLCONV \
624    _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
625 { _LMBCSOpenWorker(_this, pArgs, err, n); }
626 
627 
628 
629 /* Here's the open worker & the common close function */
630 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)631 _LMBCSOpenWorker(UConverter*  _this,
632                  UConverterLoadArgs *pArgs,
633                  UErrorCode*  err,
634                  ulmbcs_byte_t OptGroup)
635 {
636     UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
637     _this->extraInfo = extraInfo;
638     if(extraInfo != NULL)
639     {
640         UConverterNamePieces stackPieces;
641         UConverterLoadArgs stackArgs= UCNV_LOAD_ARGS_INITIALIZER;
642         ulmbcs_byte_t i;
643 
644         uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
645 
646         stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
647 
648         for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
649         {
650             if(OptGroupByteToCPName[i] != NULL) {
651                 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
652             }
653         }
654 
655         if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
656             _LMBCSClose(_this);
657             return;
658         }
659         extraInfo->OptGroup = OptGroup;
660         extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
661     }
662     else
663     {
664         *err = U_MEMORY_ALLOCATION_ERROR;
665     }
666 }
667 
668 U_CDECL_BEGIN
669 static void  U_CALLCONV
_LMBCSClose(UConverter * _this)670 _LMBCSClose(UConverter *   _this)
671 {
672     if (_this->extraInfo != NULL)
673     {
674         ulmbcs_byte_t Ix;
675         UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
676 
677         for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
678         {
679            if (extraInfo->OptGrpConverter[Ix] != NULL)
680               ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
681         }
682         if (!_this->isExtraLocal) {
683             uprv_free (_this->extraInfo);
684             _this->extraInfo = NULL;
685         }
686     }
687 }
688 
689 typedef struct LMBCSClone {
690     UConverter cnv;
691     UConverterDataLMBCS lmbcs;
692 } LMBCSClone;
693 
694 static UConverter *  U_CALLCONV
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)695 _LMBCSSafeClone(const UConverter *cnv,
696                 void *stackBuffer,
697                 int32_t *pBufferSize,
698                 UErrorCode *status) {
699     (void)status;
700     LMBCSClone *newLMBCS;
701     UConverterDataLMBCS *extraInfo;
702     int32_t i;
703 
704     if(*pBufferSize<=0) {
705         *pBufferSize=(int32_t)sizeof(LMBCSClone);
706         return NULL;
707     }
708 
709     extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
710     newLMBCS=(LMBCSClone *)stackBuffer;
711 
712     /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
713 
714     uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
715 
716     /* share the subconverters */
717     for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
718         if(extraInfo->OptGrpConverter[i] != NULL) {
719             ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
720         }
721     }
722 
723     newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
724     newLMBCS->cnv.isExtraLocal = TRUE;
725     return &newLMBCS->cnv;
726 }
727 
728 /*
729  * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
730  * which added all code points except for U+F6xx
731  * because those cannot be represented in the Unicode group.
732  * However, it turns out that windows-950 has roundtrips for all of U+F6xx
733  * which means that LMBCS can convert all Unicode code points after all.
734  * We now simply use ucnv_getCompleteUnicodeSet().
735  *
736  * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
737  */
738 
739 /*
740    Here's the basic helper function that we use when converting from
741    Unicode to LMBCS, and we suspect that a Unicode character will fit into
742    one of the 12 groups. The return value is the number of bytes written
743    starting at pStartLMBCS (if any).
744 */
745 
746 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)747 LMBCSConversionWorker (
748    UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
749    ulmbcs_byte_t group,                /* The group to try */
750    ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
751    UChar * pUniChar,                   /* The input unicode character */
752    ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
753    UBool * groups_tried                /* output: track any unsuccessful groups */
754 )
755 {
756    ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
757    UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
758 
759    int bytesConverted;
760    uint32_t value;
761    ulmbcs_byte_t firstByte;
762 
763    U_ASSERT(xcnv);
764    U_ASSERT(group<ULMBCS_GRP_UNICODE);
765 
766    bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
767 
768    /* get the first result byte */
769    if(bytesConverted > 0) {
770       firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
771    } else {
772       /* most common failure mode is an unassigned character */
773       groups_tried[group] = TRUE;
774       return 0;
775    }
776 
777    *lastConverterIndex = group;
778 
779    /* All initial byte values in lower ascii range should have been caught by now,
780       except with the exception group.
781     */
782    U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
783 
784    /* use converted data: first write 0, 1 or two group bytes */
785    if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
786    {
787       *pLMBCS++ = group;
788       if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
789       {
790          *pLMBCS++ = group;
791       }
792    }
793 
794   /* don't emit control chars */
795    if ( bytesConverted == 1 && firstByte < 0x20 )
796       return 0;
797 
798 
799    /* then move over the converted data */
800    switch(bytesConverted)
801    {
802    case 4:
803       *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
804       U_FALLTHROUGH;
805    case 3:
806       *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
807       U_FALLTHROUGH;
808    case 2:
809       *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
810       U_FALLTHROUGH;
811    case 1:
812       *pLMBCS++ = (ulmbcs_byte_t)value;
813       U_FALLTHROUGH;
814    default:
815       /* will never occur */
816       break;
817    }
818 
819    return (pLMBCS - pStartLMBCS);
820 }
821 
822 
823 /* This is a much simpler version of above, when we
824 know we are writing LMBCS using the Unicode group
825 */
826 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)827 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
828 {
829      /* encode into LMBCS Unicode range */
830    uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
831    uint8_t HighCh  = (uint8_t)(uniChar >> 8);
832 
833    *pLMBCS++ = ULMBCS_GRP_UNICODE;
834 
835    if (LowCh == 0)
836    {
837       *pLMBCS++ = ULMBCS_UNICOMPATZERO;
838       *pLMBCS++ = HighCh;
839    }
840    else
841    {
842       *pLMBCS++ = HighCh;
843       *pLMBCS++ = LowCh;
844    }
845    return ULMBCS_UNICODE_SIZE;
846 }
847 
848 
849 
850 /* The main Unicode to LMBCS conversion function */
851 static void  U_CALLCONV
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)852 _LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
853                   UErrorCode*     err)
854 {
855    ulmbcs_byte_t lastConverterIndex = 0;
856    UChar uniChar;
857    ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
858    ulmbcs_byte_t  * pLMBCS;
859    int32_t bytes_written;
860    UBool groups_tried[ULMBCS_GRP_LAST+1];
861    UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
862    int sourceIndex = 0;
863 
864    /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
865       If that succeeds, see if it will all fit into the target & copy it over
866       if it does.
867 
868       We try conversions in the following order:
869 
870       1. Single-byte ascii & special fixed control chars (&null)
871       2. Look up group in table & try that (could be
872             A) Unicode group
873             B) control group,
874             C) national encoding,
875                or ambiguous SBCS or MBCS group (on to step 4...)
876 
877       3. If its ambiguous, try this order:
878          A) The optimization group
879          B) The locale group
880          C) The last group that succeeded with this string.
881          D) every other group that's relevent (single or double)
882          E) If its single-byte ambiguous, try the exceptions group
883 
884       4. And as a grand fallback: Unicode
885    */
886 
887     /*Fix for SPR#DJOE66JFN3 (Lotus)*/
888     ulmbcs_byte_t OldConverterIndex = 0;
889 
890    while (args->source < args->sourceLimit && !U_FAILURE(*err))
891    {
892       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
893       OldConverterIndex = extraInfo->localeConverterIndex;
894 
895       if (args->target >= args->targetLimit)
896       {
897          *err = U_BUFFER_OVERFLOW_ERROR;
898          break;
899       }
900       uniChar = *(args->source);
901       bytes_written = 0;
902       pLMBCS = LMBCS;
903 
904       /* check cases in rough order of how common they are, for speed */
905 
906       /* single byte matches: strategy 1 */
907       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
908       if((uniChar>=0x80) && (uniChar<=0xff)
909       /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
910         &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
911       {
912             extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
913       }
914       if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
915           uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
916           uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
917           )
918       {
919          *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
920          bytes_written = 1;
921       }
922 
923 
924       if (!bytes_written)
925       {
926          /* Check by UNICODE range (Strategy 2) */
927          ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
928 
929          if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
930          {
931             pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
932 
933             bytes_written = (int32_t)(pLMBCS - LMBCS);
934          }
935          else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
936          {
937             /* Handle control characters here */
938             if (uniChar <= ULMBCS_C0END)
939             {
940                *pLMBCS++ = ULMBCS_GRP_CTRL;
941                *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
942             }
943             else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
944             {
945                *pLMBCS++ = ULMBCS_GRP_CTRL;
946                *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
947             }
948             bytes_written = (int32_t)(pLMBCS - LMBCS);
949          }
950          else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
951          {
952             /* a specific converter has been identified - use it */
953             bytes_written = (int32_t)LMBCSConversionWorker (
954                               extraInfo, group, pLMBCS, &uniChar,
955                               &lastConverterIndex, groups_tried);
956          }
957          if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
958          {
959             uprv_memset(groups_tried, 0, sizeof(groups_tried));
960 
961             /* check for non-default optimization group (Strategy 3A )*/
962             if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
963             {
964                 /*zhujin: upgrade, merge #39299 here (Lotus) */
965                 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
966 
967                 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
968                 {
969                   bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
970                      ULMBCS_GRP_L1, pLMBCS, &uniChar,
971                      &lastConverterIndex, groups_tried);
972 
973                   if(!bytes_written)
974                   {
975                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
976                          ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
977                          &lastConverterIndex, groups_tried);
978                   }
979                   if(!bytes_written)
980                   {
981                       bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
982                           extraInfo->localeConverterIndex, pLMBCS, &uniChar,
983                           &lastConverterIndex, groups_tried);
984                   }
985                 }
986                 else
987                 {
988                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
989                          extraInfo->localeConverterIndex, pLMBCS, &uniChar,
990                          &lastConverterIndex, groups_tried);
991                 }
992             }
993             /* check for locale optimization group (Strategy 3B) */
994             if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
995             {
996                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
997                         extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
998             }
999             /* check for last optimization group used for this string (Strategy 3C) */
1000             if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
1001             {
1002                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1003                         lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
1004             }
1005             if (!bytes_written)
1006             {
1007                /* just check every possible matching converter (Strategy 3D) */
1008                ulmbcs_byte_t grp_start;
1009                ulmbcs_byte_t grp_end;
1010                ulmbcs_byte_t grp_ix;
1011                grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1012                         ? ULMBCS_DOUBLEOPTGROUP_START
1013                         :  ULMBCS_GRP_L1);
1014                grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1015                         ? ULMBCS_GRP_LAST
1016                         :  ULMBCS_GRP_TH);
1017                if(group == ULMBCS_AMBIGUOUS_ALL)
1018                {
1019                    grp_start = ULMBCS_GRP_L1;
1020                    grp_end = ULMBCS_GRP_LAST;
1021                }
1022                for (grp_ix = grp_start;
1023                    grp_ix <= grp_end && !bytes_written;
1024                     grp_ix++)
1025                {
1026                   if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1027                   {
1028                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1029                        grp_ix, pLMBCS, &uniChar,
1030                        &lastConverterIndex, groups_tried);
1031                   }
1032                }
1033                 /* a final conversion fallback to the exceptions group if its likely
1034                      to be single byte  (Strategy 3E) */
1035                if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1036                {
1037                   bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1038                      ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1039                      &lastConverterIndex, groups_tried);
1040                }
1041             }
1042             /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1043             if (!bytes_written)
1044             {
1045 
1046                pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1047                bytes_written = (int32_t)(pLMBCS - LMBCS);
1048             }
1049          }
1050       }
1051 
1052       /* we have a translation. increment source and write as much as posible to target */
1053       args->source++;
1054       pLMBCS = LMBCS;
1055       while (args->target < args->targetLimit && bytes_written--)
1056       {
1057          *(args->target)++ = *pLMBCS++;
1058          if (args->offsets)
1059          {
1060             *(args->offsets)++ = sourceIndex;
1061          }
1062       }
1063       sourceIndex++;
1064       if (bytes_written > 0)
1065       {
1066          /* write any bytes that didn't fit in target to the error buffer,
1067             common code will move this to target if we get called back with
1068             enough target room
1069          */
1070          uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1071          *err = U_BUFFER_OVERFLOW_ERROR;
1072          args->converter->charErrorBufferLength = (int8_t)bytes_written;
1073          while (bytes_written--)
1074          {
1075             *pErrorBuffer++ = *pLMBCS++;
1076          }
1077       }
1078       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1079       extraInfo->localeConverterIndex = OldConverterIndex;
1080    }
1081 }
1082 
1083 
1084 /* Now, the Unicode from LMBCS section */
1085 
1086 
1087 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1088 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1089 GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
1090 {
1091    uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
1092    uint8_t  LowCh  = *(*ppLMBCSin)++;
1093 
1094    if (HighCh == ULMBCS_UNICOMPATZERO )
1095    {
1096       HighCh = LowCh;
1097       LowCh = 0; /* zero-byte in LSB special character */
1098    }
1099    return (UChar)((HighCh << 8) | LowCh);
1100 }
1101 
1102 
1103 
1104 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1105    bytes left in source up to  sourceLimit.Errors appropriately if not.
1106    If we reach the limit, then update the source pointer to there to consume
1107    all input as required by ICU converter semantics.
1108 */
1109 
1110 #define CHECK_SOURCE_LIMIT(index) UPRV_BLOCK_MACRO_BEGIN { \
1111     if (args->source+index > args->sourceLimit) { \
1112         *err = U_TRUNCATED_CHAR_FOUND; \
1113         args->source = args->sourceLimit; \
1114         return 0xffff; \
1115     } \
1116 } UPRV_BLOCK_MACRO_END
1117 
1118 /* Return the Unicode representation for the current LMBCS character */
1119 
1120 static UChar32  U_CALLCONV
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1121 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1122                          UErrorCode*   err)
1123 {
1124     UChar32 uniChar = 0;    /* an output UNICODE char */
1125     ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1126 
1127     /* error check */
1128     if (args->source >= args->sourceLimit)
1129     {
1130         *err = U_ILLEGAL_ARGUMENT_ERROR;
1131         return 0xffff;
1132     }
1133     /* Grab first byte & save address for error recovery */
1134     CurByte = *((ulmbcs_byte_t  *) (args->source++));
1135 
1136     /*
1137     * at entry of each if clause:
1138     * 1. 'CurByte' points at the first byte of a LMBCS character
1139     * 2. '*source'points to the next byte of the source stream after 'CurByte'
1140     *
1141     * the job of each if clause is:
1142     * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1143     * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1144     */
1145 
1146     /* First lets check the simple fixed values. */
1147 
1148     if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1149     ||  (CurByte == 0)
1150     ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1151     ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1152     {
1153         uniChar = CurByte;
1154     }
1155     else
1156     {
1157         UConverterDataLMBCS * extraInfo;
1158         ulmbcs_byte_t group;
1159         UConverterSharedData *cnv;
1160 
1161         if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1162         {
1163             ulmbcs_byte_t  C0C1byte;
1164             CHECK_SOURCE_LIMIT(1);
1165             C0C1byte = *(args->source)++;
1166             uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1167         }
1168         else
1169         if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1170         {
1171             CHECK_SOURCE_LIMIT(2);
1172 
1173             /* don't check for error indicators fffe/ffff below */
1174             return GetUniFromLMBCSUni(&(args->source));
1175         }
1176         else if (CurByte <= ULMBCS_CTRLOFFSET)
1177         {
1178             group = CurByte;                   /* group byte is in the source */
1179             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1180             if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1181             {
1182                 /* this is not a valid group byte - no converter*/
1183                 *err = U_INVALID_CHAR_FOUND;
1184             }
1185             else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1186             {
1187 
1188                 CHECK_SOURCE_LIMIT(2);
1189 
1190                 /* check for LMBCS doubled-group-byte case */
1191                 if (*args->source == group) {
1192                     /* single byte */
1193                     ++args->source;
1194                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1195                     ++args->source;
1196                 } else {
1197                     /* double byte */
1198                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1199                     args->source += 2;
1200                 }
1201             }
1202             else {                                  /* single byte conversion */
1203                 CHECK_SOURCE_LIMIT(1);
1204                 CurByte = *(args->source)++;
1205 
1206                 if (CurByte >= ULMBCS_C1START)
1207                 {
1208                     uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1209                 }
1210                 else
1211                 {
1212                     /* The non-optimizable oddballs where there is an explicit byte
1213                     * AND the second byte is not in the upper ascii range
1214                     */
1215                     char bytes[2];
1216 
1217                     extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1218                     cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1219 
1220                     /* Lookup value must include opt group */
1221                     bytes[0] = group;
1222                     bytes[1] = CurByte;
1223                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1224                 }
1225             }
1226         }
1227         else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1228         {
1229             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1230             group = extraInfo->OptGroup;
1231             cnv = extraInfo->OptGrpConverter[group];
1232             if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1233             {
1234                 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1235                 {
1236                     CHECK_SOURCE_LIMIT(0);
1237 
1238                     /* let the MBCS conversion consume CurByte again */
1239                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1240                 }
1241                 else
1242                 {
1243                     CHECK_SOURCE_LIMIT(1);
1244                     /* let the MBCS conversion consume CurByte again */
1245                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1246                     ++args->source;
1247                 }
1248             }
1249             else                                   /* single byte conversion */
1250             {
1251                 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1252             }
1253         }
1254     }
1255     return uniChar;
1256 }
1257 
1258 
1259 /* The exported function that converts lmbcs to one or more
1260    UChars - currently UTF-16
1261 */
1262 static void  U_CALLCONV
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1263 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1264                      UErrorCode*    err)
1265 {
1266    char LMBCS [ULMBCS_CHARSIZE_MAX];
1267    UChar uniChar;    /* one output UNICODE char */
1268    const char * saveSource; /* beginning of current code point */
1269    const char * pStartLMBCS = args->source;  /* beginning of whole string */
1270    const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1271    int8_t savebytes = 0;
1272 
1273    /* Process from source to limit, or until error */
1274    while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1275    {
1276       saveSource = args->source; /* beginning of current code point */
1277 
1278       if (args->converter->toULength) /* reassemble char from previous call */
1279       {
1280         const char *saveSourceLimit;
1281         size_t size_old = args->converter->toULength;
1282 
1283          /* limit from source is either remainder of temp buffer, or user limit on source */
1284         size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1285         size_t size_new_maybe_2 = args->sourceLimit - args->source;
1286         size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1287 
1288 
1289         uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1290         uprv_memcpy(LMBCS + size_old, args->source, size_new);
1291         saveSourceLimit = args->sourceLimit;
1292         args->source = errSource = LMBCS;
1293         args->sourceLimit = LMBCS+size_old+size_new;
1294         savebytes = (int8_t)(size_old+size_new);
1295         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1296         args->source = saveSource + ((args->source - LMBCS) - size_old);
1297         args->sourceLimit = saveSourceLimit;
1298 
1299         if (*err == U_TRUNCATED_CHAR_FOUND)
1300         {
1301             /* evil special case: source buffers so small a char spans more than 2 buffers */
1302             args->converter->toULength = savebytes;
1303             uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1304             args->source = args->sourceLimit;
1305             *err = U_ZERO_ERROR;
1306             return;
1307          }
1308          else
1309          {
1310             /* clear the partial-char marker */
1311             args->converter->toULength = 0;
1312          }
1313       }
1314       else
1315       {
1316          errSource = saveSource;
1317          uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1318          savebytes = (int8_t)(args->source - saveSource);
1319       }
1320       if (U_SUCCESS(*err))
1321       {
1322          if (uniChar < 0xfffe)
1323          {
1324             *(args->target)++ = uniChar;
1325             if(args->offsets)
1326             {
1327                *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1328             }
1329          }
1330          else if (uniChar == 0xfffe)
1331          {
1332             *err = U_INVALID_CHAR_FOUND;
1333          }
1334          else /* if (uniChar == 0xffff) */
1335          {
1336             *err = U_ILLEGAL_CHAR_FOUND;
1337          }
1338       }
1339    }
1340    /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1341    if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1342    {
1343       *err = U_BUFFER_OVERFLOW_ERROR;
1344    }
1345    else if (U_FAILURE(*err))
1346    {
1347       /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1348       args->converter->toULength = savebytes;
1349       if (savebytes > 0) {
1350          uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1351       }
1352       if (*err == U_TRUNCATED_CHAR_FOUND) {
1353          *err = U_ZERO_ERROR;
1354       }
1355    }
1356 }
1357 
1358 /* And now, the macroized declarations of data & functions: */
1359 DEFINE_LMBCS_OPEN(1)
1360 DEFINE_LMBCS_OPEN(2)
1361 DEFINE_LMBCS_OPEN(3)
1362 DEFINE_LMBCS_OPEN(4)
1363 DEFINE_LMBCS_OPEN(5)
1364 DEFINE_LMBCS_OPEN(6)
1365 DEFINE_LMBCS_OPEN(8)
1366 DEFINE_LMBCS_OPEN(11)
1367 DEFINE_LMBCS_OPEN(16)
1368 DEFINE_LMBCS_OPEN(17)
1369 DEFINE_LMBCS_OPEN(18)
1370 DEFINE_LMBCS_OPEN(19)
1371 
1372 
1373 DECLARE_LMBCS_DATA(1)
1374 DECLARE_LMBCS_DATA(2)
1375 DECLARE_LMBCS_DATA(3)
1376 DECLARE_LMBCS_DATA(4)
1377 DECLARE_LMBCS_DATA(5)
1378 DECLARE_LMBCS_DATA(6)
1379 DECLARE_LMBCS_DATA(8)
1380 DECLARE_LMBCS_DATA(11)
1381 DECLARE_LMBCS_DATA(16)
1382 DECLARE_LMBCS_DATA(17)
1383 DECLARE_LMBCS_DATA(18)
1384 DECLARE_LMBCS_DATA(19)
1385 
1386 U_CDECL_END
1387 
1388 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1389