• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21  *     Permission to use, copy, modify, and distribute this
22  *     software is freely granted, provided that this notice
23  *     is preserved.
24  *
25  *     @(#)e_log2.c 1.3 95/01/18
26  */
27 
28 #include "jerry-libm-internal.h"
29 
30 /* log2(x)
31  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
32  * comments.
33  *
34  * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
35  * then does the combining and scaling steps
36  *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
37  * in not-quite-routine extra precision.
38  */
39 
40 #define zero 0.0
41 #define two54 1.80143985094819840000e+16   /* 0x43500000, 0x00000000 */
42 #define ivln2hi 1.44269504072144627571e+00 /* 0x3FF71547, 0x65200000 */
43 #define ivln2lo 1.67517131648865118353e-10 /* 0x3DE705FC, 0x2EEFA200 */
44 #define Lg1 6.666666666666735130e-01       /* 0x3FE55555, 0x55555593 */
45 #define Lg2 3.999999999940941908e-01       /* 0x3FD99999, 0x9997FA04 */
46 #define Lg3 2.857142874366239149e-01       /* 0x3FD24924, 0x94229359 */
47 #define Lg4 2.222219843214978396e-01       /* 0x3FCC71C5, 0x1D8E78AF */
48 #define Lg5 1.818357216161805012e-01       /* 0x3FC74664, 0x96CB03DE */
49 #define Lg6 1.531383769920937332e-01       /* 0x3FC39A09, 0xD078C69F */
50 #define Lg7 1.479819860511658591e-01       /* 0x3FC2F112, 0xDF3E5244 */
51 
52 double
log2(double x)53 log2 (double x)
54 {
55   double f, hfsq, hi, lo, r, val_hi, val_lo, w, y;
56   int i, k, hx;
57   unsigned int lx;
58   double_accessor temp;
59 
60   hx = __HI (x); /* high word of x */
61   lx = __LO (x); /* low word of x */
62 
63   k = 0;
64   if (hx < 0x00100000)
65   { /* x < 2**-1022  */
66     if (((hx & 0x7fffffff) | lx) == 0)
67     {
68       return -two54 / zero; /* log(+-0)=-inf */
69     }
70     if (hx < 0)
71     {
72       return (x - x) / zero; /* log(-#) = NaN */
73     }
74     k -= 54;
75     x *= two54;    /* subnormal number, scale up x */
76     hx = __HI (x); /* high word of x */
77   }
78   if (hx >= 0x7ff00000)
79   {
80     return x + x;
81   }
82   if (hx == 0x3ff00000 && lx == 0)
83   {
84     return zero; /* log(1) = +0 */
85   }
86   k += (hx >> 20) - 1023;
87   hx &= 0x000fffff;
88   i = (hx + 0x95f64) & 0x100000;
89   temp.dbl = x;
90   temp.as_int.hi = hx | (i ^ 0x3ff00000); /* normalize x or x/2 */
91   k += (i >> 20);
92   y = (double) k;
93   f = temp.dbl - 1.0;
94   hfsq = 0.5 * f * f;
95   double s, z, R, t1, t2;
96 
97   s = f / (2.0 + f);
98   z = s * s;
99   w = z * z;
100   t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
101   t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
102   R = t2 + t1;
103   r = s * (hfsq + R);
104   /*
105    * f-hfsq must (for args near 1) be evaluated in extra precision
106    * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
107    * This is fairly efficient since f-hfsq only depends on f, so can
108    * be evaluated in parallel with R.  Not combining hfsq with R also
109    * keeps R small (though not as small as a true `lo' term would be),
110    * so that extra precision is not needed for terms involving R.
111    *
112    * Compiler bugs involving extra precision used to break Dekker's
113    * theorem for spitting f-hfsq as hi+lo, unless double_t was used
114    * or the multi-precision calculations were avoided when double_t
115    * has extra precision.  These problems are now automatically
116    * avoided as a side effect of the optimization of combining the
117    * Dekker splitting step with the clear-low-bits step.
118    *
119    * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
120    * precision to avoid a very large cancellation when x is very near
121    * these values.  Unlike the above cancellations, this problem is
122    * specific to base 2.  It is strange that adding +-1 is so much
123    * harder than adding +-ln2 or +-log10_2.
124    *
125    * This uses Dekker's theorem to normalize y+val_hi, so the
126    * compiler bugs are back in some configurations, sigh.  And I
127    * don't want to used double_t to avoid them, since that gives a
128    * pessimization and the support for avoiding the pessimization
129    * is not yet available.
130    *
131    * The multi-precision calculations for the multiplications are
132    * routine.
133    */
134   hi = f - hfsq;
135   temp.dbl = hi;
136   temp.as_int.lo = 0;
137 
138   lo = (f - hi) - hfsq + r;
139   val_hi = hi * ivln2hi;
140   val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
141 
142   /* spadd(val_hi, val_lo, y), except for not using double_t: */
143   w = y + val_hi;
144   val_lo += (y - w) + val_hi;
145   val_hi = w;
146 
147   return val_lo + val_hi;
148 } /* log2 */
149 
150 #undef zero
151 #undef two54
152 #undef ivln2hi
153 #undef ivln2lo
154 #undef Lg1
155 #undef Lg2
156 #undef Lg3
157 #undef Lg4
158 #undef Lg5
159 #undef Lg6
160 #undef Lg7
161