• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Permission to use, copy, modify, and distribute this
21  *     software is freely granted, provided that this notice
22  *     is preserved.
23  *
24  *     @(#)s_expm1.c 5.1 93/09/24
25  */
26 
27 #include "jerry-libm-internal.h"
28 
29 /* expm1(x)
30  * Returns exp(x)-1, the exponential of x minus 1.
31  *
32  * Method
33  *   1. Argument reduction:
34  *  Given x, find r and integer k such that
35  *
36  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
37  *
38  *      Here a correction term c will be computed to compensate
39  *  the error in r when rounded to a floating-point number.
40  *
41  *   2. Approximating expm1(r) by a special rational function on
42  *  the interval [0,0.34658]:
43  *  Since
44  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
45  *  we define R1(r*r) by
46  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
47  *  That is,
48  *      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
49  *         = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
50  *         = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
51  *      We use a special Reme algorithm on [0,0.347] to generate
52  *   a polynomial of degree 5 in r*r to approximate R1. The
53  *  maximum error of this polynomial approximation is bounded
54  *  by 2**-61. In other words,
55  *      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
56  *  where   Q1  =  -1.6666666666666567384E-2,
57  *     Q2  =   3.9682539681370365873E-4,
58  *     Q3  =  -9.9206344733435987357E-6,
59  *     Q4  =   2.5051361420808517002E-7,
60  *     Q5  =  -6.2843505682382617102E-9;
61  *    z   =  r*r,
62  *  with error bounded by
63  *      |                  5           |     -61
64  *      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
65  *      |                              |
66  *
67  *  expm1(r) = exp(r)-1 is then computed by the following
68  *   specific way which minimize the accumulation rounding error:
69  *                        2     3
70  *                        r     r    [ 3 - (R1 + R1*r/2)  ]
71  *        expm1(r) = r + --- + --- * [--------------------]
72  *                        2     2    [ 6 - r*(3 - R1*r/2) ]
73  *
74  *  To compensate the error in the argument reduction, we use
75  *    expm1(r+c) = expm1(r) + c + expm1(r)*c
76  *         ~ expm1(r) + c + r*c
77  *  Thus c+r*c will be added in as the correction terms for
78  *  expm1(r+c). Now rearrange the term to avoid optimization
79  *   screw up:
80  *                  (      2                                    2 )
81  *                  ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
82  *   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
83  *                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
84  *                  (                                             )
85  *
86  *       = r - E
87  *   3. Scale back to obtain expm1(x):
88  *  From step 1, we have
89  *     expm1(x) = either 2^k*[expm1(r)+1] - 1
90  *              = or     2^k*[expm1(r) + (1-2^-k)]
91  *   4. Implementation notes:
92  *  (A). To save one multiplication, we scale the coefficient Qi
93  *       to Qi*2^i, and replace z by (x^2)/2.
94  *  (B). To achieve maximum accuracy, we compute expm1(x) by
95  *    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
96  *    (ii)  if k=0, return r-E
97  *    (iii) if k=-1, return 0.5*(r-E)-0.5
98  *    (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
99  *                  else       return  1.0+2.0*(r-E);
100  *    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
101  *    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
102  *    (vii) return 2^k(1-((E+2^-k)-r))
103  *
104  * Special cases:
105  *  expm1(INF) is INF, expm1(NaN) is NaN;
106  *  expm1(-INF) is -1, and
107  *  for finite argument, only expm1(0)=0 is exact.
108  *
109  * Accuracy:
110  *  according to an error analysis, the error is always less than
111  *  1 ulp (unit in the last place).
112  *
113  * Misc. info.
114  *  For IEEE double
115  *      if x >  7.09782712893383973096e+02 then expm1(x) overflow
116  *
117  * Constants:
118  * The hexadecimal values are the intended ones for the following
119  * constants. The decimal values may be used, provided that the
120  * compiler will convert from decimal to binary accurately enough
121  * to produce the hexadecimal values shown.
122  */
123 
124 #define one 1.0
125 #define huge 1.0e+300
126 #define tiny 1.0e-300
127 #define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
128 #define ln2_hi 6.93147180369123816490e-01      /* 0x3fe62e42, 0xfee00000 */
129 #define ln2_lo 1.90821492927058770002e-10      /* 0x3dea39ef, 0x35793c76 */
130 #define invln2 1.44269504088896338700e+00      /* 0x3ff71547, 0x652b82fe */
131 
132 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
133 #define Q1 -3.33333333333331316428e-02 /* BFA11111 111110F4 */
134 #define Q2 1.58730158725481460165e-03  /* 3F5A01A0 19FE5585 */
135 #define Q3 -7.93650757867487942473e-05 /* BF14CE19 9EAADBB7 */
136 #define Q4 4.00821782732936239552e-06  /* 3ED0CFCA 86E65239 */
137 #define Q5 -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */
138 
139 double
expm1(double x)140 expm1 (double x)
141 {
142   double y, hi, lo, c, e, hxs, hfx, r1;
143   double_accessor t, twopk;
144   int k, xsb;
145   unsigned int hx;
146 
147   hx = __HI (x);
148   xsb = hx & 0x80000000; /* sign bit of x */
149   hx &= 0x7fffffff;      /* high word of |x| */
150 
151   /* filter out huge and non-finite argument */
152   if (hx >= 0x4043687A)
153   {
154     /* if |x|>=56*ln2 */
155     if (hx >= 0x40862E42)
156     {
157       /* if |x|>=709.78... */
158       if (hx >= 0x7ff00000)
159       {
160         unsigned int low;
161         low = __LO (x);
162         if (((hx & 0xfffff) | low) != 0)
163         {
164           /* NaN */
165           return x + x;
166         }
167         else
168         {
169           /* exp(+-inf)-1={inf,-1} */
170           return (xsb == 0) ? x : -1.0;
171         }
172       }
173       if (x > o_threshold)
174       {
175         /* overflow */
176         return huge * huge;
177       }
178     }
179     if (xsb != 0)
180     {
181       /* x < -56*ln2, return -1.0 with inexact */
182       if (x + tiny < 0.0) /* raise inexact */
183       {
184         /* return -1 */
185         return tiny - one;
186       }
187     }
188   }
189 
190   /* argument reduction */
191   if (hx > 0x3fd62e42)
192   {
193     /* if  |x| > 0.5 ln2 */
194     if (hx < 0x3FF0A2B2)
195     {
196       /* and |x| < 1.5 ln2 */
197       if (xsb == 0)
198       {
199         hi = x - ln2_hi;
200         lo = ln2_lo;
201         k = 1;
202       }
203       else
204       {
205         hi = x + ln2_hi;
206         lo = -ln2_lo;
207         k = -1;
208       }
209     }
210     else
211     {
212       k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5));
213       t.dbl = k;
214       hi = x - t.dbl * ln2_hi; /* t*ln2_hi is exact here */
215       lo = t.dbl * ln2_lo;
216     }
217     x = hi - lo;
218     c = (hi - x) - lo;
219   }
220   else if (hx < 0x3c900000)
221   {
222     /* when |x|<2**-54, return x */
223     return x;
224   }
225   else
226   {
227     k = 0;
228   }
229 
230   /* x is now in primary range */
231   hfx = 0.5 * x;
232   hxs = x * hfx;
233   r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
234   t.dbl = 3.0 - r1 * hfx;
235   e = hxs * ((r1 - t.dbl) / (6.0 - x * t.dbl));
236   if (k == 0)
237   {
238     /* c is 0 */
239     return x - (x * e - hxs);
240   }
241   else
242   {
243     twopk.as_int.hi = 0x3ff00000 + ((unsigned int) k << 20); /* 2^k */
244     twopk.as_int.lo = 0;
245     e = (x * (e - c) - c);
246     e -= hxs;
247     if (k == -1)
248     {
249       return 0.5 * (x - e) - 0.5;
250     }
251     if (k == 1)
252     {
253       if (x < -0.25)
254       {
255         return -2.0 * (e - (x + 0.5));
256       }
257       else
258       {
259         return one + 2.0 * (x - e);
260       }
261     }
262     if ((k <= -2) || (k > 56))
263     {
264       /* suffice to return exp(x)-1 */
265       y = one - (e - x);
266       if (k == 1024)
267       {
268         y = y * 2.0 * 0x1p1023;
269       }
270       else
271       {
272         y = y * twopk.dbl;
273       }
274       return y - one;
275     }
276     t.dbl = one;
277     if (k < 20)
278     {
279       t.as_int.hi = (0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */
280       y = t.dbl - (e - x);
281       y = y * twopk.dbl;
282     }
283     else
284     {
285       t.as_int.hi = ((0x3ff - k) << 20); /* 2^-k */
286       y = x - (e + t.dbl);
287       y += one;
288       y = y * twopk.dbl;
289     }
290   }
291   return y;
292 } /* expm1 */
293 
294 #undef one
295 #undef huge
296 #undef tiny
297 #undef o_threshold
298 #undef ln2_hi
299 #undef ln2_lo
300 #undef invln2
301 #undef Q1
302 #undef Q2
303 #undef Q3
304 #undef Q4
305 #undef Q5
306