• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Permission to use, copy, modify, and distribute this
21  *     software is freely granted, provided that this notice
22  *     is preserved.
23  *
24  *     @(#)s_log1p.c 5.1 93/09/24
25  */
26 
27 #include "jerry-libm-internal.h"
28 
29 /* log1p(x)
30  * Method :
31  *   1. Argument Reduction: find k and f such that
32  *      1+x = 2^k * (1+f),
33  *     where  sqrt(2)/2 < 1+f < sqrt(2) .
34  *
35  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
36  *  may not be representable exactly. In that case, a correction
37  *  term is need. Let u=1+x rounded. Let c = (1+x)-u, then
38  *  log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
39  *  and add back the correction term c/u.
40  *  (Note: when x > 2**53, one can simply return log(x))
41  *
42  *   2. Approximation of log1p(f).
43  *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
44  *     = 2s + 2/3 s**3 + 2/5 s**5 + .....,
45  *          = 2s + s*R
46  *      We use a special Reme algorithm on [0,0.1716] to generate
47  *   a polynomial of degree 14 to approximate R The maximum error
48  *  of this polynomial approximation is bounded by 2**-58.45. In
49  *  other words,
50  *            2      4      6      8      10      12      14
51  *      R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
52  *    (the values of Lp1 to Lp7 are listed in the program)
53  *  and
54  *      |      2          14          |     -58.45
55  *      | Lp1*s +...+Lp7*s    -  R(z) | <= 2
56  *      |                             |
57  *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
58  *  In order to guarantee error in log below 1ulp, we compute log
59  *  by
60  *    log1p(f) = f - (hfsq - s*(hfsq+R)).
61  *
62  *  3. Finally, log1p(x) = k*ln2 + log1p(f).
63  *            = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
64  *     Here ln2 is split into two floating point number:
65  *      ln2_hi + ln2_lo,
66  *     where n*ln2_hi is always exact for |n| < 2000.
67  *
68  * Special cases:
69  *  log1p(x) is NaN with signal if x < -1 (including -INF) ;
70  *  log1p(+INF) is +INF; log1p(-1) is -INF with signal;
71  *  log1p(NaN) is that NaN with no signal.
72  *
73  * Accuracy:
74  *  according to an error analysis, the error is always less than
75  *  1 ulp (unit in the last place).
76  *
77  * Constants:
78  * The hexadecimal values are the intended ones for the following
79  * constants. The decimal values may be used, provided that the
80  * compiler will convert from decimal to binary accurately enough
81  * to produce the hexadecimal values shown.
82  *
83  * Note: Assuming log() return accurate answer, the following
84  *    algorithm can be used to compute log1p(x) to within a few ULP:
85  *
86  *    u = 1+x;
87  *    if(u==1.0) return x ; else
88  *         return log(u)*(x/(u-1.0));
89  *
90  *   See HP-15C Advanced Functions Handbook, p.193.
91  */
92 
93 #define zero 0.0
94 #define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
95 #define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
96 #define two54 1.80143985094819840000e+16  /* 43500000 00000000 */
97 #define Lp1 6.666666666666735130e-01      /* 3FE55555 55555593 */
98 #define Lp2 3.999999999940941908e-01      /* 3FD99999 9997FA04 */
99 #define Lp3 2.857142874366239149e-01      /* 3FD24924 94229359 */
100 #define Lp4 2.222219843214978396e-01      /* 3FCC71C5 1D8E78AF */
101 #define Lp5 1.818357216161805012e-01      /* 3FC74664 96CB03DE */
102 #define Lp6 1.531383769920937332e-01      /* 3FC39A09 D078C69F */
103 #define Lp7 1.479819860511658591e-01      /* 3FC2F112 DF3E5244 */
104 
105 double
log1p(double x)106 log1p (double x)
107 {
108   double hfsq, f, c, s, z, R;
109   double_accessor u;
110   int k, hx, hu, ax;
111 
112   hx = __HI (x);
113   ax = hx & 0x7fffffff;
114   c = 0;
115   k = 1;
116   if (hx < 0x3FDA827A)
117   {
118     /* 1+x < sqrt(2)+ */
119     if (ax >= 0x3ff00000)
120     {
121       /* x <= -1.0 */
122       if (x == -1.0)
123       {
124         /* log1p(-1) = +inf */
125         return -two54 / zero;
126       }
127       else
128       {
129         /* log1p(x<-1) = NaN */
130         return NAN;
131       }
132     }
133     if (ax < 0x3e200000)
134     {                         /* |x| < 2**-29 */
135       if ((two54 + x > zero)    /* raise inexact */
136           && (ax < 0x3c900000)) /* |x| < 2**-54 */
137       {
138         return x;
139       }
140       else
141       {
142         return x - x * x * 0.5;
143       }
144     }
145     if ((hx > 0) || hx <= ((int) 0xbfd2bec4))
146     {
147       /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
148       k = 0;
149       f = x;
150       hu = 1;
151     }
152   }
153   if (hx >= 0x7ff00000)
154   {
155     return x + x;
156   }
157   if (k != 0)
158   {
159     if (hx < 0x43400000)
160     {
161       u.dbl = 1.0 + x;
162       hu = u.as_int.hi;
163       k = (hu >> 20) - 1023;
164       c = (k > 0) ? 1.0 - (u.dbl - x) : x - (u.dbl - 1.0); /* correction term */
165       c /= u.dbl;
166     }
167     else
168     {
169       u.dbl = x;
170       hu = u.as_int.hi;
171       k = (hu >> 20) - 1023;
172       c = 0;
173     }
174     hu &= 0x000fffff;
175     /*
176      * The approximation to sqrt(2) used in thresholds is not
177      * critical.  However, the ones used above must give less
178      * strict bounds than the one here so that the k==0 case is
179      * never reached from here, since here we have committed to
180      * using the correction term but don't use it if k==0.
181      */
182     if (hu < 0x6a09e)
183     {
184       /* u ~< sqrt(2) */
185       u.as_int.hi = hu | 0x3ff00000; /* normalize u */
186     }
187     else
188     {
189       k += 1;
190       u.as_int.hi = hu | 0x3fe00000; /* normalize u/2 */
191       hu = (0x00100000 - hu) >> 2;
192     }
193     f = u.dbl - 1.0;
194   }
195   hfsq = 0.5 * f * f;
196   if (hu == 0)
197   {
198     /* |f| < 2**-20 */
199     if (f == zero)
200     {
201       if (k == 0)
202       {
203         return zero;
204       }
205       else
206       {
207         c += k * ln2_lo;
208         return k * ln2_hi + c;
209       }
210     }
211     R = hfsq * (1.0 - 0.66666666666666666 * f);
212     if (k == 0)
213     {
214       return f - R;
215     }
216     else
217     {
218       return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
219     }
220   }
221   s = f / (2.0 + f);
222   z = s * s;
223   R = z * (Lp1 +
224            z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
225   if (k == 0)
226   {
227     return f - (hfsq - s * (hfsq + R));
228   }
229   else
230   {
231     return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
232   }
233 } /* log1p */
234 
235 #undef zero
236 #undef ln2_hi
237 #undef ln2_lo
238 #undef two54
239 #undef Lp1
240 #undef Lp2
241 #undef Lp3
242 #undef Lp4
243 #undef Lp5
244 #undef Lp6
245 #undef Lp7
246