1 /*
2 * Copyright © 2018-2019 Igalia S.L.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/nir/nir_builder.h"
25 #include "ir3_nir.h"
26
27 /**
28 * This pass moves to NIR certain offset computations for different I/O
29 * ops that are currently implemented on the IR3 backend compiler, to
30 * give NIR a chance to optimize them:
31 *
32 * - Dword-offset for SSBO load, store and atomics: A new, similar intrinsic
33 * is emitted that replaces the original one, adding a new source that
34 * holds the result of the original byte-offset source divided by 4.
35 */
36
37 /* Returns the ir3-specific intrinsic opcode corresponding to an SSBO
38 * instruction that is handled by this pass. It also conveniently returns
39 * the offset source index in @offset_src_idx.
40 *
41 * If @intrinsic is not SSBO, or it is not handled by the pass, -1 is
42 * returned.
43 */
44 static int
get_ir3_intrinsic_for_ssbo_intrinsic(unsigned intrinsic,uint8_t * offset_src_idx)45 get_ir3_intrinsic_for_ssbo_intrinsic(unsigned intrinsic,
46 uint8_t *offset_src_idx)
47 {
48 debug_assert(offset_src_idx);
49
50 *offset_src_idx = 1;
51
52 switch (intrinsic) {
53 case nir_intrinsic_store_ssbo:
54 *offset_src_idx = 2;
55 return nir_intrinsic_store_ssbo_ir3;
56 case nir_intrinsic_load_ssbo:
57 return nir_intrinsic_load_ssbo_ir3;
58 case nir_intrinsic_ssbo_atomic_add:
59 return nir_intrinsic_ssbo_atomic_add_ir3;
60 case nir_intrinsic_ssbo_atomic_imin:
61 return nir_intrinsic_ssbo_atomic_imin_ir3;
62 case nir_intrinsic_ssbo_atomic_umin:
63 return nir_intrinsic_ssbo_atomic_umin_ir3;
64 case nir_intrinsic_ssbo_atomic_imax:
65 return nir_intrinsic_ssbo_atomic_imax_ir3;
66 case nir_intrinsic_ssbo_atomic_umax:
67 return nir_intrinsic_ssbo_atomic_umax_ir3;
68 case nir_intrinsic_ssbo_atomic_and:
69 return nir_intrinsic_ssbo_atomic_and_ir3;
70 case nir_intrinsic_ssbo_atomic_or:
71 return nir_intrinsic_ssbo_atomic_or_ir3;
72 case nir_intrinsic_ssbo_atomic_xor:
73 return nir_intrinsic_ssbo_atomic_xor_ir3;
74 case nir_intrinsic_ssbo_atomic_exchange:
75 return nir_intrinsic_ssbo_atomic_exchange_ir3;
76 case nir_intrinsic_ssbo_atomic_comp_swap:
77 return nir_intrinsic_ssbo_atomic_comp_swap_ir3;
78 default:
79 break;
80 }
81
82 return -1;
83 }
84
85 static nir_ssa_def *
check_and_propagate_bit_shift32(nir_builder * b,nir_alu_instr * alu_instr,int32_t direction,int32_t shift)86 check_and_propagate_bit_shift32(nir_builder *b, nir_alu_instr *alu_instr,
87 int32_t direction, int32_t shift)
88 {
89 debug_assert(alu_instr->src[1].src.is_ssa);
90 nir_ssa_def *shift_ssa = alu_instr->src[1].src.ssa;
91
92 /* Only propagate if the shift is a const value so we can check value range
93 * statically.
94 */
95 nir_const_value *const_val = nir_src_as_const_value(alu_instr->src[1].src);
96 if (!const_val)
97 return NULL;
98
99 int32_t current_shift = const_val[0].i32 * direction;
100 int32_t new_shift = current_shift + shift;
101
102 /* If the merge would reverse the direction, bail out.
103 * e.g, 'x << 2' then 'x >> 4' is not 'x >> 2'.
104 */
105 if (current_shift * new_shift < 0)
106 return NULL;
107
108 /* If the propagation would overflow an int32_t, bail out too to be on the
109 * safe side.
110 */
111 if (new_shift < -31 || new_shift > 31)
112 return NULL;
113
114 /* Add or substract shift depending on the final direction (SHR vs. SHL). */
115 if (shift * direction < 0)
116 shift_ssa = nir_isub(b, shift_ssa, nir_imm_int(b, abs(shift)));
117 else
118 shift_ssa = nir_iadd(b, shift_ssa, nir_imm_int(b, abs(shift)));
119
120 return shift_ssa;
121 }
122
123 nir_ssa_def *
ir3_nir_try_propagate_bit_shift(nir_builder * b,nir_ssa_def * offset,int32_t shift)124 ir3_nir_try_propagate_bit_shift(nir_builder *b, nir_ssa_def *offset,
125 int32_t shift)
126 {
127 nir_instr *offset_instr = offset->parent_instr;
128 if (offset_instr->type != nir_instr_type_alu)
129 return NULL;
130
131 nir_alu_instr *alu = nir_instr_as_alu(offset_instr);
132 nir_ssa_def *shift_ssa;
133 nir_ssa_def *new_offset = NULL;
134
135 /* the first src could be something like ssa_18.x, but we only want
136 * the single component. Otherwise the ishl/ishr/ushr could turn
137 * into a vec4 operation:
138 */
139 nir_ssa_def *src0 = nir_mov_alu(b, alu->src[0], 1);
140
141 switch (alu->op) {
142 case nir_op_ishl:
143 shift_ssa = check_and_propagate_bit_shift32(b, alu, 1, shift);
144 if (shift_ssa)
145 new_offset = nir_ishl(b, src0, shift_ssa);
146 break;
147 case nir_op_ishr:
148 shift_ssa = check_and_propagate_bit_shift32(b, alu, -1, shift);
149 if (shift_ssa)
150 new_offset = nir_ishr(b, src0, shift_ssa);
151 break;
152 case nir_op_ushr:
153 shift_ssa = check_and_propagate_bit_shift32(b, alu, -1, shift);
154 if (shift_ssa)
155 new_offset = nir_ushr(b, src0, shift_ssa);
156 break;
157 default:
158 return NULL;
159 }
160
161 return new_offset;
162 }
163
164 static bool
lower_offset_for_ssbo(nir_intrinsic_instr * intrinsic,nir_builder * b,unsigned ir3_ssbo_opcode,uint8_t offset_src_idx)165 lower_offset_for_ssbo(nir_intrinsic_instr *intrinsic, nir_builder *b,
166 unsigned ir3_ssbo_opcode, uint8_t offset_src_idx)
167 {
168 unsigned num_srcs = nir_intrinsic_infos[intrinsic->intrinsic].num_srcs;
169 int shift = 2;
170
171 bool has_dest = nir_intrinsic_infos[intrinsic->intrinsic].has_dest;
172 nir_ssa_def *new_dest = NULL;
173
174 /* for 16-bit ssbo access, offset is in 16-bit words instead of dwords */
175 if ((has_dest && intrinsic->dest.ssa.bit_size == 16) ||
176 (!has_dest && intrinsic->src[0].ssa->bit_size == 16))
177 shift = 1;
178
179 /* Here we create a new intrinsic and copy over all contents from the old
180 * one. */
181
182 nir_intrinsic_instr *new_intrinsic;
183 nir_src *target_src;
184
185 b->cursor = nir_before_instr(&intrinsic->instr);
186
187 /* 'offset_src_idx' holds the index of the source that represent the offset. */
188 new_intrinsic = nir_intrinsic_instr_create(b->shader, ir3_ssbo_opcode);
189
190 debug_assert(intrinsic->src[offset_src_idx].is_ssa);
191 nir_ssa_def *offset = intrinsic->src[offset_src_idx].ssa;
192
193 /* Since we don't have value range checking, we first try to propagate
194 * the division by 4 ('offset >> 2') into another bit-shift instruction that
195 * possibly defines the offset. If that's the case, we emit a similar
196 * instructions adjusting (merging) the shift value.
197 *
198 * Here we use the convention that shifting right is negative while shifting
199 * left is positive. So 'x / 4' ~ 'x >> 2' or 'x << -2'.
200 */
201 nir_ssa_def *new_offset = ir3_nir_try_propagate_bit_shift(b, offset, -shift);
202
203 /* The new source that will hold the dword-offset is always the last
204 * one for every intrinsic.
205 */
206 target_src = &new_intrinsic->src[num_srcs];
207 *target_src = nir_src_for_ssa(offset);
208
209 if (has_dest) {
210 debug_assert(intrinsic->dest.is_ssa);
211 nir_ssa_def *dest = &intrinsic->dest.ssa;
212 nir_ssa_dest_init(&new_intrinsic->instr, &new_intrinsic->dest,
213 dest->num_components, dest->bit_size, NULL);
214 new_dest = &new_intrinsic->dest.ssa;
215 }
216
217 for (unsigned i = 0; i < num_srcs; i++)
218 new_intrinsic->src[i] = nir_src_for_ssa(intrinsic->src[i].ssa);
219
220 nir_intrinsic_copy_const_indices(new_intrinsic, intrinsic);
221
222 new_intrinsic->num_components = intrinsic->num_components;
223
224 /* If we managed to propagate the division by 4, just use the new offset
225 * register and don't emit the SHR.
226 */
227 if (new_offset)
228 offset = new_offset;
229 else
230 offset = nir_ushr(b, offset, nir_imm_int(b, shift));
231
232 /* Insert the new intrinsic right before the old one. */
233 nir_builder_instr_insert(b, &new_intrinsic->instr);
234
235 /* Replace the last source of the new intrinsic by the result of
236 * the offset divided by 4.
237 */
238 nir_instr_rewrite_src(&new_intrinsic->instr, target_src,
239 nir_src_for_ssa(offset));
240
241 if (has_dest) {
242 /* Replace the uses of the original destination by that
243 * of the new intrinsic.
244 */
245 nir_ssa_def_rewrite_uses(&intrinsic->dest.ssa, new_dest);
246 }
247
248 /* Finally remove the original intrinsic. */
249 nir_instr_remove(&intrinsic->instr);
250
251 return true;
252 }
253
254 static bool
lower_io_offsets_block(nir_block * block,nir_builder * b,void * mem_ctx)255 lower_io_offsets_block(nir_block *block, nir_builder *b, void *mem_ctx)
256 {
257 bool progress = false;
258
259 nir_foreach_instr_safe (instr, block) {
260 if (instr->type != nir_instr_type_intrinsic)
261 continue;
262
263 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
264
265 /* SSBO */
266 int ir3_intrinsic;
267 uint8_t offset_src_idx;
268 ir3_intrinsic =
269 get_ir3_intrinsic_for_ssbo_intrinsic(intr->intrinsic, &offset_src_idx);
270 if (ir3_intrinsic != -1) {
271 progress |= lower_offset_for_ssbo(intr, b, (unsigned)ir3_intrinsic,
272 offset_src_idx);
273 }
274 }
275
276 return progress;
277 }
278
279 static bool
lower_io_offsets_func(nir_function_impl * impl)280 lower_io_offsets_func(nir_function_impl *impl)
281 {
282 void *mem_ctx = ralloc_parent(impl);
283 nir_builder b;
284 nir_builder_init(&b, impl);
285
286 bool progress = false;
287 nir_foreach_block_safe (block, impl) {
288 progress |= lower_io_offsets_block(block, &b, mem_ctx);
289 }
290
291 if (progress) {
292 nir_metadata_preserve(impl,
293 nir_metadata_block_index | nir_metadata_dominance);
294 }
295
296 return progress;
297 }
298
299 bool
ir3_nir_lower_io_offsets(nir_shader * shader)300 ir3_nir_lower_io_offsets(nir_shader *shader)
301 {
302 bool progress = false;
303
304 nir_foreach_function (function, shader) {
305 if (function->impl)
306 progress |= lower_io_offsets_func(function->impl);
307 }
308
309 return progress;
310 }
311