1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 2012-2015, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
8 * collationbasedatabuilder.cpp
9 *
10 * created on: 2012aug11
11 * created by: Markus W. Scherer
12 */
13
14 #include "unicode/utypes.h"
15
16 #if !UCONFIG_NO_COLLATION
17
18 #include "unicode/localpointer.h"
19 #include "unicode/ucharstriebuilder.h"
20 #include "unicode/uniset.h"
21 #include "unicode/unistr.h"
22 #include "unicode/utf16.h"
23 #include "collation.h"
24 #include "collationbasedatabuilder.h"
25 #include "collationdata.h"
26 #include "collationdatabuilder.h"
27 #include "collationrootelements.h"
28 #include "normalizer2impl.h"
29 #include "uassert.h"
30 #include "utrie2.h"
31 #include "uvectr32.h"
32 #include "uvectr64.h"
33 #include "uvector.h"
34
35 U_NAMESPACE_BEGIN
36
37 namespace {
38
39 /**
40 * Compare two signed int64_t values as if they were unsigned.
41 */
42 int32_t
compareInt64AsUnsigned(int64_t a,int64_t b)43 compareInt64AsUnsigned(int64_t a, int64_t b) {
44 if((uint64_t)a < (uint64_t)b) {
45 return -1;
46 } else if((uint64_t)a > (uint64_t)b) {
47 return 1;
48 } else {
49 return 0;
50 }
51 }
52
53 // TODO: Try to merge this with the binarySearch in alphaindex.cpp.
54 /**
55 * Like Java Collections.binarySearch(List, String, Comparator).
56 *
57 * @return the index>=0 where the item was found,
58 * or the index<0 for inserting the string at ~index in sorted order
59 */
60 int32_t
binarySearch(const UVector64 & list,int64_t ce)61 binarySearch(const UVector64 &list, int64_t ce) {
62 if (list.size() == 0) { return ~0; }
63 int32_t start = 0;
64 int32_t limit = list.size();
65 for (;;) {
66 int32_t i = (start + limit) / 2;
67 int32_t cmp = compareInt64AsUnsigned(ce, list.elementAti(i));
68 if (cmp == 0) {
69 return i;
70 } else if (cmp < 0) {
71 if (i == start) {
72 return ~start; // insert ce before i
73 }
74 limit = i;
75 } else {
76 if (i == start) {
77 return ~(start + 1); // insert ce after i
78 }
79 start = i;
80 }
81 }
82 }
83
84 } // namespace
85
CollationBaseDataBuilder(UErrorCode & errorCode)86 CollationBaseDataBuilder::CollationBaseDataBuilder(UErrorCode &errorCode)
87 : CollationDataBuilder(errorCode),
88 numericPrimary(0x12000000),
89 firstHanPrimary(0), lastHanPrimary(0), hanStep(2),
90 rootElements(errorCode),
91 scriptStartsLength(1) {
92 uprv_memset(scriptsIndex, 0, sizeof(scriptsIndex));
93 uprv_memset(scriptStarts, 0, sizeof(scriptStarts));
94 }
95
~CollationBaseDataBuilder()96 CollationBaseDataBuilder::~CollationBaseDataBuilder() {
97 }
98
99 void
init(UErrorCode & errorCode)100 CollationBaseDataBuilder::init(UErrorCode &errorCode) {
101 if(U_FAILURE(errorCode)) { return; }
102 if(trie != NULL) {
103 errorCode = U_INVALID_STATE_ERROR;
104 return;
105 }
106
107 // Not compressible:
108 // - digits
109 // - Latin
110 // - Hani
111 // - trail weights
112 // Some scripts are compressible, some are not.
113 uprv_memset(compressibleBytes, FALSE, 256);
114 compressibleBytes[Collation::UNASSIGNED_IMPLICIT_BYTE] = TRUE;
115
116 // For a base, the default is to compute an unassigned-character implicit CE.
117 // This includes surrogate code points; see the last option in
118 // UCA section 7.1.1 Handling Ill-Formed Code Unit Sequences.
119 trie = utrie2_open(Collation::UNASSIGNED_CE32, Collation::FFFD_CE32, &errorCode);
120
121 // Preallocate trie blocks for Latin in the hope that proximity helps with CPU caches.
122 for(UChar32 c = 0; c < 0x180; ++c) {
123 utrie2_set32(trie, c, Collation::UNASSIGNED_CE32, &errorCode);
124 }
125
126 utrie2_set32(trie, 0xfffe, Collation::MERGE_SEPARATOR_CE32, &errorCode);
127 // No root element for the merge separator which has 02 weights.
128 // Some code assumes that the root first primary CE is the "space first primary"
129 // from FractionalUCA.txt.
130
131 uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0);
132 utrie2_setRange32(trie, Hangul::HANGUL_BASE, Hangul::HANGUL_END, hangulCE32, TRUE, &errorCode);
133
134 // Add a mapping for the first-unassigned boundary,
135 // which is the AlphabeticIndex overflow boundary.
136 UnicodeString s((UChar)0xfdd1); // Script boundary contractions start with U+FDD1.
137 s.append((UChar)0xfdd0); // Zzzz script sample character U+FDD0.
138 int64_t ce = Collation::makeCE(Collation::FIRST_UNASSIGNED_PRIMARY);
139 add(UnicodeString(), s, &ce, 1, errorCode);
140
141 // Add a tailoring boundary, but not a mapping, for [first trailing].
142 ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
143 rootElements.addElement(ce, errorCode);
144
145 // U+FFFD maps to a CE with the third-highest primary weight,
146 // for predictable handling of ill-formed UTF-8.
147 uint32_t ce32 = Collation::FFFD_CE32;
148 utrie2_set32(trie, 0xfffd, ce32, &errorCode);
149 addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode);
150
151 // U+FFFF maps to a CE with the highest primary weight.
152 ce32 = Collation::MAX_REGULAR_CE32;
153 utrie2_set32(trie, 0xffff, ce32, &errorCode);
154 addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode);
155 }
156
157 void
initHanRanges(const UChar32 ranges[],int32_t length,UErrorCode & errorCode)158 CollationBaseDataBuilder::initHanRanges(const UChar32 ranges[], int32_t length,
159 UErrorCode &errorCode) {
160 if(U_FAILURE(errorCode) || length == 0) { return; }
161 if((length & 1) != 0) { // incomplete start/end pairs
162 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
163 return;
164 }
165 if(isAssigned(0x4e00)) { // already set
166 errorCode = U_INVALID_STATE_ERROR;
167 return;
168 }
169 int32_t numHanCodePoints = 0;
170 for(int32_t i = 0; i < length; i += 2) {
171 UChar32 start = ranges[i];
172 UChar32 end = ranges[i + 1];
173 numHanCodePoints += end - start + 1;
174 }
175 // Multiply the number of code points by (gap+1).
176 // Add hanStep+2 for tailoring after the last Han character.
177 int32_t gap = 1;
178 hanStep = gap + 1;
179 int32_t numHan = numHanCodePoints * hanStep + hanStep + 2;
180 // Numbers of Han primaries per lead byte determined by
181 // numbers of 2nd (not compressible) times 3rd primary byte values.
182 int32_t numHanPerLeadByte = 254 * 254;
183 int32_t numHanLeadBytes = (numHan + numHanPerLeadByte - 1) / numHanPerLeadByte;
184 uint32_t hanPrimary = (uint32_t)(Collation::UNASSIGNED_IMPLICIT_BYTE - numHanLeadBytes) << 24;
185 hanPrimary |= 0x20200;
186 firstHanPrimary = hanPrimary;
187 for(int32_t i = 0; i < length; i += 2) {
188 UChar32 start = ranges[i];
189 UChar32 end = ranges[i + 1];
190 hanPrimary = setPrimaryRangeAndReturnNext(start, end, hanPrimary, hanStep, errorCode);
191 }
192 // One past the actual last one, but that is harmless for tailoring.
193 // It saves us from subtracting "hanStep" and handling underflows.
194 lastHanPrimary = hanPrimary;
195 }
196
197 UBool
isCompressibleLeadByte(uint32_t b) const198 CollationBaseDataBuilder::isCompressibleLeadByte(uint32_t b) const {
199 return compressibleBytes[b];
200 }
201
202 void
setCompressibleLeadByte(uint32_t b)203 CollationBaseDataBuilder::setCompressibleLeadByte(uint32_t b) {
204 compressibleBytes[b] = TRUE;
205 }
206
207 int32_t
diffTwoBytePrimaries(uint32_t p1,uint32_t p2,UBool isCompressible)208 CollationBaseDataBuilder::diffTwoBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) {
209 if((p1 & 0xff000000) == (p2 & 0xff000000)) {
210 // Same lead bytes.
211 return (int32_t)(p2 - p1) >> 16;
212 } else {
213 int32_t linear1;
214 int32_t linear2;
215 int32_t factor;
216 if(isCompressible) {
217 // Second byte for compressible lead byte: 251 bytes 04..FE
218 linear1 = (int32_t)((p1 >> 16) & 0xff) - 4;
219 linear2 = (int32_t)((p2 >> 16) & 0xff) - 4;
220 factor = 251;
221 } else {
222 // Second byte for incompressible lead byte: 254 bytes 02..FF
223 linear1 = (int32_t)((p1 >> 16) & 0xff) - 2;
224 linear2 = (int32_t)((p2 >> 16) & 0xff) - 2;
225 factor = 254;
226 }
227 linear1 += factor * (int32_t)((p1 >> 24) & 0xff);
228 linear2 += factor * (int32_t)((p2 >> 24) & 0xff);
229 return linear2 - linear1;
230 }
231 }
232
233 int32_t
diffThreeBytePrimaries(uint32_t p1,uint32_t p2,UBool isCompressible)234 CollationBaseDataBuilder::diffThreeBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) {
235 if((p1 & 0xffff0000) == (p2 & 0xffff0000)) {
236 // Same first two bytes.
237 return (int32_t)(p2 - p1) >> 8;
238 } else {
239 // Third byte: 254 bytes 02..FF
240 int32_t linear1 = (int32_t)((p1 >> 8) & 0xff) - 2;
241 int32_t linear2 = (int32_t)((p2 >> 8) & 0xff) - 2;
242 int32_t factor;
243 if(isCompressible) {
244 // Second byte for compressible lead byte: 251 bytes 04..FE
245 linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 4);
246 linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 4);
247 factor = 251 * 254;
248 } else {
249 // Second byte for incompressible lead byte: 254 bytes 02..FF
250 linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 2);
251 linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 2);
252 factor = 254 * 254;
253 }
254 linear1 += factor * (int32_t)((p1 >> 24) & 0xff);
255 linear2 += factor * (int32_t)((p2 >> 24) & 0xff);
256 return linear2 - linear1;
257 }
258 }
259
260 uint32_t
encodeCEs(const int64_t ces[],int32_t cesLength,UErrorCode & errorCode)261 CollationBaseDataBuilder::encodeCEs(const int64_t ces[], int32_t cesLength, UErrorCode &errorCode) {
262 addRootElements(ces, cesLength, errorCode);
263 return CollationDataBuilder::encodeCEs(ces, cesLength, errorCode);
264 }
265
266 void
addRootElements(const int64_t ces[],int32_t cesLength,UErrorCode & errorCode)267 CollationBaseDataBuilder::addRootElements(const int64_t ces[], int32_t cesLength,
268 UErrorCode &errorCode) {
269 if(U_FAILURE(errorCode)) { return; }
270 for(int32_t i = 0; i < cesLength; ++i) {
271 addRootElement(ces[i], errorCode);
272 }
273 }
274
275 void
addRootElement(int64_t ce,UErrorCode & errorCode)276 CollationBaseDataBuilder::addRootElement(int64_t ce, UErrorCode &errorCode) {
277 if(U_FAILURE(errorCode) || ce == 0) { return; }
278 // Remove case bits.
279 ce &= INT64_C(0xffffffffffff3fff);
280 U_ASSERT((ce & 0xc0) == 0); // quaternary==0
281 // Ignore the CE if it has a Han primary weight and common secondary/tertiary weights.
282 // We will add it later, as part of the Han ranges.
283 uint32_t p = (uint32_t)(ce >> 32);
284 uint32_t secTer = (uint32_t)ce;
285 if(firstHanPrimary <= p && p <= lastHanPrimary) {
286 if(secTer < Collation::COMMON_SEC_AND_TER_CE) {
287 // buildRootElementsTable() does not currently handle this case.
288 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
289 return;
290 }
291 if(secTer == Collation::COMMON_SEC_AND_TER_CE) {
292 return;
293 }
294 }
295 if(secTer != Collation::COMMON_SEC_AND_TER_CE) { // minor optimization
296 // Check that secondary and tertiary weights are > 01.
297 uint32_t s = secTer >> 16;
298 uint32_t t = secTer & Collation::ONLY_TERTIARY_MASK;
299 if((s != 0 && s <= Collation::BEFORE_WEIGHT16) ||
300 (t != 0 && t <= Collation::BEFORE_WEIGHT16)) {
301 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
302 return;
303 }
304 }
305 // Check that primaries have at most 3 bytes.
306 if((p & 0xff) != 0) {
307 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
308 return;
309 }
310 int32_t i = binarySearch(rootElements, ce);
311 if(i < 0) {
312 rootElements.insertElementAt(ce, ~i, errorCode);
313 }
314 }
315
316 void
addScriptStart(int32_t script,uint32_t p)317 CollationBaseDataBuilder::addScriptStart(int32_t script, uint32_t p) {
318 // The primary weight must be the lowest possible for a two-byte prefix.
319 // It could be 2, 3, or 4 bytes long. We round down to the two-byte boundary.
320 U_ASSERT((p & 0xff) == 0 || (p & 0xff) == 2);
321 p >>= 8;
322 U_ASSERT((p & 0xff) == 0 || (p & 0xff) == 2);
323 p >>= 8;
324 uint32_t lowestP2 = compressibleBytes[p >> 8] ? 4 : 2;
325 if((p & 0xff) == lowestP2) {
326 // The script really starts on a lead byte boundary. Round down to that.
327 p &= 0xff00;
328 }
329 // Script starts should be added in ascending order, otherwise we would need to sort them.
330 if(script < UCOL_REORDER_CODE_FIRST) {
331 U_ASSERT(0 <= script && script < USCRIPT_CODE_LIMIT);
332 } else {
333 U_ASSERT(script <= (UCOL_REORDER_CODE_FIRST + 15));
334 script = USCRIPT_CODE_LIMIT + script - UCOL_REORDER_CODE_FIRST;
335 }
336 if(scriptStartsLength != 0 && scriptStarts[scriptStartsLength - 1] == p) {
337 // Two scripts share a range (e.g., Hira & Kana).
338 scriptsIndex[script] = (uint16_t)(scriptStartsLength - 1);
339 } else {
340 U_ASSERT(scriptStartsLength == 0 || scriptStarts[scriptStartsLength - 1] <= p);
341 U_ASSERT(scriptStartsLength < UPRV_LENGTHOF(scriptStarts));
342 scriptsIndex[script] = (uint16_t)scriptStartsLength;
343 scriptStarts[scriptStartsLength++] = (uint16_t)p;
344 }
345 if(script == USCRIPT_UNKNOWN) {
346 // The last script start is for unassigned code points
347 // (with high implict primary weights).
348 // Add one more entry with the limit of this range,
349 // which is the start of the trailing-weights range.
350 U_ASSERT(scriptStartsLength < UPRV_LENGTHOF(scriptStarts));
351 scriptStarts[scriptStartsLength++] =
352 (uint16_t)((Collation::FIRST_TRAILING_PRIMARY >> 16) & 0xff00);
353 }
354 }
355
356 void
build(CollationData & data,UErrorCode & errorCode)357 CollationBaseDataBuilder::build(CollationData &data, UErrorCode &errorCode) {
358 buildMappings(data, errorCode);
359 data.numericPrimary = numericPrimary;
360 data.compressibleBytes = compressibleBytes;
361
362 int32_t numScripts = USCRIPT_CODE_LIMIT;
363 while(numScripts > 0 && scriptsIndex[numScripts - 1] == 0) { --numScripts; }
364 // Move the 16 special groups (not all used)
365 // down for contiguous storage of the script and special-group indexes.
366 for(int32_t i = 0; i < 16; ++i) {
367 scriptsIndex[numScripts + i] = scriptsIndex[USCRIPT_CODE_LIMIT + i];
368 }
369 data.numScripts = numScripts;
370 data.scriptsIndex = scriptsIndex;
371 data.scriptStarts = scriptStarts;
372 data.scriptStartsLength = scriptStartsLength;
373 buildFastLatinTable(data, errorCode);
374 }
375
376 void
buildRootElementsTable(UVector32 & table,UErrorCode & errorCode)377 CollationBaseDataBuilder::buildRootElementsTable(UVector32 &table, UErrorCode &errorCode) {
378 // Limit sentinel for root elements.
379 // This allows us to reduce range checks at runtime.
380 rootElements.addElement(Collation::makeCE(CollationRootElements::PRIMARY_SENTINEL), errorCode);
381 if(U_FAILURE(errorCode)) { return; }
382 uint32_t nextHanPrimary = firstHanPrimary; // Set to 0xffffffff after the last Han range.
383 uint32_t prevPrimary = 0; // Start with primary ignorable CEs.
384 UBool needCommonSecTerUnit = FALSE;
385 UBool hasDeltaUnit = FALSE;
386 for(int32_t i = 0; i < rootElements.size(); ++i) {
387 int64_t ce = rootElements.elementAti(i);
388 uint32_t p = (uint32_t)(ce >> 32);
389 uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
390 if((p != prevPrimary || secTer > Collation::COMMON_SEC_AND_TER_CE) && needCommonSecTerUnit) {
391 // The last primary had low sec/ter weights but no common sec/ter combination.
392 // The next unit is either a new primary or an above-common sec/ter unit.
393 // Insert a common sec/ter unit so that the builder will reliably
394 // tailor to either before or after a common weight but not across it.
395 table.addElement((int32_t)Collation::COMMON_SEC_AND_TER_CE |
396 CollationRootElements::SEC_TER_DELTA_FLAG, errorCode);
397 }
398 if(p != prevPrimary) {
399 U_ASSERT((p & 0xff) == 0);
400 int32_t end;
401 if(p >= nextHanPrimary) {
402 // Add a Han primary weight or range.
403 // We omitted them initially, and omitted all CEs with Han primaries
404 // and common secondary/tertiary weights.
405 U_ASSERT(p > lastHanPrimary || secTer > Collation::COMMON_SEC_AND_TER_CE);
406 if(p == nextHanPrimary) {
407 // One single Han primary with non-common secondary/tertiary weights.
408 table.addElement((int32_t)p, errorCode);
409 if(p < lastHanPrimary) {
410 // Prepare for the next Han range.
411 nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep);
412 } else {
413 // p is the last Han primary.
414 nextHanPrimary = 0xffffffff;
415 }
416 } else {
417 // p > nextHanPrimary: Add a Han primary range, starting with nextHanPrimary.
418 table.addElement((int32_t)nextHanPrimary, errorCode);
419 if(nextHanPrimary == lastHanPrimary) {
420 // nextHanPrimary == lastHanPrimary < p
421 // We just wrote the single last Han primary.
422 nextHanPrimary = 0xffffffff;
423 table.addElement((int32_t)p, errorCode);
424 } else if(p < lastHanPrimary) {
425 // nextHanPrimary < p < lastHanPrimary
426 // End the Han range on p, prepare for the next range.
427 table.addElement((int32_t)p | hanStep, errorCode);
428 nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep);
429 } else if(p == lastHanPrimary) {
430 // nextHanPrimary < p == lastHanPrimary
431 // End the last Han range on p.
432 table.addElement((int32_t)p | hanStep, errorCode);
433 nextHanPrimary = 0xffffffff;
434 } else {
435 // nextHanPrimary < lastHanPrimary < p
436 // End the last Han range, then write p.
437 table.addElement((int32_t)lastHanPrimary | hanStep, errorCode);
438 nextHanPrimary = 0xffffffff;
439 table.addElement((int32_t)p, errorCode);
440 }
441 }
442 } else if(prevPrimary != 0 &&
443 // If there has not been an intervening delta unit,
444 // then we will try to combine the previous primary and
445 // the next several primaries into a range.
446 !hasDeltaUnit &&
447 // Might get a range with more than two primaries if the current CE
448 // has common sec/ter weights.
449 secTer == Collation::COMMON_SEC_AND_TER_CE &&
450 (end = writeRootElementsRange(prevPrimary, p, i + 1, table, errorCode)) != 0) {
451 // Multiple CEs with only common secondary/tertiary weights were
452 // combined into a primary range.
453 // The range end was written, ending with the primary of rootElements[end].
454 ce = rootElements.elementAti(end);
455 p = (uint32_t)(ce >> 32);
456 secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
457 i = end;
458 } else {
459 // Write the primary weight of a normal CE.
460 table.addElement((int32_t)p, errorCode);
461 }
462 prevPrimary = p;
463 needCommonSecTerUnit = FALSE;
464 hasDeltaUnit = FALSE;
465 }
466 if(secTer == Collation::COMMON_SEC_AND_TER_CE && !needCommonSecTerUnit) {
467 // The common secondar/tertiary weights are implied in the primary unit.
468 } else {
469 if(secTer < Collation::COMMON_SEC_AND_TER_CE) {
470 // Remember to not suppress a common sec/ter unit if p!=0.
471 needCommonSecTerUnit = p != 0;
472 } else if(secTer == Collation::COMMON_SEC_AND_TER_CE) {
473 // Real common sec/ter unit, no need to insert an artificial one.
474 needCommonSecTerUnit = FALSE;
475 }
476 // For each new set of secondary/tertiary weights we write a delta unit.
477 table.addElement((int32_t)secTer | CollationRootElements::SEC_TER_DELTA_FLAG, errorCode);
478 hasDeltaUnit = TRUE;
479 }
480 }
481 }
482
483 int32_t
writeRootElementsRange(uint32_t prevPrimary,uint32_t p,int32_t i,UVector32 & table,UErrorCode & errorCode)484 CollationBaseDataBuilder::writeRootElementsRange(
485 uint32_t prevPrimary, uint32_t p, int32_t i,
486 UVector32 &table, UErrorCode &errorCode) {
487 if(U_FAILURE(errorCode) || i >= rootElements.size()) { return 0; }
488 U_ASSERT(prevPrimary < p);
489 // No ranges of single-byte primaries.
490 if((p & prevPrimary & 0xff0000) == 0) { return 0; }
491 // Lead bytes of compressible primaries must match.
492 UBool isCompressible = isCompressiblePrimary(p);
493 if((isCompressible || isCompressiblePrimary(prevPrimary)) &&
494 (p & 0xff000000) != (prevPrimary & 0xff000000)) {
495 return 0;
496 }
497 // Number of bytes in the primaries.
498 UBool twoBytes;
499 // Number of primaries from prevPrimary to p.
500 int32_t step;
501 if((p & 0xff00) == 0) {
502 // 2-byte primary
503 if((prevPrimary & 0xff00) != 0) { return 0; } // length mismatch
504 twoBytes = TRUE;
505 step = diffTwoBytePrimaries(prevPrimary, p, isCompressible);
506 } else {
507 // 3-byte primary
508 if((prevPrimary & 0xff00) == 0) { return 0; } // length mismatch
509 twoBytes = FALSE;
510 step = diffThreeBytePrimaries(prevPrimary, p, isCompressible);
511 }
512 if(step > (int32_t)CollationRootElements::PRIMARY_STEP_MASK) { return 0; }
513 // See if there are more than two CEs with primaries increasing by "step"
514 // and with only common secondary/tertiary weights on all but the last one.
515 int32_t end = 0; // Initially 0: No range for just two primaries.
516 for(;;) {
517 prevPrimary = p;
518 // Calculate which primary we expect next.
519 uint32_t nextPrimary; // = p + step
520 if(twoBytes) {
521 nextPrimary = Collation::incTwoBytePrimaryByOffset(p, isCompressible, step);
522 } else {
523 nextPrimary = Collation::incThreeBytePrimaryByOffset(p, isCompressible, step);
524 }
525 // Fetch the actual next CE.
526 int64_t ce = rootElements.elementAti(i);
527 p = (uint32_t)(ce >> 32);
528 uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK;
529 // Does this primary increase by "step" from the last one?
530 if(p != nextPrimary ||
531 // Do not cross into a new lead byte if either is compressible.
532 ((p & 0xff000000) != (prevPrimary & 0xff000000) &&
533 (isCompressible || isCompressiblePrimary(p)))) {
534 // The range ends with the previous CE.
535 p = prevPrimary;
536 break;
537 }
538 // Extend the range to include this primary.
539 end = i++;
540 // This primary is the last in the range if it has non-common weights
541 // or if we are at the end of the list.
542 if(secTer != Collation::COMMON_SEC_AND_TER_CE || i >= rootElements.size()) { break; }
543 }
544 if(end != 0) {
545 table.addElement((int32_t)p | step, errorCode);
546 }
547 return end;
548 }
549
550 U_NAMESPACE_END
551
552 #endif // !UCONFIG_NO_COLLATION
553