1 /*
2 * Generic GPIO / irq buttons
3 *
4 * Copyright (C) 2019 - 2020 Andy Green <andy@warmcat.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24 #include "private-lib-core.h"
25
26 typedef enum lws_button_classify_states {
27 LBCS_IDLE, /* nothing happening */
28 LBCS_MIN_DOWN_QUALIFY,
29
30 LBCS_ASSESS_DOWN_HOLD,
31 LBCS_UP_SETTLE1,
32 LBCS_WAIT_DOUBLECLICK,
33 LBCS_MIN_DOWN_QUALIFY2,
34
35 LBCS_WAIT_UP,
36 LBCS_UP_SETTLE2,
37 } lws_button_classify_states_t;
38
39 /*
40 * This is the opaque, allocated, non-const, dynamic footprint of the
41 * button controller
42 */
43
44 typedef struct lws_button_state {
45 #if defined(LWS_PLAT_TIMER_TYPE)
46 LWS_PLAT_TIMER_TYPE timer; /* bh timer */
47 LWS_PLAT_TIMER_TYPE timer_mon; /* monitor timer */
48 #endif
49 const lws_button_controller_t *controller;
50 struct lws_context *ctx;
51 short mon_refcount;
52 lws_button_idx_t enable_bitmap;
53 lws_button_idx_t state_bitmap;
54
55 uint16_t mon_timer_count;
56 /* incremented each time the mon timer cb happens */
57
58 /* lws_button_each_t per button overallocated after this */
59 } lws_button_state_t;
60
61 typedef struct lws_button_each {
62 lws_button_state_t *bcs;
63 uint16_t mon_timer_comp;
64 uint8_t state;
65 /**^ lws_button_classify_states_t */
66 uint8_t isr_pending;
67 } lws_button_each_t;
68
69 #if defined(LWS_PLAT_TIMER_START)
70 static const lws_button_regime_t default_regime = {
71 .ms_min_down = 20,
72 .ms_min_down_longpress = 300,
73 .ms_up_settle = 20,
74 .ms_doubleclick_grace = 120,
75 .flags = LWSBTNRGMFLAG_CLASSIFY_DOUBLECLICK
76 };
77 #endif
78
79
80 /*
81 * This is happening in interrupt context, we have to schedule a bottom half to
82 * do the foreground lws_smd queueing, using, eg, a platform timer.
83 *
84 * All the buttons point here and use one timer per button controller. An
85 * interrupt here means, "something happened to one or more buttons"
86 */
87 #if defined(LWS_PLAT_TIMER_START)
88 void
lws_button_irq_cb_t(void * arg)89 lws_button_irq_cb_t(void *arg)
90 {
91 lws_button_each_t *each = (lws_button_each_t *)arg;
92
93 each->isr_pending = 1;
94 LWS_PLAT_TIMER_START(each->bcs->timer);
95 }
96 #endif
97
98 /*
99 * This is the bottom-half scheduled via a timer set in the ISR. From here
100 * we are allowed to hold mutexes etc. We are coming here because any button
101 * interrupt arrived, we have to try to figure out which events have happened.
102 */
103
104 #if defined(LWS_PLAT_TIMER_CB)
LWS_PLAT_TIMER_CB(lws_button_bh,th)105 static LWS_PLAT_TIMER_CB(lws_button_bh, th)
106 {
107 lws_button_state_t *bcs = LWS_PLAT_TIMER_CB_GET_OPAQUE(th);
108 const lws_button_controller_t *bc = bcs->controller;
109 lws_button_each_t *each = (lws_button_each_t *)&bcs[1];
110 size_t n;
111
112 /*
113 * The ISR and bottom-half is shared by all the buttons. Each gpio
114 * IRQ has an individual opaque ptr pointing to the corresponding
115 * button's dynamic lws_button_each_t, the ISR marks the button's
116 * each->isr_pending and schedules this bottom half.
117 *
118 * So now the bh timer has fired and something to do, we need to go
119 * through all the buttons that have isr_pending set and service their
120 * state. Intermediate states should start / bump the refcount on the
121 * mon timer. That's refcounted so it only runs when a button down.
122 */
123
124 for (n = 0; n < bc->count_buttons; n++) {
125
126 if (!each[n].isr_pending)
127 continue;
128
129 /*
130 * Hide what we're about to do from the delicate eyes of the
131 * IRQ controller...
132 */
133
134 bc->gpio_ops->irq_mode(bc->button_map[n].gpio,
135 LWSGGPIO_IRQ_NONE, NULL, NULL);
136
137 each[n].isr_pending = 0;
138
139 /*
140 * Force the network around the switch to the
141 * active level briefly
142 */
143
144 bc->gpio_ops->set(bc->button_map[n].gpio,
145 !!(bc->active_state_bitmap & (1 << n)));
146 bc->gpio_ops->mode(bc->button_map[n].gpio, LWSGGPIO_FL_WRITE);
147
148 if (each[n].state == LBCS_IDLE) {
149 /*
150 * If this is the first sign something happening on this
151 * button, make sure the monitor timer is running to
152 * classify it over time
153 */
154
155 each[n].state = LBCS_MIN_DOWN_QUALIFY;
156 each[n].mon_timer_comp = bcs->mon_timer_count;
157
158 if (!bcs->mon_refcount++) {
159 #if defined(LWS_PLAT_TIMER_START)
160 // lwsl_notice("%s: starting mon timer\n", __func__);
161 LWS_PLAT_TIMER_START(bcs->timer_mon);
162 #endif
163 }
164 }
165
166 /*
167 * Just for a us or two inbetween here, we're driving it to the
168 * level we were informed by the interrupt it had enetered, to
169 * force to charge on the actual and parasitic network around
170 * the switch to a deterministic-ish state.
171 *
172 * If the switch remains in that state, well, it makes no
173 * difference; if it was a pre-contact and the charge on the
174 * network was left indeterminate, this will dispose it to act
175 * consistently in the short term until the pullup / pulldown
176 * has time to act on it or the switch comes and forces the
177 * network charge state itself.
178 */
179 bc->gpio_ops->mode(bc->button_map[n].gpio, LWSGGPIO_FL_READ);
180
181 /*
182 * We could do a better job manipulating the irq mode according
183 * to the switch state. But if an interrupt comes and we have
184 * done that, we can't tell if it's from before or after the
185 * mode change... ie, we don't know what the interrupt was
186 * telling us. We can't trust the gpio state if we read it now
187 * to be related to what the irq from some time before was
188 * trying to tell us. So always set it back to the same mode
189 * and accept the limitation.
190 */
191
192 bc->gpio_ops->irq_mode(bc->button_map[n].gpio,
193 bc->active_state_bitmap & (1 << n) ?
194 LWSGGPIO_IRQ_RISING :
195 LWSGGPIO_IRQ_FALLING,
196 lws_button_irq_cb_t, &each[n]);
197 }
198 }
199 #endif
200
201 #if defined(LWS_PLAT_TIMER_CB)
LWS_PLAT_TIMER_CB(lws_button_mon,th)202 static LWS_PLAT_TIMER_CB(lws_button_mon, th)
203 {
204 lws_button_state_t *bcs = LWS_PLAT_TIMER_CB_GET_OPAQUE(th);
205 lws_button_each_t *each = (lws_button_each_t *)&bcs[1];
206 const lws_button_controller_t *bc = bcs->controller;
207 const lws_button_regime_t *regime;
208 const char *event_name;
209 int comp_age_ms;
210 char active;
211 size_t n;
212
213 bcs->mon_timer_count++;
214
215 for (n = 0; n < bc->count_buttons; n++) {
216
217 if (each[n].state == LBCS_IDLE)
218 continue;
219
220 if (bc->button_map[n].regime)
221 regime = bc->button_map[n].regime;
222 else
223 regime = &default_regime;
224
225 comp_age_ms = (bcs->mon_timer_count - each[n].mon_timer_comp) *
226 LWS_BUTTON_MON_TIMER_MS;
227
228 active = bc->gpio_ops->read(bc->button_map[n].gpio) ^
229 (!(bc->active_state_bitmap & (1 << n)));
230
231 // lwsl_notice("%d\n", each[n].state);
232
233 switch (each[n].state) {
234 case LBCS_MIN_DOWN_QUALIFY:
235 /*
236 * We're trying to figure out if the initial down event
237 * is a glitch, or if it meets the criteria for being
238 * treated as the definitive start of some kind of click
239 * action. To get past this, he has to be solidly down
240 * for the time mentioned in the applied regime (at
241 * least when we sample it).
242 *
243 * Significant bounce at the start will abort this try,
244 * but if it's really down there will be a subsequent
245 * solid down period... it will simply restart this flow
246 * from a new interrupt and pass the filter then.
247 *
248 * The "brief drive on edge" strategy considerably
249 * reduces inconsistencies here. But physical bounce
250 * will continue to be observed.
251 */
252
253 if (!active) {
254 /* We ignore stuff for a bit after discard */
255 each[n].mon_timer_comp = bcs->mon_timer_count;
256 each[n].state = LBCS_UP_SETTLE2;
257 continue;
258 }
259
260 if (comp_age_ms >= regime->ms_min_down) {
261
262 /* We made it through the initial regime filter,
263 * the next step is wait and see if this down
264 * event evolves into a single/double click or
265 * we can call it as a long-click
266 */
267
268 each[n].state = LBCS_ASSESS_DOWN_HOLD;
269 break;
270 }
271 break;
272
273 case LBCS_ASSESS_DOWN_HOLD:
274 /*
275 * How long is he going to hold it? If he holds it
276 * past the long-click threshold, we can call it as a
277 * long-click and do the up processing afterwards.
278 */
279 if (comp_age_ms >= regime->ms_min_down_longpress) {
280 /* call it as a longclick */
281 event_name = "longclick";
282 each[n].state = LBCS_WAIT_UP;
283 goto classify;
284 }
285
286 if (!active) {
287 /*
288 * He didn't hold it past the long-click
289 * threshold... we could end up classifying it
290 * as either a click or a double-click then.
291 *
292 * If double-clicks are not allowed to be
293 * classified, then we can already classify it
294 * as a single-click.
295 */
296 if (!(regime->flags & LWSBTNRGMFLAG_CLASSIFY_DOUBLECLICK))
297 goto classify_single;
298
299 /*
300 * Just wait for the up settle time then start
301 * looking for a second down.
302 */
303 each[n].mon_timer_comp = bcs->mon_timer_count;
304 each[n].state = LBCS_UP_SETTLE1;
305 }
306 break;
307
308 case LBCS_UP_SETTLE1:
309 if (comp_age_ms > regime->ms_up_settle)
310 /*
311 * Just block anything for the up settle time
312 */
313 each[n].state = LBCS_WAIT_DOUBLECLICK;
314 break;
315
316 case LBCS_WAIT_DOUBLECLICK:
317 if (active) {
318 /*
319 * He has gone down again inside the regime's
320 * doubleclick grace period... he's going down
321 * the double-click path
322 */
323 each[n].mon_timer_comp = bcs->mon_timer_count;
324 each[n].state = LBCS_MIN_DOWN_QUALIFY2;
325 break;
326 }
327
328 if (comp_age_ms >= regime->ms_doubleclick_grace) {
329 /*
330 * The grace period expired, the second click
331 * was either not forthcoming at all, or coming
332 * quick enough to count: we classify it as a
333 * single-click
334 */
335
336 goto classify_single;
337 }
338 break;
339
340 case LBCS_MIN_DOWN_QUALIFY2:
341 if (!active) {
342 classify_single:
343 /*
344 * He went up again too quickly, classify it
345 * as a single-click. It could be bounce in
346 * which case you might want to increase
347 * the ms_up_settle in the regime
348 */
349 event_name = "click";
350 each[n].mon_timer_comp = bcs->mon_timer_count;
351 each[n].state = LBCS_UP_SETTLE2;
352 goto classify;
353 }
354
355 if (comp_age_ms >= regime->ms_min_down) {
356 /*
357 * It's a double-click
358 */
359 event_name = "doubleclick";
360 each[n].state = LBCS_WAIT_UP;
361 goto classify;
362 }
363 break;
364
365 case LBCS_WAIT_UP:
366 if (!active) {
367 each[n].mon_timer_comp = bcs->mon_timer_count;
368 each[n].state = LBCS_UP_SETTLE2;
369 }
370 break;
371
372 case LBCS_UP_SETTLE2:
373 if (comp_age_ms < regime->ms_up_settle)
374 break;
375
376 each[n].state = LBCS_IDLE;
377 if (!(--bcs->mon_refcount)) {
378 #if defined(LWS_PLAT_TIMER_STOP)
379 LWS_PLAT_TIMER_STOP(bcs->timer_mon);
380 #endif
381 }
382 break;
383 }
384
385 continue;
386
387 classify:
388 lws_smd_msg_printf(bcs->ctx, LWSSMDCL_INTERACTION,
389 "{\"btn\":\"%s/%s\", \"s\":\"%s\"}",
390 bc->smd_bc_name,
391 bc->button_map[n].smd_interaction_name,
392 event_name);
393 }
394 }
395 #endif
396
397 struct lws_button_state *
lws_button_controller_create(struct lws_context * ctx,const lws_button_controller_t * controller)398 lws_button_controller_create(struct lws_context *ctx,
399 const lws_button_controller_t *controller)
400 {
401 lws_button_state_t *bcs = lws_zalloc(sizeof(lws_button_state_t) +
402 (controller->count_buttons * sizeof(lws_button_each_t)),
403 __func__);
404 lws_button_each_t *each = (lws_button_each_t *)&bcs[1];
405 size_t n;
406
407 if (!bcs)
408 return NULL;
409
410 bcs->controller = controller;
411 bcs->ctx = ctx;
412
413 for (n = 0; n < controller->count_buttons; n++)
414 each[n].bcs = bcs;
415
416 #if defined(LWS_PLAT_TIMER_CREATE)
417 /* this only runs inbetween a gpio ISR and the bottom half */
418 bcs->timer = LWS_PLAT_TIMER_CREATE("bcst",
419 1, 0, bcs, (TimerCallbackFunction_t)lws_button_bh);
420 if (!bcs->timer)
421 return NULL;
422 /* this only runs when a button activity is being classified */
423 bcs->timer_mon = LWS_PLAT_TIMER_CREATE("bcmon", LWS_BUTTON_MON_TIMER_MS, 1, bcs,
424 (TimerCallbackFunction_t)lws_button_mon);
425 if (!bcs->timer_mon)
426 return NULL;
427 #endif
428
429 return bcs;
430 }
431
432 void
lws_button_controller_destroy(struct lws_button_state * bcs)433 lws_button_controller_destroy(struct lws_button_state *bcs)
434 {
435 /* disable them all */
436 lws_button_enable(bcs, 0, 0);
437
438 #if defined(LWS_PLAT_TIMER_DELETE)
439 LWS_PLAT_TIMER_DELETE(&bcs->timer);
440 LWS_PLAT_TIMER_DELETE(&bcs->timer_mon);
441 #endif
442
443 lws_free(bcs);
444 }
445
446 lws_button_idx_t
lws_button_get_bit(struct lws_button_state * bcs,const char * name)447 lws_button_get_bit(struct lws_button_state *bcs, const char *name)
448 {
449 const lws_button_controller_t *bc = bcs->controller;
450 int n;
451
452 for (n = 0; n < bc->count_buttons; n++)
453 if (!strcmp(name, bc->button_map[n].smd_interaction_name))
454 return 1 << n;
455
456 return 0; /* not found */
457 }
458
459 void
lws_button_enable(lws_button_state_t * bcs,lws_button_idx_t _reset,lws_button_idx_t _set)460 lws_button_enable(lws_button_state_t *bcs,
461 lws_button_idx_t _reset, lws_button_idx_t _set)
462 {
463 lws_button_idx_t u = (bcs->enable_bitmap & (~_reset)) | _set;
464 const lws_button_controller_t *bc = bcs->controller;
465 #if defined(LWS_PLAT_TIMER_START)
466 lws_button_each_t *each = (lws_button_each_t *)&bcs[1];
467 #endif
468 int n;
469
470 for (n = 0; n < bcs->controller->count_buttons; n++) {
471 if (!(bcs->enable_bitmap & (1 << n)) && (u & (1 << n))) {
472 /* set as input with pullup or pulldown appropriately */
473 bc->gpio_ops->mode(bc->button_map[n].gpio,
474 LWSGGPIO_FL_READ |
475 ((bc->active_state_bitmap & (1 << n)) ?
476 LWSGGPIO_FL_PULLDOWN : LWSGGPIO_FL_PULLUP));
477 #if defined(LWS_PLAT_TIMER_START)
478 /*
479 * This one is becoming enabled... the opaque for the
480 * ISR is the indvidual lws_button_each_t, they all
481 * point to the same ISR
482 */
483 bc->gpio_ops->irq_mode(bc->button_map[n].gpio,
484 bc->active_state_bitmap & (1 << n) ?
485 LWSGGPIO_IRQ_RISING :
486 LWSGGPIO_IRQ_FALLING,
487 lws_button_irq_cb_t, &each[n]);
488 #endif
489 }
490 if ((bcs->enable_bitmap & (1 << n)) && !(u & (1 << n)))
491 /* this one is becoming disabled */
492 bc->gpio_ops->irq_mode(bc->button_map[n].gpio,
493 LWSGGPIO_IRQ_NONE, NULL, NULL);
494 }
495
496 bcs->enable_bitmap = u;
497 }
498