• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Permission to use, copy, modify, and distribute this
21  *     software is freely granted, provided that this notice
22  *     is preserved.
23  *
24  *     @(#)e_exp.c 1.6 04/04/22
25  */
26 
27 #include "jerry-libm-internal.h"
28 
29 /* exp(x)
30  * Returns the exponential of x.
31  *
32  * Method:
33  *   1. Argument reduction:
34  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
35  *      Given x, find r and integer k such that
36  *
37  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
38  *
39  *      Here r will be represented as r = hi-lo for better
40  *      accuracy.
41  *
42  *   2. Approximation of exp(r) by a special rational function on
43  *      the interval [0,0.34658]:
44  *      Write
45  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
46  *      We use a special Remes algorithm on [0,0.34658] to generate
47  *      a polynomial of degree 5 to approximate R. The maximum error
48  *      of this polynomial approximation is bounded by 2**-59. In
49  *      other words,
50  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
51  *      (where z=r*r, and the values of P1 to P5 are listed below)
52  *      and
53  *          |                  5          |     -59
54  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
55  *          |                             |
56  *      The computation of exp(r) thus becomes
57  *                             2*r
58  *              exp(r) = 1 + -------
59  *                            R - r
60  *                                 r*R1(r)
61  *                     = 1 + r + ----------- (for better accuracy)
62  *                                2 - R1(r)
63  *      where
64  *                               2       4             10
65  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
66  *
67  *   3. Scale back to obtain exp(x):
68  *      From step 1, we have
69  *         exp(x) = 2^k * exp(r)
70  *
71  * Special cases:
72  *      exp(INF) is INF, exp(NaN) is NaN;
73  *      exp(-INF) is 0, and
74  *      for finite argument, only exp(0)=1 is exact.
75  *
76  * Accuracy:
77  *      according to an error analysis, the error is always less than
78  *      1 ulp (unit in the last place).
79  *
80  * Misc. info:
81  *      For IEEE double
82  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
83  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
84  *
85  * Constants:
86  * The hexadecimal values are the intended ones for the following
87  * constants. The decimal values may be used, provided that the
88  * compiler will convert from decimal to binary accurately enough
89  * to produce the hexadecimal values shown.
90  */
91 
92 static const double halF[2] =
93 {
94   0.5,
95   -0.5,
96 };
97 static const double ln2HI[2] =
98 {
99   6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
100   -6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */
101 };
102 static const double ln2LO[2] =
103 {
104   1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
105   -1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */
106 };
107 
108 #define one          1.0
109 #define huge         1.0e+300
110 #define twom1000     9.33263618503218878990e-302 /* 2**-1000=0x01700000,0 */
111 #define o_threshold  7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
112 #define u_threshold -7.45133219101941108420e+02 /* 0xc0874910, 0xD52D3051 */
113 #define invln2       1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */
114 #define P1           1.66666666666666019037e-01 /* 0x3FC55555, 0x5555553E */
115 #define P2          -2.77777777770155933842e-03 /* 0xBF66C16C, 0x16BEBD93 */
116 #define P3           6.61375632143793436117e-05 /* 0x3F11566A, 0xAF25DE2C */
117 #define P4          -1.65339022054652515390e-06 /* 0xBEBBBD41, 0xC5D26BF1 */
118 #define P5           4.13813679705723846039e-08 /* 0x3E663769, 0x72BEA4D0 */
119 
120 double
exp(double x)121 exp (double x) /* default IEEE double exp */
122 {
123   double hi, lo, c, t;
124   int k = 0, xsb;
125   unsigned hx;
126 
127   hx = __HI (x); /* high word of x */
128   xsb = (hx >> 31) & 1; /* sign bit of x */
129   hx &= 0x7fffffff; /* high word of |x| */
130 
131   /* filter out non-finite argument */
132   if (hx >= 0x40862E42) /* if |x| >= 709.78... */
133   {
134     if (hx >= 0x7ff00000)
135     {
136       if (((hx & 0xfffff) | __LO (x)) != 0) /* NaN */
137       {
138         return x + x;
139       }
140       else /* exp(+-inf) = {inf,0} */
141       {
142         return (xsb == 0) ? x : 0.0;
143       }
144     }
145     if (x > o_threshold) /* overflow */
146     {
147       return huge * huge;
148     }
149     if (x < u_threshold) /* underflow */
150     {
151       return twom1000 * twom1000;
152     }
153   }
154 
155   /* argument reduction */
156   if (hx > 0x3fd62e42) /* if  |x| > 0.5 ln2 */
157   {
158     if (hx < 0x3FF0A2B2) /* and |x| < 1.5 ln2 */
159     {
160       hi = x - ln2HI[xsb];
161       lo = ln2LO[xsb];
162       k = 1 - xsb - xsb;
163     }
164     else
165     {
166       k = (int) (invln2 * x + halF[xsb]);
167       t = k;
168       hi = x - t * ln2HI[0]; /* t * ln2HI is exact here */
169       lo = t * ln2LO[0];
170     }
171     x = hi - lo;
172   }
173   else if (hx < 0x3e300000) /* when |x| < 2**-28 */
174   {
175     if (huge + x > one) /* trigger inexact */
176     {
177       return one + x;
178     }
179   }
180   else
181   {
182     k = 0;
183   }
184 
185   double_accessor ret;
186 
187   /* x is now in primary range */
188   t = x * x;
189   c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
190   if (k == 0)
191   {
192     return one - ((x * c) / (c - 2.0) - x);
193   }
194   else
195   {
196     ret.dbl = one - ((lo - (x * c) / (2.0 - c)) - hi);
197   }
198   if (k >= -1021)
199   {
200     ret.as_int.hi += (((unsigned int) k) << 20); /* add k to y's exponent */
201     return ret.dbl;
202   }
203   else
204   {
205     ret.as_int.hi += ((k + 1000) << 20); /* add k to y's exponent */
206     return ret.dbl * twom1000;
207   }
208 } /* exp */
209 
210 #undef one
211 #undef huge
212 #undef twom1000
213 #undef o_threshold
214 #undef u_threshold
215 #undef invln2
216 #undef P1
217 #undef P2
218 #undef P3
219 #undef P4
220 #undef P5
221