• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# MindSpore 1.5.1
2
3## MindSpore 1.5.1 Release Notes
4
5### Bug fixes
6
7- Fix code specification, pclint, codedex alarm.
8- Fix yolov4 network probabilistic segment error.
9
10### Contributors
11
12Thanks goes to these wonderful people:
13
14Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
15
16Contributions of any kind are welcome!
17
18
19# MindSpore 1.5.0
20
21## MindSpore 1.5.0 Release Notes
22
23### Major Features and Improvements
24
25#### NewModels
26
27- [STABLE] Add CV model on Ascend: Fast-SCNN
28- [BETA] Add CV models on Ascend: midas_V2, attgan, FairMOT, CenterNet_resnet101, SEResNext, YOLOV3-tiny, RetinaFace
29- [STABLE] Add CV models on GPU: ssd_mobilenetv1_fpn, shufflenetv1, tinyDarkNet, CNN-CTC, unet++, DeepText, SqueezeNet
30- [STABLE] Add NLP models on GPU: GRU, GNMT2, Bert-Squad
31- [STABLE] Add recommend models on GPU: NCF
32- [BETA] Add CV models on GPU: FaceAttribute, FaceDetection, FaceRecongnition SENet,
33- [BETA] Add Audio models on GPU: DeepSpeech2
34- [STABLE]`model_zoo` has been separated to an individual repository`models`
35
36#### FrontEnd
37
38- [STABLE] Support`while` and`break`,`continue` statements of training network in`GRAPH_MODE`.
39- [BETA] Support export MindIR file after model training in cloud side and evaluate in edge side by import the MindIR file.
40- [STABLE] Support forward mode auto-diff interface Jvp(Jacobian-Vector-Product).
41- [STABLE] Support backward mode auto-diff interface Vjp(Vector-Jacobian-Product).
42
43#### Auto Parallel
44
45- [STABLE] Support distributed pipeline inference.
46- [STABLE] Add implementation of the sparse attention and its distributed operator.
47- [STABLE] Add implementations of distributed operator of Conv2d/Conv2dTranspose/Conv2dBackpropInput/Maxpool/Avgpool/Batchnorm/Gatherd.
48- [STABLE] Support configuring the dataset strategy on distributed training and inference mode.
49- [STABLE] Add high level API of the Transformer module.
50
51#### Executor
52
53- [STABLE] Support AlltoAll operator.
54- [STABLE] CPU operator (Adam) performance optimization increased by 50%.
55- [BETA] Support Adam offload feature, reduce the static memory usage of Pangu large model by 50%.
56- [STABLE] MindSpore Ascend backend supports configuration operator generation and loading cache path.
57- [STABLE] MindSpore Ascend backend supports lazy build in PyNaitve mode and compilation performance improved by 10 times.
58- [STABLE] The function or Cell decorated by ms_function supports gradient calculation in PyNative mode.
59- [STABLE] The outermost network supports parameters of non tensor type in PyNative mode.
60
61#### DataSet
62
63- [BETA] Add a new method for class Model to support auto data preprocessing in scenario of Ascend 310 inference.
64- [STABLE] Add a new drawing tool to visualize detection/segmentation datasets.
65- [STABLE] Support a new tensor operation named ConvertColor to support color space transform of images.
66- [STABLE] Enhance the following tensor operations to handle multiple columns simultaneously: RandomCrop, RandomHorizontalFlip, RandomResize, RandomResizedCrop, RandomVerticalFlip.
67- [STABLE] Support electromagnetic simulation dataset loading and data augmentation.
68- [STABLE] Optimize the error logs of Dataset to make them more friendly to users.
69
70#### Federated Learning
71
72- [STABLE] Change the deployment environment of FL-Client.
73
74#### Running Data Recorder
75
76- [STABLE] RDR saves collected data files within directories named by Rank ID on distributed training on Ascend, GPU and CPU.
77
78#### GraphKernel Fusion
79
80#### Boost
81
82- [BETA] Add LessBN algorithm, achieves 1.14x faster training throughput while maintaining negligible or no impact on the accuracy in our benchmark.
83- [BETA] Add gradient frozen algorithm, achieves 1.1x faster training throughput while maintaining negligible on the accuracy in our benchmark.
84- [BETA] Add "boost_level" input parameter in the Model interface to control boost level, where you can choose O1/O2 for 1.15x/1.2x faster.
85
86### API Change
87
88#### Backwards Incompatible Change
89
90##### Python API
91
92###### New Recomputation Configuration for AutoParallel and SemiAutoParallel Scenarios
93
94Configuring the recomputation of the communication operations generated by the model parallel and optimizer parallel to save the memory on the
95devices. Users can pass `mp_comm_recompute` and `parallel_optimizer_comm_recompute` to enable the recomputation of the communication operations.
96
97### Bug fixes
98
99#### FrontEnd
100
101- Fix bug of too many subgraphs when network include`for` statement.([!23669](https://gitee.com/mindspore/mindspore/pulls/23669))
102
103#### Executor
104
105- RunTask failed when parameter_broadcast is enabled in PyNative mode. ([!23255](https://gitee.com/mindspore/mindspore/pulls/23255))
106- An illegal memory access was encountered in the dynamic shape net on GPU.
107- Fix tune failed for DynamicRnn. ([!21081](https://gitee.com/mindspore/mindspore/pulls/21081))
108
109#### Dataset
110
111- Optimize thread monitoring to solve the problem of running multiple multiprocessesing on Windwos. ([!23232](https://gitee.com/mindspore/mindspore/pulls/23232))
112- Fix bugs of Dataset tensor operations in lite mode. ([!21999](https://gitee.com/mindspore/mindspore/pulls/21999))
113- Fix memory increasing when using create_dict_iterator in for loop. ([!22529](https://gitee.com/mindspore/mindspore/pulls/22529))([!22529](https://gitee.com/mindspore/mindspore/pulls/22529))
114
115## MindSpore Lite
116
117### Major Features and Improvements
118
119#### Converter and runtime
120
1211. Optimize TDNN-like streaming model by reusing the result of last inference.
1222. Support dynamic filter Convolution.
1233. Support serializing float32 weight into float16 weight for reducing size of model file.
1244. Provide unified runtime API for developer reusing their code between cloud side and end side.
1255. Now developer can configure built-in pass as custom passes.
1266. Now user can specify format and shape of model inputs while converting model.
1277. Support multiple devices inference, includeing CPU, NPU, GPU. User can set devices in mindspore::Context.
1288. Support mixed precision inference. User can set inference precision by LoadConfig API.
1299. Support custom operator registration and enable inference on third-party hardware.
130
131#### ARM backend optimization
132
1331. Support the nchw data format of some Operators, such as Conv, InstanceNorm, etc. The performance of some models convertered from onnx and caffe is greatly improved.
1342. Fix bugs of memory leak on NPU.
135
136#### Post quantization
137
1381. Weight quantization supports mixed bit quantization.
1392. Full quantization supports data pre-processing.
1403. Adjust the quantization parameters from the command line to the configuration file.
141
142#### Training on Device
143
1441. Unify lite external api with MindSpore.
1452. Implement static memory allocator and common workspace for TOD,save memory 10-20%.
1463. Provide getgradients and setgradients interface,get and set optimizer params interfaces to support MOE Model.
1474. Support user specified output node when export IOD Model.
1485. Support more text  networks (tinybert,albert) and operators.
149
150#### Codegen
151
1521. Support kernel register for custom op. Third-party hardware like NNIE can be accessed through it.
153
154### API Change
155
156#### API Incompatible Change
157
158##### C++ API
159
160### Contributors
161
162Thanks goes to these wonderful people:
163
164Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
165
166Contributions of any kind are welcome!
167
168# MindSpore 1.4.0
169
170## MindSpore 1.4.0 Release Notes
171
172### Major Features and Improvements
173
174#### NewModels
175
176#### FrontEnd
177
178#### Auto Parallel
179
180- Add distributed operators: Conv2D/Conv2DTranspose/Conv2DBackpropInput/MaxPool/AvgPool/BatchNorm/GatherD
181- Support to configure shard strategy for dataset
182
183#### Executor
184
185#### DataSet
186
187- Add SlicePatchesOperation for Remote Sensing feature([!18179](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/18179)188
189#### FederatedLearning
190
191#### Running Data Recorder
192
193#### GraphKernel Fusion
194
195#### Profiler
196
197- [STABLE]  Support MS_DIAGNOSTIC_DATA_PATH for profiler feature.(Ascend/GPU)
198
199#### Dump
200
201- [STABLE]  Support MS_DIAGNOSTIC_DATA_PATH for dump feature.(Ascend/GPU/CPU)
202
203### API Change
204
205#### Backwards Incompatible Change
206
207##### Python API
208
209##### Command Line Interface
210
211###### Dump Config
212
213Previously, we need to set the dump path in dump config file. To make the dump feature easier to use on cloud, we support new environment parameter `MS_DIAGNOSTIC_DATA_PATH`.
214
215| 1.3.0                          | 1.4.0                                                                                                                                        |
216| ------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- |
217| `path` is a mandatory field. | `path` field is optional.  If `path` field is not provided or is empty string, `MS_DIAGNOSTIC_DATA_PATH` should be set in environment. |
218
219### Bug fixes
220
221#### FrontEnd
222
223#### Executor
224
225#### Dataset
226
227- Fix module 'signal' has no attribute 'SIGCHLD' problem under windows platform. ([!21232](https://gitee.com/mindspore/mindspore/pulls/21232))
228
229## MindSpore Lite
230
231### Major Features and Improvements
232
233#### Converter and runtime
234
235#### x86 backend optimization
236
237#### ARM backend optimization
238
239#### Cuda backend optimization
240
241#### OpenCL backend
242
243#### Post quantization
244
245#### Training on Device
246
247#### Codegen
248
249### API Change
250
251#### API Incompatible Change
252
253##### C++ API
254
255#### New features
256
257##### Java API
258
259### Bug fixes
260
261#### Deprecations
262
263### Contributors
264
265Thanks goes to these wonderful people:
266
267Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
268
269Contributions of any kind are welcome!
270
271# MindSpore 1.3.0
272
273## MindSpore 1.3.0 Release Notes
274
275### Major Features and Improvements
276
277#### NewModels
278
279- [STABLE] Add CV models on Ascend: CPM, FCN8s, SSD-ResNet50-FPN, EAST, AdvancedEast.
280- [STABLE] Add NLP models on Ascend: DGU, TextCNN, SentimentNet(LSTM).
281- [STABLE] Add CV models on GPU: Faster-RCNN, FCN8s, CycleGAN, AdvancedEast.
282- [BETA] Add CV models on Ascend: CycleGAN, PoseNet, SimCLR.
283- [BETA] Add NLP models on Ascend: DGU, EmoTect, Senta, KT-Net.
284- [BETA] Add NLP models on GPU: DGU, EmoTect.
285- [BETA] Add EPP-MVSNet: a novel deep learning network for 3D reconstruction from multi-view stereo, which has won the first place in Tanks & Temples leaderboard(until April 1, 2021)(GPU).
286
287#### FrontEnd
288
289- [STABLE] The default running mode of MindSpore is changed to Graph mode.
290- [STABLE] Support interface `run_check` to check whether MindSpore is working properly or not.
291- [STABLE] Support saving custom information in the checkpoint file.
292- [STABLE] Normal class adds mean parameter.
293- [STABLE] Support export YOLOv3-DarkNet53 and YOLOv4 ONNX model.
294- [STABLE] Support 40+ operator export ONNX model.
295- [STABLE] The Metric module supports `set_indexes` to select the inputs of `update` in the specified order.
296- [STABLE] Switch `_Loss` to an external API `LossBase` as the base class of losses.
297
298#### Auto Parallel
299
300- [STABLE] Add distributed operators: Select/GatherNd/ScatterUpdate/TopK.
301- [STABLE] Support basic pipeline parallelism.
302- [STABLE] Optimize sharding strategy setting of `Gather`.
303- [STABLE] Optimize mix precision and shared parameter scenarios.
304- [STABLE] Optimize distributed prediction scenarios.
305
306#### Executor
307
308- [STABLE] Support unified runtime in GPU and CPU backend.
309- [STABLE] MindSpore GPU support CUDA11 with cuDNN8.
310- [STABLE] MindSpore GPU inference performance optimization by integrating TensorRT.
311- [STABLE] MindSpore built on one Linux distribution can now be used on multiple Linux distributions with the same CPU architecture (e.g. EulerOS, Ubuntu, CentOS).
312- [STABLE] MindSpore now supports Ascend310 and Ascend910 environments with one single wheel package and provides an alternate binary package for Ascend310 specifically.
313- [STABLE] MindSpore Ascend support group convolution.
314
315#### DataSet
316
317- [STABLE] Support caching over MindRecord dataset.
318- [STABLE] Support new shuffle mode for MindRecord dataset.
319- [STABLE] Support a cropper tool for MindSpore Lite to allow the user to customize MindData binary file according to their script.
320- [STABLE] Support share memory mechanism to optimize the multi-processing efficiency of GeneratorDataset/Map/Batch.
321- [STABLE] Add features for the GNN dataset to support molecular dynamics simulation scenarios.
322
323#### FederatedLearning
324
325- [STABLE] Support Cross-device federated learning framework.
326- [STABLE] Support FL-Server distributed networking including TCP and HTTP communication.
327- [STABLE] Support FL-Server distributed federated aggregation,support autoscaling and fault tolerance.
328- [STABLE] Develop FL-Client framework.
329- [STABLE] Supports local differential privacy algorithms.
330- [STABLE] MPC-based security aggregation algorithm.
331- [STABLE] MindSpore Lite Device-side Inference & Training Interconnection with FL-Client.
332
333#### Running Data Recorder
334
335- [STABLE] Provide records of multi-stage computational graphs, memory allocation information and graph execution order when a "Launch kernel failed" occurs. (CPU)
336
337#### GraphKernel Fusion
338
339- [STABLE] Add options to control the optimization level.
340- [STABLE] Enhance the generalization ability on GPU. GraphKernel is enabled by default in 40+ networks which cover the field of NLP, CV, Recommender, NAS and Audio. The result shows their throughput is significantly improved, and you are Recommended enabling GraphKernel in your network.
341
342#### Debug
343
344- [STABLE] Unified dump function.
345
346### API Change
347
348#### Backwards Incompatible Change
349
350##### Python API
351
352###### `mindspore.dataset.Dataset.device_que` interface removes unused parameter `prefetch_size`([!18973](https://gitee.com/mindspore/mindspore/pulls/18973))
353
354Previously, we have a parameter `prefetch_size` in `device_que` to define the prefetch number of records ahead of the user's request. But indeed this parameter is never used which means it is an ineffective parameter. Therefore, we remove this parameter in 1.3.0 and users can set this configuration by [mindspore.dataset.config.set_prefetch_size](https://www.mindspore.cn/docs/api/en/r1.3/api_python/mindspore.dataset.config.html#mindspore.dataset.config.set_prefetch_size).
355
356<table>
357<tr>
358<td style="text-align:center"> 1.2.1 </td> <td style="text-align:center"> 1.3.0 </td>
359</tr>
360<tr>
361<td>
362
363```python
364device_que(prefetch_size=None, send_epoch_end=True, create_data_info_queue=False)
365```
366
367</td>
368<td>
369
370```python
371device_que(send_epoch_end=True, create_data_info_queue=False)
372```
373
374</td>
375</tr>
376</table>
377
378###### `mindspore.nn.optim.thor` interface changes to lowercase `thor` and adds two parameters `enable_clip_grad` and `frequency`([!17212](https://gitee.com/mindspore/mindspore/pulls/17212))
379
380The parameter `enable_clip_grad` is used for gradient clipping and another parameter `frequency` is used to control the update interval of second order information matrix.
381
382<table>
383<tr>
384<td style="text-align:center"> 1.2.1 </td> <td style="text-align:center"> 1.3.0 </td>
385</tr>
386<tr>
387<td>
388
389```python
390THOR(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32,
391     use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None)
392```
393
394</td>
395<td>
396
397```python
398thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32,
399     use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None, enable_clip_grad=False,
400     frequency=100)
401```
402
403</td>
404</tr>
405</table>
406
407##### Dump Config
408
409Previously, we could only dump tensor data for one or all steps. To make the dump feature easier to use, we changed the dump configuration format and dump structure. View the [New Dump Tutorial](https://www.mindspore.cn/docs/programming_guide/en/r1.5/dump_in_graph_mode.html#dump).
410
411| 1.2.1                                                  | 1.3.0                                                                                       |
412| ------------------------------------------------------ | ------------------------------------------------------------------------------------------- |
413| `iteration` is an int.                               | `iteration` is a string.                                                                  |
414| `op_debug_mode` is in `async_dump_settings` field. | `op_debug_mode` is in `common_dump_settings` field. `async_dump_settings` is removed. |
415
416### Bug fixes
417
418#### FrontEnd
419
420- Fix exception when use import module in while body such as 'F.xxx'.([!17635](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/17635))
421- Fix the exception of 'exceeding limit call depth' in compile graph process when using while expression with grad operation. ([!18662](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/18662))
422
423#### Executor
424
425- Fix reallocate memory bug for communication op.([!14492](https://gitee.com/mindspore/mindspore/pulls/14492))
426- Replace memcpy_async op with tensor_move op.([!15204](https://gitee.com/mindspore/mindspore/pulls/15204))
427- Fix the build error when multiple python versions are installed in the environment. ([!19165](https://gitee.com/mindspore/mindspore/pulls/19165))
428- The warning when the te/topi/hccl version does not match is optimized, and fix the repeated warning. ([!18704](https://gitee.com/mindspore/mindspore/pulls/18704))
429- Fix the error in a cluster with more than 8 pcs in pynative mode. ([!16376](https://gitee.com/mindspore/mindspore/pulls/16376))
430- Fix graph ring problem in UB fusion.([!16109](https://gitee.com/mindspore/mindspore/pulls/16109))
431- Fix AllGather op select problem when the shape is not divisible by 16. ([!18878](https://gitee.com/mindspore/mindspore/pulls/18878))
432
433#### Dataset
434
435- Fix an out-of-memory error when ImagefolderDataset gets an illegal directory. ([!16196](https://gitee.com/mindspore/mindspore/pulls/16196))
436- Fix bugs of vision transformations in lite mode. ([!14722](https://gitee.com/mindspore/mindspore/pulls/14722),[!14774](https://gitee.com/mindspore/mindspore/pulls/14774),[!15050](https://gitee.com/mindspore/mindspore/pulls/15050))
437- Fix default numbers of parallel workers of MindData for those CPUs with fewer cores. ([!15921](https://gitee.com/mindspore/mindspore/pulls/15921))
438- Fix MindRecord writing failed probabilistically in multiprocessing. ([!15242](https://gitee.com/mindspore/mindspore/pulls/15242))
439
440## MindSpore Lite
441
442### Major Features and Improvements
443
444#### Converter and runtime
445
4461. Support Caffe model running on Hi3516D.
4472. Support delegate mechanism to run your models(part or whole) on user specified executor.
4483. Support control flow models.
4494. Support cross-compiling for iOS, so that we can inference models on iOS devices.
450
451#### x86 backend optimization
452
4531. Optimize kernels for x86 using Advanced Vector Extensions(AVX).
454
455#### ARM backend optimization
456
4571. Optimize fp16 kernels.
4582. Support arm32 fp16 instruction acceleration on ARMv8.2.
459
460#### Cuda backend optimization
461
4621. Support NV GPU backend base on delegate mechanism(use TensorRT as delegate).
463
464#### OpenCL backend
465
4661. Optimize the strategy of workgroup and blocksize to improve performance.
4672. Support OpenCL dynamic infershape.
4683. Support INT32 type ops.
469
470#### Post quantization
471
4721. Support fp32 training model converts to quantization training model.
473
474#### Training on Device
475
4761. Support fp32 training model export to quantization model after training process end.
4772. Unify APIs and output package name of training and inference.
4783. Simplify implementation of Train Session.
4794. Optimize train and infer compile, reduce libmindspore-lite-train.so memory.
4805. Training memory optimization:  memory reduce 10-50% compare with  r1.2.
4816. Training performance optimization:  for 1*1 special input shape Cov2DGradInput and SparseSoftmaxCrossEntropyWithLogits operator optimization, improved 10%-20%.
4827. Support more networks(transformer, albert).
483
484#### Codegen
485
4861. Support deployment on HarmonyOS for device.
487
488### API Change
489
490#### API Incompatible Change
491
492##### C++ API
493
494###### Unify LiteSession and TrainSession, Merge LiteSession And TrainSession.([!17356](https://gitee.com/mindspore/mindspore/pulls/17356))
495
496Previously, Training on Device use TrainSession while Inference on Device use LiteSession. To simplify implementation, we move TrainSession functions to LiteSession as virtual function. and move APIs previous defined in train_session.h to lite_session.h.
497
498```cpp
499class MS_API LiteSession {
500...
501static LiteSession *CreateTrainSession(const std::string &filename, const lite::Context *context,
502                                         bool train_mode = false, const lite::TrainCfg *cfg = nullptr);
503 static LiteSession *CreateTransferSession(const std::string &filename_backbone, const std::string &filename_head,
504                                            const lite::Context *context, bool train_mode = false,
505                                            const lite::TrainCfg *cfg = nullptr);
506virtual int Train() { return mindspore::lite::RET_ERROR; }
507virtual int Eval() { return mindspore::lite::RET_OK; }
508virtual int SetupVirtualBatch(int virtual_batch_multiplier, float lr = -1.0f, float momentum = -1.0f) {
509    return mindspore::lite::RET_ERROR;
510  }
511virtual std::vector<tensor::MSTensor *> GetPredictions() const {
512    std::vector<tensor::MSTensor *> outputs;
513    return outputs;
514 }
515...
516```
517
518###### Add Export API for Training on device, obsolete SaveToFile API.([!17356](https://gitee.com/mindspore/mindspore/pulls/17356))
519
520Previously, Training on Device uses SaveToFile API to save the training model to file. Export API was added in this release to support more format, more model type(train or interface part of the model), and save weight quant model of train.
521
522```cpp
523virtual int Export(const std::string &file_name, lite::ModelType model_type = lite::MT_TRAIN,
524                     lite::QuantizationType quant_type = lite::QT_DEFAULT, lite::FormatType = lite::FT_FLATBUFFERS) {
525    return mindspore::lite::RET_ERROR;
526 }
527```
528
529###### Add GetFeatureMaps and UpdateFeatureMaps interface for Training on device.([!18344](https://gitee.com/mindspore/mindspore/pulls/18344))
530
531When Training on the device, we may need to update the model featuremap and get model featuremap.particularly in MindSpore Federated Scenario.
532
533```cpp
534virtual std::vector<tensor::MSTensor *> GetFeatureMaps() const {
535    std::vector<tensor::MSTensor *> features;
536    return features;
537  }
538  virtual int UpdateFeatureMaps(const std::vector<tensor::MSTensor *> &features) { return mindspore::lite::RET_ERROR; }
539```
540
541#### New features
542
543##### Java API
544
545###### new static method for creating LiteSession by MSConifg in LiteSession.class
546
547Previously, if we want to create a LiteSession object, we need to call two APIs:
548
549```js
550MSConfig config;
551// config options ...
552LiteSession liteSession = new LiteSession();
553boolean ret = liteSession.init(config);
554if (!ret) {
555  // handle init LiteSession failed ...
556}
557```
558
559now we can create a LiteSession object with new API just like:
560
561```js
562MSConfig config;
563// config options ...
564LiteSession liteSession = createSession(config);
565if (liteSession == null) {
566  // handle create LiteSession failed ...
567}
568```
569
570###### new static method for creating LiteSession byModelBuffer and MSConfig in LiteSession.class
571
572Previously, if we want to inference a model, we need to call APIs like:
573
574```js
575MSConfig config;
576// config options ...
577LiteSession liteSession = new LiteSession();
578boolean initSessionRet = liteSession.init(config);
579if (!initSessionRet) {
580  // handle init LiteSession failed and return ...
581}
582Model model = new Model();
583boolean loadModelRet = model.loadModel(modelMappedByteBuffer);
584if (!loadModelRet) {
585  // handle load model failed and return ...
586}
587boolean compileModelRet = liteSession.compileGraph(model);
588if (!loadModelRet) {
589  // handle compile model failed and return ...
590}
591model.free();
592// liteSession is ready to inference model, call runGraph in LiteSession.class ...
593```
594
595now we can use new API just like:
596
597```js
598MSConfig config;
599// config options ...
600LiteSession liteSession = createSession(modelMappedByteBuffer, config);
601if (liteSession == null) {
602  // handle init LiteSession failed and return ...
603}
604// liteSession is ready to inference model, call runGraph in LiteSession.class ...
605```
606
607New createSession method is an API that integrates four old APIs: LiteSession.init, Model.loadModel, LiteSession.compileGraph and model.free. It is simple and efficient as it reduces one modelBuffer copy operation.
608
609###### new methods getFeaturesMap and updateFeatures for in LiteSession.class
610
611Recently, we add a new C++ api in LiteSession class, Correspondingly we add a new java API in LiteSession.java.
612
613```java
614public List<MSTensor> getFeaturesMap() {
615         List<Long> ret = this.getFeaturesMap(this.sessionPtr);
616                ArrayList<MSTensor> tensors = new ArrayList<MSTensor>();
617                for (Long msTensorAddr : ret) {
618                    MSTensor msTensor = new MSTensor(msTensorAddr);
619                    tensors.add(msTensor);
620                }
621                return tensors;
622   }
623   public boolean updateFeatures(List<MSTensor> features) {
624            long[] inputsArray = new long[features.size()];
625            for (int i = 0; i < features.size(); i++) {
626                inputsArray[i] = features.get(i).getMSTensorPtr();
627            }
628             return this.updateFeatures(this.sessionPtr, inputsArray);
629   }
630```
631
632###### new methods export to replace saveToFile API in LiteSession.class
633
634Recently, we add a new C++ api in LiteSession class, Correspondingly we add a new java API in LiteSession.java.
635
636```java
637public boolean export(String modelFileName, int modelType, int quantizationType) {
638        return this.export(this.sessionPtr, modelFileName, modelType, quantizationType);
639    }
640```
641
642###### new train related  API moved to LiteSession.class from TrainSession.class
643
644Align with update of C++ api in LiteSession class, add new java API to LiteSession.java Correspondingly.
645
646```java
647public class LiteSession {
648...
649public static LiteSession createTrainSession(String modelName, final MSConfig config, boolean trainMode){...}
650public boolean train() {...}
651public boolean eval() {...}
652...
653```
654
655### Bug fixes
656
6571. Fix the bug that the train session does not release memory cause of refcount bug.
658
659#### Deprecations
660
661### Contributors
662
663Thanks goes to these wonderful people:
664
665Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
666
667Contributions of any kind are welcome!
668
669# MindSpore 1.2.1
670
671## MindSpore 1.2.1 Release Notes
672
673### Major Features and Improvements
674
675#### FrontEnd
676
677- [STABLE] Add MaskedSelect aicpu operation.(Ascend)
678
679#### Auto Parallel
680
681- [STABLE] Support distributed checkpoint loading.(Ascend/GPU)
682
683# MindSpore 1.2.0
684
685## MindSpore 1.2.0 Release Notes
686
687### Major Features and Improvements
688
689#### NewModels
690
691- [STABLE] Add CV models on Ascend: 3D Unet, Unet++, SSD-Resnet50-fpn, SSD-VGG16, crnn_seq2seq_ocr for BSI, CTPN, resnet18, DPN
692- [STABLE] Add CV models on GPU: Faster-RCNN
693- [STABLE] Add NLP models on Ascend: NAML, Fasttext, GRU, LSTM
694- [BETA] Add TPRR: Thinking Path Re-Ranker, an original ranked-base framework for Multi-Hop Question Answering which has won the first place in HotpotQA leaderboard.(Ascend)
695
696#### FrontEnd
697
698- [STABLE] Support side effects expression to ensure that the perform order of user's semantics is correct.(Ascend/GPU/CPU)
699- [STABLE] Support calculating the gradient for network that contain non-Tensor input parameters(int, float, bool, mstype,int, mstype.float, mstype.uint, mstype.bool_, tuple, list, dict).(Ascend/GPU/CPU)
700- [STABLE] Support the inverse of a bool Tensor.(Ascend/GPU/CPU)
701- [STABLE] Uniform the interface `isinstance`.(Ascend/GPU/CPU)
702- [STABLE] Support negative indexes.(Ascend/GPU/CPU)
703- [STABLE] Support 110+ Numpy-like interfaces in mindspore.numpy.(Ascend/GPU/CPU)
704- [STABLE] Support export/load mindir model with a size greater than 2 GB.
705- [STABLE] The optimizer supports gradient centralization.(Ascend)
706- [STABLE] Support support auc metric, rou metric, bleu score metric, confusion matrix metric, cosine similarity metric, dice metric, hausdorff distance metric, occlusion sensitivity metric, perplexity metric, mean surface distance metric, root mean surface distance metric.
707- [STABLE] Support use EmbeddingLookup with cache.(Ascend)
708- [STABLE] Add MaskedSelect aicpu operation.(Ascend)
709
710#### Auto Parallel
711
712- [STABLE] Support AllGather and ReduceScatter fusion.(Ascend)
713- [STABLE] Support gradient accumulation feature in auto parallel mode.(Ascend/GPU)
714- [STABLE] Support running parallel optimizer with gradient accumulation.(Ascend)
715- [STABLE] Add the configuration of communication operators' fusion.(Ascend)
716- [STABLE] Support distributed checkpoint loading.(Ascend/GPU)
717
718#### Executor
719
720- [STABLE] Support inference with Nvidia GPU.
721- [STABLE] Support data parallelism in PyNative mode.(Ascend/GPU)
722- [STABLE] Optimize LSTM inference memory consumption in Graph mode with CPU.
723
724#### Sponge
725
726- [STABLE] Add SPONGE modules for molecular dynamics simulation, including Bond, Angle, Dihedral, Non Bond 14, NeighborList, Particle Mesh Ewald, Langevin MD and LIUJIAN MD.(GPU)
727
728#### DataSet
729
730- [STABLE] If the libnuma library is installed in the environment, you can run `export DATASET_ENABLE_NUMA=True` to configure NUMA binding. In multi-card training scenarios, the training data processing speed can be improved, thereby improving the network training efficiency.
731- [STABLE] Unify API Tensor structure of Training/Inference interfaces in C++ SDK.
732- [STABLE] Optimize duplicated Decode in data preprocess using cache, improve preprocess efficiency.
733- [STABLE] Support eager mode to run data augmentation in Python & C++.
734- [STABLE] Support more data augmentation operators(e.g. Affine, Perspective) in MindSpore-Lite.
735- [STABLE] Support light pipeline to process MindData in MindSpore-Lite training.
736- [STABLE] Support more data preprossing operators based on DVPP hardware module and can be used on on Ascend310 platform.
737- [STABLE] Support copy-free property for data in Ascend310 inference process scenarios.
738
739#### Running Data Recorder
740
741- [STABLE] Support running data recorder (RDR)  for exception demarcation.
742- [STABLE] Provide records of multi-stage computational graphs, memory allocation information, graph execution order, stream execution order and task debug information when a "run task error" or "distribute task failed" occurs. (Ascend)
743- [STABLE] Provide records of multi-stage computational graphs, memory allocation information and graph execution order when a "SyncStream error" occurs. (GPU)
744
745#### 3D Feature
746
747- [STABLE] Support 3D ops: Conv3D, Conv3DBackpropInput, Conv3DBackpropFilter, Conv3DTranspose, BiasAdd, BiasAddGrad, PReLU, Transpose, Reshape, transdata, StrideSlice, MaxPool3D, MaxPool3DGrad, BinaryCrossEntropy, SigmoidCrossEntropyWithLogits, SigmoidCrossEntropyWithLogitsGrad, SoftmaxCrossEntropyWithLogits, SigmoidCrossEntropyWithLogits, SigmoidCrossEntropyWithLogitsGrad, BatchNorm3d, BatchNorm3dGrad, Dropout3d.
748- [STABLE] Support RMSELoss loss function, MAELoss loss function, FocalLoss loss function, DiceLoss binary loss function, and MultiClassDiceLoss multi-type loss function for 2D/3D network.
749- [STABLE] Add optimizer: AdamApplyOne(3D), ApplyMomentum(3D), SGD(3D).
750
751### API Change
752
753#### Backwards Incompatible Change
754
755##### Python API
756
757###### `mindspore.numpy.array()`, `mindspore.numpy.asarray()`, `mindspore.numpy.asfarray()`, `mindspore.numpy.copy()` now support GRAPH mode, but cannot accept `numpy.ndarray` as input arguments anymore([!12726](https://gitee.com/mindspore/mindspore/pulls/12726))
758
759Previously, these interfaces can accept numpy.ndarray as arguments and convert numpy.ndarray to Tensor, but cannot be used in GRAPH mode.
760However, currently MindSpore Parser cannot parse numpy.ndarray in JIT-graph. To support these interfaces in graph mode, we have to remove `numpy.ndarray` support. With that being said, users can still use `Tensor` to convert `numpy.ndarray` to tensors.
761
762<table>
763<tr>
764<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
765</tr>
766<tr>
767<td>
768
769```python
770>>> import mindspore.numpy as mnp
771>>> import numpy
772>>>
773>>> nd_array = numpy.array([1,2,3])
774>>> tensor = mnp.asarray(nd_array) # this line cannot be parsed in GRAPH mode
775```
776
777</td>
778<td>
779
780```python
781>>> import mindspore.numpy as mnp
782>>> import numpy
783>>>
784>>> tensor = mnp.asarray([1,2,3]) # this line can be parsed in GRAPH mode
785```
786
787</td>
788</tr>
789</table>
790
791###### mindspore.numpy interfaces remove support for keyword arguments `out` and `where`([!12726](https://gitee.com/mindspore/mindspore/pulls/12726))
792
793Previously, we have incomplete support for keyword arguments `out` and `where` in mindspore.numpy interfaces, however, the `out` argument is only functional when `where` argument is also provided, and `out` cannot be used to pass reference to numpy functions. Therefore, we have removed these two arguments to avoid any confusion users may have. Their original functionality can be found in [np.where](https://www.mindspore.cn/docs/api/en/r1.5/api_python/numpy/mindspore.numpy.where.html#mindspore.numpy.where)
794
795<table>
796<tr>
797<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
798</tr>
799<tr>
800<td>
801
802```python
803>>> import mindspore.numpy as np
804>>>
805>>> a = np.ones((3,3))
806>>> b = np.ones((3,3))
807>>> out = np.zeros((3,3))
808>>> where = np.asarray([[True, False, True],[False, False, True],[True, True, True]])
809>>> res = np.add(a, b, out=out, where=where) # `out` cannot be used as a reference, therefore it is misleading
810```
811
812</td>
813<td>
814
815```python
816>>> import mindspore.numpy as np
817>>>
818>>> a = np.ones((3,3))
819>>> b = np.ones((3,3))
820>>> out = np.zeros((3,3))
821>>> where = np.asarray([[True, False, True],[False, False, True],[True, True, True]])
822>>> res = np.add(a, b)
823>>> out = np.where(where, x=res, y=out) # instead of np.add(a, b, out=out, where=where)
824```
825
826</td>
827</tr>
828</table>
829
830###### Turn `ops.MakeRefKey` into an internal interface ([!12010](https://gitee.com/mindspore/mindspore/pulls/12010))
831
832Previously MakeRefKey is an external interface that is not used, now make it an internal interface with the same usage. We do not recommend users to use this interface, and we will remove the relevant introduction of this interface from the official website.
833
834###### `ops.ApplyFtrl`, `ops.ApplyMomentum`, `ops.ApplyRMSProp`, `ops.ApplyCenteredRMSProp` change the output on Ascend backend from multiple to a single. ([!11895](https://gitee.com/mindspore/mindspore/pulls/11895))
835
836Previously the number of outputs of these operator is different on different backends. To unify their definition we change their output on Ascend backend from multiple to a single.
837
838##### `P.FusedBatchNorm`, `P.FusedBatchNormEx` deleted ([!12115](https://gitee.com/mindspore/mindspore/pulls/12115))
839
840The FusedBatchNorm and FusedBatchNormEx interface has been deleted. Please use the batchnorm operator to replace it.
841
842##### `MetaTensor` deleted ([!10325](https://gitee.com/mindspore/mindspore/pulls/10325))
843
844The MetaTensor interface has been deleted. The function of MetaTensor has been integrated into tensor.
845
846###### `ControlDepend` is deleted, use `Depend` instead. The decorator `@C.add_flags(has_effect=True)` does not work. ([!13793](https://gitee.com/mindspore/mindspore/pulls/13793))
847
848Previously, we used ControlDepend to control the execution order of multiple operators. In version 1.2.0, mindspore introduces the auto-monad side effects expression to ensure that the perform order of user's semantics is correct. Therefore, ControlDepend is deleted and Depend is recommended.
849
850In most scenarios, if operators have IO side effects (such as print) or memory side effects (such as assign), they will be executed according to the user's semantics. In some scenarios, if the two operators A and B have no order dependency, and A must be executed before B, we recommend using Depend to specify their execution order. See the API documentation of the Depend operator for specific usage.
851
852<table>
853<tr>
854<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
855</tr>
856<tr>
857<td>
858
859```python
860    In some side-effect scenarios, we need to ensure the execution order of operators.
861    In order to ensure that operator A is executed before operator B, it is recommended
862    to insert the Depend operator between operators A and B.
863
864    Previously, the ControlDepend operator was used to control the execution order.
865    Since the ControlDepend operator is deprecated from version 1.1, it is recommended
866    to use the Depend operator instead. The replacement method is as follows::
867
868        a = A(x)                --->        a = A(x)
869        b = B(y)                --->        y = Depend(y, a)
870        ControlDepend(a, b)     --->        b = B(y)
871```
872
873</td>
874<td>
875
876```python
877    In most scenarios, if operators have IO side effects or memory side effects,
878    they will be executed according to the user's semantics. In some scenarios,
879    if the two operators A and B have no order dependency, and A must be executed
880    before B, we recommend using Depend to specify their execution order. The
881    usage method is as follows::
882
883        a = A(x)                --->        a = A(x)
884        b = B(y)                --->        y = Depend(y, a)
885                                --->        b = B(y)
886```
887
888</td>
889</tr>
890</table>
891
892After the introduction of the auto-monad side effect expression feature, the decorator `@C.add_flags(has_effect=True)` does not work. If the decorator is used in the script, please modify. Take the overflow identification operator (without side effects) as an example, the modification method is as follows:
893
894<table>
895<tr>
896<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
897</tr>
898<tr>
899<td>
900
901```python
902@C.add_flags(has_effect=True)
903def construct(self, *inputs):
904    ...
905    loss = self.network(*inputs)
906    init = self.allo_status()
907    self.clear_status(init)
908    ...
909```
910
911</td>
912<td>
913
914```python
915def construct(self, *inputs):
916    ...
917    loss = self.network(*inputs)
918    init = self.allo_status()
919    init = F.depend(init, loss)
920    clear_status = self.clear_status(init)
921    ...
922```
923
924</td>
925</tr>
926</table>
927
928##### C++ API
929
930###### C++ API support dual ABI now.([!12432](https://gitee.com/mindspore/mindspore/pulls/12432))
931
9321.1.1 supports only the old ABI. Currently, both the new and the old are supported.
933
934<table>
935<tr>
936<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
937</tr>
938<tr>
939<td>
940
941```cmake
942add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
943```
944
945</td>
946<td>
947
948```cmake
949add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)  # old ABI are supported
950add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=1)  # new ABI are supprrted, too
951                                                   # write nothing, use new ABI as default
952```
953
954</td>
955</tr>
956</table>
957
958###### Context refactor.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
959
960The `Context` class is refactored. For details, see the API docs.
961
962<table>
963<tr>
964<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
965</tr>
966<tr>
967<td>
968
969```cpp
970GlobalContext::SetGlobalDeviceTarget(kDeviceTypeAscend310);       // set device target is ascend310
971GlobalContext::SetGlobalDeviceID(0);                              // set device id is 0
972auto model_context = std::make_shared<ModelContext>();            // create a model context
973ModelContext::SetInsertOpConfigPath(model_context, "./aipp.cfg")  // set aipp config file is ./aipp.cfg
974```
975
976</td>
977<td>
978
979```cpp
980auto model_context = std::make_shared<Context>();                 // create a model context
981auto ascend310_info = std::make_shared<Ascend310DeviceInfo>();
982model_context.MutableDeviceInfo().push_back(ascend310_info );     // set device target is ascend310
983ascend310_info->SetDeviceID(0);                                   // set device id is 0
984ascend310_info->SetInsertOpConfigPath("./aipp.cfg");              // set aipp config file is ./aipp.cfg
985```
986
987</td>
988</tr>
989</table>
990
991###### LoadModel interface changes.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
992
993`LoadModel` is renamed `Load`. No exception is thrown new but the return status should be checked.
994
995<table>
996<tr>
997<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
998</tr>
999<tr>
1000<td>
1001
1002```cpp
1003try {
1004  auto graph = Serialization::LoadModel(model_file_path, kMindIR);
1005} catch (...) { ... }
1006```
1007
1008</td>
1009<td>
1010
1011```cpp
1012Graph graph;
1013auto ret = Serialization::Load(model_file_path, kMindIR, &graph);
1014if (ret != kSuccess) { ... }
1015```
1016
1017</td>
1018</tr>
1019</table>
1020
1021###### Model ctor changes.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
1022
1023`Model` uses a non-parameter ctor now, and arguments are passed in through `Build`.
1024
1025<table>
1026<tr>
1027<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
1028</tr>
1029<tr>
1030<td>
1031
1032```cpp
1033Model net(net_cell, model_context);
1034auto ret = net.Build();
1035if (ret != kSuccess) { ... }
1036```
1037
1038</td>
1039<td>
1040
1041```cpp
1042Model net;
1043auto ret = net.Build(net_cell, model_context);
1044if (ret != kSuccess) { ... }
1045```
1046
1047</td>
1048</tr>
1049</table>
1050
1051###### MSTensor::CreateTensor returns a native pointer now.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
1052
1053`MSTensor::CreateTensor` and `MSTensor::CreateRefTensor` returns a native pointer now, need to be destroy by `DestroyTensorPtr`.
1054
1055<table>
1056<tr>
1057<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
1058</tr>
1059<tr>
1060<td>
1061
1062```cpp
1063auto tensor = MSTensor::CreateTensor(xxx, xxx, ...);
1064auto name = tensor.Name();
1065```
1066
1067</td>
1068<td>
1069
1070```cpp
1071auto tensor = MSTensor::CreateTensor(xxx, xxx, ...);
1072auto name = tensor->Name();
1073MSTensor::DestroyTensorPtr(tensor);
1074```
1075
1076</td>
1077</tr>
1078</table>
1079
1080#### New features
1081
1082##### Python API
1083
1084- Add SPONGE functions: `mindspore.ops.operations.BondForceWithAtomEnergy`, `mindspore.ops.operations.AngleForceWithAtomEnergy`, `mindspore.ops.operations.DihedralForceWithAtomEnergy`, `mindspore.ops.operations.Dihedral14LJCFForceWithAtomEnergy`, `mindspore.ops.operations.LJForceWithPMEDirectForce`, `mindspore.ops.operations.PMEExcludedForce`, `mindspore.ops.operations.PMEReciprocalForce`,`mindspore.ops.operations.BondEnergy`, `mindspore.ops.operations.AngleEnergy`,`mindspore.ops.operations.DihedralEnergy`, `mindspore.ops.operations.Dihedral14LJEnergy`, `mindspore.ops.operations.Dihedral14CFEnergy`,`mindspore.ops.operations.LJEnergy`, `mindspore.ops.operations.PMEEnergy`. All operators are supported in `GPU`.
1085
1086#### Deprecations
1087
1088##### Python API
1089
1090###### `nn.MatMul` is now deprecated in favor of `ops.matmul` ([!12817](https://gitee.com/mindspore/mindspore/pulls/12817))
1091
1092[ops.matmul](https://www.mindspore.cn/docs/api/en/r1.5/api_python/ops/mindspore.ops.matmul.html#mindspore.ops.matmul) follows the API of [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html) as closely as possible. As a function interface, [ops.matmul](https://www.mindspore.cn/docs/api/en/r1.5/api_python/ops/mindspore.ops.matmul.html#mindspore.ops.matmul) is applied without instantiation, as opposed to `nn.MatMul`, which should only be used as a class instance.
1093
1094<table>
1095<tr>
1096<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td>
1097</tr>
1098<tr>
1099<td>
1100
1101```python
1102>>> import numpy as np
1103>>> from mindspore import Tensor, nn
1104>>>
1105>>> x = Tensor(np.ones((2, 3)).astype(onp.float32)
1106>>> y = Tensor(np.ones((3, 4)).astype(onp.float32)
1107>>> nn.MatMul()(x, y)
1108```
1109
1110</td>
1111<td>
1112
1113```python
1114>>> import numpy as np
1115>>> from mindspore import Tensor, ops
1116>>>
1117>>> x = Tensor(np.ones((2, 3)).astype(onp.float32)
1118>>> y = Tensor(np.ones((3, 4)).astype(onp.float32)
1119>>> ops.matmul(x, y)
1120```
1121
1122</td>
1123</tr>
1124</table>
1125
1126### Bug fixes
1127
1128#### FrontEnd
1129
1130- fix the null pointer problem of evaluator in control flow.([!13312](https://gitee.com/mindspore/mindspore/pulls/13312))
1131- fix parameter naming conflict bug for CellList and SequentialCell. ([!13260](https://gitee.com/mindspore/mindspore/pulls/13260))
1132
1133#### Executor
1134
1135- fix executor pending task not execute in some heterogeneous cases.([!13465](https://gitee.com/mindspore/mindspore/pulls/13465))
1136- add passes to support frontend IR unification, including following operations: SliceGrad([!11783](https://gitee.com/mindspore/mindspore/pulls/11783)), ApplyFtrl, ApplyMomentum, ApplyRMSProp, CenteredRMSProp([!11895](https://gitee.com/mindspore/mindspore/pulls/11895)), AvgPoolGrad([!12813](https://gitee.com/mindspore/mindspore/pulls/12813)), BatchNorm([!12115](https://gitee.com/mindspore/mindspore/pulls/12115))
1137
1138#### Dataset
1139
1140- Fix getter functions(e.g. GetDatasetSize) terminated abnormally when use python multi-processing. ([!13571](https://gitee.com/mindspore/mindspore/pulls/13571), [!13823](https://gitee.com/mindspore/mindspore/pulls/13823))
1141- Fix unclear error log of data augmentation operators. ([!12398](https://gitee.com/mindspore/mindspore/pulls/12398), [!12883](https://gitee.com/mindspore/mindspore/pulls/12883), [!13176](https://gitee.com/mindspore/mindspore/pulls/13176))
1142- Fix profiling performs abnormally when sink_size = False, as saving data is later than profiling analysis. ([!13944](https://gitee.com/mindspore/mindspore/pulls/13944))
1143
1144## MindSpore Lite
1145
1146### Major Features and Improvements
1147
1148#### Converter and runtime
1149
11501. Support TensorFlow model in Converter except aware-training model.
11512. Add fusion pattern for same horizontal operators in Converter.
11523. Support Jar in x86_64 system for integrating into server with Java backend conveniently.
11534. Provide unified runtime API for developer reusing their code between cloud side and end side.[BETA]
11545. Improve control-flow capabilities continually: Support GRU fusion in Converter; Support weight-quant for control-flow model; Support control-flow model inference with half precision; Support nested control-flow model.[BETA]
1155
1156#### ARM backend optimization
1157
11581. Add NLP dependent float16 operators(like lstm) to enhance inference performance.
11592. Optimize operators: lstm, gru, depthwise.
11603. Add 6 NPU operators(like FullConnection), and fix some bugs about buildIR failed.
1161
1162#### OpenCL backend
1163
11641. Add new ops:add 10+ ops,total 72 ops;
11652. Performance optimization:by memory layout optimize,block tiling,Performance improved by 30% compared to version 1.1 at Adreno GPU.
11663. Initialization time optimization:initialization time improve 100% vs MSLITE Version1.1 by store kernel cache as binary.
11674. Support Java call on Mali or Adreno GPU.
1168
1169#### Post quantization
1170
11711. Support quantization of gather and lstm ops.
11722. Support quantizatizing TF Lite models with sub-graph node.
11733. Add quantiztion strategy to decide quantize ops or not,less accuracy loss and higher compression rate.
1174
1175#### Training on Device
1176
11771. Virtual batching, use mini-batch to minic large batch in theorical with few RAM consumption.
11782. Converter unify, do not compile tod and iod converter separately.
11793. Performance optimization to BWD ops.
11804. TrainLoop with Off-The-Shelf Functionality blocks, like LR scheduler, Loss Monitor, Ckpt Saver, Accuracy Monitor.
11815. Integration of code with Minddata lite.
11826. Support more networks (googlenet, densenet, shufflenetv2, nin, vgg) and operators.
1183
1184#### Codegen
1185
11861. Support 79 ops for the ARM platform and all CMSIS ops for Arm Cortex-M Series.
11872. Multiplatform support, including Android, IoT Devices.
11883. Support offline model weight preprocessing while compiling.
11894. Support offline memory reuse computing for minimum runtime buffer size.
11905. Support kernel register for custom op. Third-party hardware like NNIE can be accessed through it.
1191
1192### API Change
1193
1194#### API Incompatible Change
1195
1196##### C++ API
1197
1198###### Add header file named lite_types.h for some common data structs. ([!12262](https://gitee.com/mindspore/mindspore/pulls/12262))
1199
1200Previously, some common data structs such as `CpuBindMode` and `DeviceType` are in context.h, this may cause cross-dependency between headers. So we create a new header named lite_types.h for some common data structs and move `CpuBindMode` and `DeviceType` from context.h into lite_types.h.
1201
1202<table>
1203<tr>
1204<td style="text-align:center"> lite_types.h </td>
1205</tr>
1206<tr>
1207<td>
1208
1209```cpp
1210namespace mindspore::lite {
1211/// \brief CpuBindMode defined for holding bind cpu strategy argument.
1212typedef enum {
1213  NO_BIND,    /**< no bind */
1214  HIGHER_CPU, /**< bind higher cpu first */
1215  MID_CPU     /**< bind middle cpu first */
1216} CpuBindMode;
1217
1218/// \brief DeviceType defined for holding user's preferred backend.
1219typedef enum {
1220  DT_CPU, /**< CPU device type */
1221  DT_GPU, /**< GPU device type */
1222  DT_NPU  /**< NPU device type */
1223} DeviceType;
1224}  // namespace mindspore::lite
1225```
1226
1227</td>
1228</tr>
1229</table>
1230
1231###### Add some new interfaces in ms_tensor.h for unified runtime API.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
1232
1233Previously, users could not create `MSTensor` or modify ``MSTensor, all `MSTensor` are created and managed by framework. However users need to create or modify MSTensor sometimes such as pre-processing input data. So we provide two new interfaces in ms_tensor.h: `CreateTensor` interface for creating `MSTensor` by user and `set_shape` interface for modifying the shape of `MSTensor`.
1234
1235<table>
1236<tr>
1237<td style="text-align:center"> CreateTensor </td>
1238</tr>
1239<tr>
1240<td>
1241
1242```cpp
1243/// \brief Create a MSTensor.
1244///
1245/// \return Pointer to an instance of MindSpore Lite MSTensor.
1246static MSTensor *CreateTensor(const std::string &name, TypeId type, const std::vector<int> &shape, const void *data,
1247                                size_t data_len);
1248```
1249
1250</td>
1251</tr>
1252</table>
1253
1254<table>
1255<tr>
1256<td style="text-align:center"> set_shape </td>
1257</tr>
1258<tr>
1259<td>
1260
1261```cpp
1262/// \brief Set the shape of MSTensor.
1263virtual void set_shape(const std::vector<int> &shape) = 0;
1264```
1265
1266</td>
1267</tr>
1268</table>
1269
1270Previously, users could access to data of `MSTensor` by interface named `MutableData`. However `MutableData` is not only returning data of tensor but also allocating data for tensor if its data is nullptr. So we provide a new interfaces in ms_tensor.h named `data` for returning data of tensor without allocating automatically.
1271
1272<table>
1273<tr>
1274<td style="text-align:center"> data </td>
1275</tr>
1276<tr>
1277<td>
1278
1279```cpp
1280/// \brief Get the pointer of data in MSTensor.
1281///
1282/// \note The data pointer can be used to both write and read data in MSTensor. No memory buffer will be
1283/// allocated.
1284///
1285/// \return the pointer points to data in MSTensor.
1286virtual void *data() = 0;
1287```
1288
1289</td>
1290</tr>
1291</table>
1292
1293###### Delete `DimensionSize()` in ms_tensor.h.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
1294
1295The interface named `DimensionSize` is fuinctionally overlapped with the interface named `shape`. For the simplicity of the interface, we delete `DimensionSize` and recommend users to use the new interface named `shape` instead.
1296
1297<table>
1298<tr>
1299<td style="text-align:center"> DimensionSize() </td>
1300</tr>
1301<tr>
1302<td>
1303
1304```cpp
1305/// \brief Get size of the dimension of the MindSpore Lite MSTensor index by the parameter index.
1306///
1307/// \param[in] index Define index of dimension returned.
1308///
1309/// \return Size of dimension of the MindSpore Lite MSTensor.
1310virtual int DimensionSize(size_t index) const = 0;
1311```
1312
1313</td>
1314</tr>
1315</table>
1316
1317###### Move allocator from namespace mindspore::lite to namespace lite for unified runtime API.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515))
1318
1319Previously, class `Allocator` is in namespace mindspore::lite. Considering unified allocator interface for unified runtime API, we move `Allocator` to namespace mindspore.
1320
1321<table>
1322<tr>
1323<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.2.0 </td>
1324</tr>
1325<tr>
1326<td>
1327
1328```cpp
1329namespace mindspore::lite {
1330/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically.
1331///
1332/// \note List public class and interface for reference.
1333class Allocator;
1334}
1335```
1336
1337</td>
1338<td>
1339
1340```cpp
1341namespace mindspore {
1342/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically.
1343///
1344/// \note List public class and interface for reference.
1345class Allocator;
1346}
1347```
1348
1349</td>
1350</tr>
1351</table>
1352
1353### Bug fixes
1354
13551. Fix the bug that the array in kernel registrar is not initialized.
13562. Fix segment fault caused by releasing of OpParameter in Crop kernel in mistake.
13573. Fix the bug that the MINDIR aware-training model is finally interpreted as weight-quant model.
1358
1359## Contributors
1360
1361Thanks goes to these wonderful people:
1362
1363Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa.
1364
1365Contributions of any kind are welcome!
1366
1367# MindSpore 1.1.1 Release Notes
1368
1369## MindSpore
1370
1371### Major Features and Improvements
1372
1373#### NewModels
1374
1375- [STABLE] BGCF: a Bayesian Graph Collaborative Filtering(BGCF) framework used to model the uncertainty in the user-item interaction graph and thus recommend accurate and diverse items on Amazon recommendation dataset.(Ascend)
1376- [STABLE] GRU: a recurrent neural network architecture like the LSTM(Long-Short Term Memory) on Multi30K dataset.(Ascend)
1377- [STABLE] FastText: a simple and efficient text classification algorithm on AG's news topic classification dataset, DBPedia Ontology classification dataset and Yelp Review Polarity dataset.(Ascend)
1378- [STABLE] LSTM: a recurrent neural network architecture used to learn word vectors for sentiment analysis on aclImdb_v1 dataset.(Ascend)
1379- [STABLE] SimplePoseNet: a convolution-based neural network for the task of human pose estimation and tracking on COCO2017 dataset.(Ascend)
1380
1381#### FrontEnd
1382
1383- [BETA] Support Tensor Fancy Index Getitem with tuple and list. (Ascend/GPU/CPU)
1384
1385### Backwards Incompatible Change
1386
1387#### Python API
1388
1389##### `ops.AvgPool`, `ops.MaxPool`, `ops.MaxPoolWithArgmax` change attr name from 'ksize', 'padding' to 'kernel_size', 'pad_mode' ([!11350](https://gitee.com/mindspore/mindspore/pulls/11350))
1390
1391Previously the kernel size and pad mode attrs of pooling ops are named "ksize" and "padding", which is a little puzzling and inconsistent with convolution ops. So they are rename to "kernel_size" and "pad_mode".
1392
1393<table>
1394<tr>
1395<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1396</tr>
1397<tr>
1398<td>
1399
1400```python
1401>>> import mindspore.ops as ops
1402>>>
1403>>> avg_pool = ops.AvgPool(ksize=2, padding='same')
1404>>> max_pool = ops.MaxPool(ksize=2, padding='same')
1405>>> max_pool_with_argmax = ops.MaxPoolWithArgmax(ksize=2, padding='same')
1406```
1407
1408</td>
1409<td>
1410
1411```python
1412>>> import mindspore.ops as ops
1413>>>
1414>>> avg_pool = ops.AvgPool(kernel_size=2, pad_mode='same')
1415>>> max_pool = ops.MaxPool(kernel_size=2, pad_mode='same')
1416>>> max_pool_with_argmax = ops.MaxPoolWithArgmax(kernel_size=2, pad_mode='same')
1417```
1418
1419</td>
1420</tr>
1421</table>
1422
1423##### `ops.TensorAdd`, change API name to `ops.Add` ([!11568](https://gitee.com/mindspore/mindspore/pulls/11568))
1424
1425The operator name TensorAdd is not standardized, it is changed to Add. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface.
1426
1427<table>
1428<tr>
1429<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1430</tr>
1431<tr>
1432<td>
1433
1434```python
1435>>> import mindspore.ops as ops
1436>>>
1437>>> add = ops.TensorAdd()
1438```
1439
1440</td>
1441<td>
1442
1443```python
1444>>> import mindspore.ops as ops
1445>>>
1446>>> add = ops.Add()
1447```
1448
1449</td>
1450</tr>
1451</table>
1452
1453##### `ops.Gelu`, `ops.GeluGrad`, `ops.FastGelu`, `ops.FastGeluGrad`, change API name to `ops.GeLU`, `ops.GeLUGrad`, `ops.FastGeLU`, `ops.FastGeLUGrad` ([!11603](https://gitee.com/mindspore/mindspore/pulls/11603))
1454
1455Gelu, GeluGrad, FastGelu, and FastGeluGrad names are unified into ReLU naming rules, "lu" is changed to the uppercase "LU". The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface.
1456
1457<table>
1458<tr>
1459<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1460</tr>
1461<tr>
1462<td>
1463
1464```python
1465>>> import mindspore.ops as ops
1466>>>
1467>>> gelu = ops.Gelu()
1468>>> gelu_grad = ops.GeluGrad()
1469>>> fast_gelu = ops.FastGelu()
1470>>> fast_gelu_grad = ops.FastGeluGrad()
1471```
1472
1473</td>
1474<td>
1475
1476```python
1477>>> import mindspore.ops as ops
1478>>>
1479>>> gelu = ops.GeLU()
1480>>> gelu_grad = ops.GeLUGrad()
1481>>> fast_gelu = ops.FastGeLU()
1482>>> fast_gelu_grad = ops.FastGeLUGrad()
1483```
1484
1485</td>
1486</tr>
1487</table>
1488
1489##### `ops.GatherV2`, change API name to `ops.Gather` ([!11713](https://gitee.com/mindspore/mindspore/pulls/11713))
1490
1491GatherV2 is changed to Gather. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface.
1492
1493<table>
1494<tr>
1495<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1496</tr>
1497<tr>
1498<td>
1499
1500```python
1501>>> import mindspore.ops as ops
1502>>>
1503>>> gather = ops.GatherV2()
1504```
1505
1506</td>
1507<td>
1508
1509```python
1510>>> import mindspore.ops as ops
1511>>>
1512>>> gather = ops.Gather()
1513```
1514
1515</td>
1516</tr>
1517</table>
1518
1519##### `ops.Pack`、`ops.Unpack`, change API name to `ops.Stack`、`ops.Unstack` ([!11828](https://gitee.com/mindspore/mindspore/pulls/11828))
1520
1521Pack is changed to Stack, and Unpack is changed to Unstack. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface.
1522
1523<table>
1524<tr>
1525<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1526</tr>
1527<tr>
1528<td>
1529
1530```python
1531>>> import mindspore.ops as ops
1532>>>
1533>>> pack= ops.Pack()
1534>>> unpack= ops.Unpack()
1535```
1536
1537</td>
1538<td>
1539
1540```python
1541>>> import mindspore.ops as ops
1542>>>
1543>>> stack= ops.Stack()
1544>>> unstack= ops.Unstack()
1545```
1546
1547</td>
1548</tr>
1549</table>
1550
1551##### `ops.ControlDepend`, add deprecated to ControlDepend ([!11844](https://gitee.com/mindspore/mindspore/pulls/11844))
1552
1553ControlDepend is deprecated and will be removed in a future version, use Depend instead.
1554
1555<table>
1556<tr>
1557<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1558</tr>
1559<tr>
1560<td>
1561
1562```pythonNote:
1563Note:
1564    This operation does not work in `PYNATIVE_MODE`.
1565```
1566
1567</td>
1568<td>
1569
1570```python
1571Note:
1572        This operation does not work in `PYNATIVE_MODE`.
1573        `ControlDepend` is deprecated from version 1.1 and will be removed in a future version, use `Depend` instead.
1574```
1575
1576</td>
1577</tr>
1578</table>
1579
1580##### `ops.Depend`, add operator description and use case ([!11815](https://gitee.com/mindspore/mindspore/pulls/11815)), ([!11879](https://gitee.com/mindspore/mindspore/pulls/11879))
1581
1582Since the ControlDepend operator will be deprecated from version 1.2, it is recommended to use the Depend operator instead.
1583
1584<table>
1585<tr>
1586<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1587</tr>
1588<tr>
1589<td>
1590
1591```python
1592Depend is used for processing side-effect operations.
1593
1594Inputs:
1595    - **value** (Tensor) - the real value to return for depend operator.
1596    - **expr** (Expression) - the expression to execute with no outputs.
1597
1598Outputs:
1599    Tensor, the value passed by last operator.
1600
1601Supported Platforms:
1602    ``Ascend`` ``GPU`` ``CPU``
1603```
1604
1605</td>
1606<td>
1607
1608```python
1609Depend is used for processing dependency operations.
1610
1611In some side-effect scenarios, we need to ensure the execution order of operators.
1612In order to ensure that operator A is executed before operator B, it is recommended
1613to insert the Depend operator between operators A and B.
1614
1615Previously, the ControlDepend operator was used to control the execution order.
1616Since the ControlDepend operator will be deprecated from version 1.2, it is
1617recommended to use the Depend operator instead. The replacement method is as follows::
1618
1619    a = A(x)                --->        a = A(x)
1620    b = B(y)                --->        y = Depend(y, a)
1621    ControlDepend(a, b)     --->        b = B(y)
1622
1623Inputs:
1624    - **value** (Tensor) - the real value to return for depend operator.
1625    - **expr** (Expression) - the expression to execute with no outputs.
1626
1627Outputs:
1628    Tensor, the value passed by last operator.
1629
1630Supported Platforms:
1631    ``Ascend`` ``GPU`` ``CPU``
1632
1633Examples:
1634    >>> import numpy as np
1635    >>> import mindspore
1636    >>> import mindspore.nn as nn
1637    >>> import mindspore.ops.operations as P
1638    >>> from mindspore import Tensor
1639    >>> class Net(nn.Cell):
1640    ...     def __init__(self):
1641    ...         super(Net, self).__init__()
1642    ...         self.softmax = P.Softmax()
1643    ...         self.depend = P.Depend()
1644    ...
1645    ...     def construct(self, x, y):
1646    ...         mul = x - y
1647    ...         y = self.depend(y, mul)
1648    ...         ret = self.softmax(y)
1649    ...         return ret
1650    ...
1651    >>> x = Tensor(np.ones([4, 5]), dtype=mindspore.float32)
1652    >>> y = Tensor(np.ones([4, 5]), dtype=mindspore.float32)
1653    >>> net = Net()
1654    >>> output = net(x, y)
1655    >>> print(output)
1656    [[0.2 0.2 0.2 0.2 0.2]
1657     [0.2 0.2 0.2 0.2 0.2]
1658     [0.2 0.2 0.2 0.2 0.2]
1659     [0.2 0.2 0.2 0.2 0.2]]
1660```
1661
1662</td>
1663</tr>
1664</table>
1665
1666#### C++ API
1667
1668##### change namespace from `mindspore::api` to `mindspore` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1669
1670<table>
1671<tr>
1672<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1673</tr>
1674<tr>
1675<td>
1676
1677```c++
1678namespace ms = mindspore::api;
1679```
1680
1681</td>
1682<td>
1683
1684```c++
1685namespace ms = mindspore;
1686```
1687
1688</td>
1689</tr>
1690</table>
1691
1692##### `Context` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1693
1694<table>
1695<tr>
1696<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1697</tr>
1698<tr>
1699<td>
1700
1701```c++
1702ms::Context::Instance().SetDeviceTarget(ms::kDeviceTypeAscend310).SetDeviceID(0);
1703```
1704
1705</td>
1706<td>
1707
1708```c++
1709ms::GlobalContext::SetGlobalDeviceTarget(ms::kDeviceTypeAscend310);
1710ms::GlobalContext::SetGlobalDeviceID(0);
1711```
1712
1713</td>
1714</tr>
1715</table>
1716
1717##### rename `Tensor` to `MSTensor` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1718
1719<table>
1720<tr>
1721<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1722</tr>
1723<tr>
1724<td>
1725
1726```c++
1727ms::Tensor a;
1728```
1729
1730</td>
1731<td>
1732
1733```c++
1734ms::MSTensor a;
1735```
1736
1737</td>
1738</tr>
1739</table>
1740
1741##### `Model` move setting of model options from `Build` to ctor `Model` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1742
1743<table>
1744<tr>
1745<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1746</tr>
1747<tr>
1748<td>
1749
1750```c++
1751ms::Model model(graph_cell);
1752model.Build(model_options);
1753```
1754
1755</td>
1756<td>
1757
1758```c++
1759ms::Model model(graph_cell, model_context);
1760model.Build();
1761```
1762
1763</td>
1764</tr>
1765</table>
1766
1767##### `Model` modify `GetInputsInfo`, `GetOutputsInfo` to `GetInputs`, `GetOutputs` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1768
1769<table>
1770<tr>
1771<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1772</tr>
1773<tr>
1774<td>
1775
1776```c++
1777std::vector<std::string> names;
1778std::vector<ms::DataType> types;
1779std::vector<std::vector<int64_t>> shapes;
1780std::vector<size_t> mem_sizes;
1781model.GetInputsInfo(&names, &types, &shapes, &mem_sizes);
1782std::cout << "Input 0 name: " << names[0] << std::endl;
1783```
1784
1785</td>
1786<td>
1787
1788```c++
1789auto inputs = model.GetInputs();
1790std::cout << "Input 0 name: " << inputs[0].Name() << std::endl;
1791```
1792
1793</td>
1794</tr>
1795</table>
1796
1797##### `Model` modify `Predict` parameters type from `Buffer` to `MSTensor` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574))
1798
1799<table>
1800<tr>
1801<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td>
1802</tr>
1803<tr>
1804<td>
1805
1806```c++
1807std::vector<ms::Buffer> inputs;
1808std::vector<ms::Buffer> outputs;
1809model.Predict(inputs, &outputs);
1810```
1811
1812</td>
1813<td>
1814
1815```c++
1816std::vector<ms::MSTensor> inputs;
1817std::vector<ms::MSTensor> outputs;
1818model.Predict(inputs, &outputs);
1819```
1820
1821</td>
1822</tr>
1823</table>
1824
1825### Deprecations
1826
1827#### Python API
1828
1829##### `ops.SpaceToBatch`, `ops.BatchToSpace` are deprecated in favor of `ops.SpaceToBatchND`, `ops.BatchToSpaceND`([!11527](https://gitee.com/mindspore/mindspore/pulls/11527))
1830
1831The `ops.SpaceToBatchND`, `ops.BatchToSpaceND` are more general and have same behavior as `ops.SpaceToBatch`, `ops.BatchToSpace` when `block_shape` is a int.
1832
1833##### `ops.DepthwiseConv2dNative` is deprecated in favor of `nn.Conv2D`([!11702](https://gitee.com/mindspore/mindspore/pulls/11702))
1834
1835The `ops.DepthwiseConv2dNative` is only supported by Ascend, it is recommended to directly use `nn.Conv2D`. If `group` is equal to `in_ channels` and `out_channels`, the 2D convolution layer is also a 2D depthwise convolution layer.
1836
1837## Contributors
1838
1839Thanks goes to these wonderful people:
1840
1841Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa
1842
1843Contributions of any kind are welcome!
1844
1845# MindSpore 1.1.0 Release Notes
1846
1847## MindSpore
1848
1849### Major Features and Improvements
1850
1851#### NewModels
1852
1853- [STABLE] GNMT v2: similar to the model described in Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, which is mainly used for corpus translation, on WMT Englis-German dataset.(Ascend)
1854- [STABLE] MaskRCNN: a conceptually simple, flexible, and general framework for object instance segmentation on COCO2017 dataset.(Ascend)
1855- [STABLE] YOLOv4: a state-of-the-art detector which is faster and more accurate than all available alternative detectors on MS COCO dataset.(Ascend)
1856- [STABLE] Openpose: proposes a bottom-up human attitude estimation algorithm using Part Affinity Fields on COCO2017 dataset.(Ascend)
1857- [STABLE] CNN-CTC: proposes three major contributions to addresses scene text recognition (STR) on MJSynth and SynthText dataset.(Ascend)
1858- [STABLE] CenterFace: a practical anchor-free face detection and alignment method for edge devices on WiderFace dataset.(Ascend)
1859- [STABLE] ShuffleNetV2:  a much faster and more accurate network than the previous networks on ImageNet 2012 dataset.(GPU)
1860- [STABLE] EfficientNet-B0: a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient on ImageNet 2012 dataset.(GPU)
1861- [BETA] SSD-GhostNet: based on an Ghost module structure which generate more features from cheap operations on Oxford-IIIT Pet dataset.(Ascend)
1862- [BETA] DS-CNN:  Depthwise separable convolutional neural network on Speech commands dataset.(Ascend)
1863- [BETA] DeepPotentialH2O: A neural network model for molecular dynamics simulations. (Ascend)
1864- [BETA] GOMO: A classical numerical method called GOMO for ocean simulation. (GPU)
1865
1866#### FrontEnd
1867
1868- [STABLE] Refactor the MINDIR to support 310 inference(Ascend).
1869- [STABLE] The execution backend of sparse operations in optimizer can be set through 'target'. (Ascend/GPU/CPU)
1870- [STABLE] Support saving specified network to checkpoint and filtering parameters according to prefix when load checkpoint. (Ascend/GPU/CPU)
1871- [STABLE] Allow users choose whether to load parameter into network strictly.(Ascend/GPU/CPU)
1872- [STABLE] Before training, in graph mode, in order to have the same network initialization parameter values ​​for all devices, broadcast the parameters on device 0 to other devices. (Ascend/GPU)
1873- [STABLE] Support if by if of control flow subgraph. (Ascend/GPU)
1874- [STABLE] Support the judgment that whether a tensor is in a list. (Ascend/GPU/CPU)
1875- [STABLE] Support to get a value by using the corresponding key in a dictionary in the network; Support to get keys and values of a dictionary in the network. (Ascend/GPU/CPU)
1876- [STABLE] Support Tensor in enumerate. (Ascend/GPU/CPU)
1877- [STABLE] Support multilevel index assignment. (Ascend/GPU/CPU)
1878- [STABLE] Support the 'expand_as','view','abs','mean' method of Tensor. (Ascend/GPU/CPU)
1879- [STABLE] Support ResizeBilinear operation transfer ratio. (Ascend)
1880- [STABLE] nn.Matmul supports matrix-vector product and  batched matrix multiply. (Ascend/GPU)
1881- [STABLE] nn.Dense supports input tensor whose dimension can be greater than 2. (Ascend/GPU)
1882- [BETA] Support higher order differentiation for partial operators.(CPU/GPU/Ascend)
1883- [STABLE] Support Tensor Augassign.(Ascend/GPU)
1884- [BETA] Support 22 numpy native interfaces.
1885
1886#### Auto Parallel
1887
1888- [STABLE] Support parallel optimizer with weight shard. (Ascend/GPU)
1889- [STABLE] Support distributed operators: element-wise series, UnsortedSegmentSum, UnsortedSegmentMin, Split, BroadcastTo and Unique etc. (Ascend/GPU)
1890- [STABLE] Support distributed model prediction. (Ascend/GPU)
1891- [STABLE] Support auto mixed precision level "O2" in auto and semi auto parallel mode. (Ascend/GPU)
1892- [STABLE] Add MultiFieldEmbeddingLookup high-level interface. (Ascend/GPU)
1893
1894#### Executor
1895
1896- [STABLE] ResNet50 performance optimize. (GPU)
1897- [STABLE] Support modelzoo net in PyNative mode(Ascend 29, GPU 23, CPU 2).(Ascend/GPU/CPU)
1898- [STABLE] Support PyNative mode on CPU.(CPU)
1899- [STABLE] Optimize performance in PyNative mode.(Ascend/GPU/CPU)
1900- [STABLE] Support Safe Optimized Memory Allocation Solver (SOMAS) on Ascend to improve the memory-reuse, the batch size of Bert large model (128 sequence length) is increased from 160 to 208.(Ascend)
1901- [BETA] Support second order differentiation in PyNative mode.(Ascend/GPU)
1902- [DEMO] Add distributed trainning in PyNative mode.(Ascend/GPU)
1903
1904#### MDP
1905
1906- [STABLE]  Add new operators for Ascend and GPU: IGamma, LGamma, DiGamma;
1907- [STABLE]  Add new distributions for Ascend and GPU: LogNormal, and Logistic;
1908- [BETA]  Add new distributions for Ascend only: Gumbel, Cauchy, Gamma, Beta, and Poisson; Add Categorical distribution for GPU;
1909- [STABLE]  Add new bijectors for Ascend and GPU: GumbelCDF, Invert;
1910- [STABLE]  Add Bayesian layer realized by local reparameterization method for Ascend and GPU;
1911- [STABLE]  Add Anomaly Detection Toolbox based on VAE for Ascend and GPU.
1912
1913#### DataSet
1914
1915- [STABLE] Support single node multi-p distributed cache data sharing
1916- [STABLE] Support GPU profiling with data processing
1917- [STABLE] Support YOLOV3 dynamic shape in sink mode with dataset
1918- [STABLE] Support unique processing in the data processing pipeline
1919- [STABLE] Python layer parameter verification error information unified
1920
1921### API Change
1922
1923#### Backwards Incompatible Change
1924
1925##### Python API
1926
1927###### Delete shape and dtype of class Initializer ([!7373](https://gitee.com/mindspore/mindspore/pulls/7373/files))
1928
1929Delete shape and dtype attributes of Initializer class.
1930
1931###### Modify the return type of initializer ([!7373](https://gitee.com/mindspore/mindspore/pulls/7373/files))
1932
1933Previously, the return type of initializer function may be string, number, instance of class Tensor or subclass of class Initializer.
1934
1935After modification, initializer function will return instance of class MetaTensor, class Tensor or subclass of class Initializer.
1936
1937Noted that the MetaTensor is forbidden to initialize parameters, so we recommend that use str, number or subclass of Initializer for parameters initialization rather than the initializer functions.
1938
1939<table>
1940<tr>
1941<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
1942</tr>
1943<tr>
1944<td>
1945
1946```python
1947>>> import mindspore.nn as nn
1948>>> from mindspore.common import initializer
1949>>> from mindspore import dtype as mstype
1950>>>
1951>>> def conv3x3(in_channels, out_channels)
1952>>>   weight = initializer('XavierUniform', shape=(3, 2, 32, 32), dtype=mstype.float32)
1953>>>   return nn.Conv2d(in_channels, out_channels, weight_init=weight, has_bias=False, pad_mode="same")
1954```
1955
1956</td>
1957<td>
1958
1959```python
1960>>> import mindspore.nn as nn
1961>>> from mindspore.common.initializer import XavierUniform
1962>>>
1963>>> #1) using string
1964>>> def conv3x3(in_channels, out_channels)
1965>>>   return nn.Conv2d(in_channels, out_channels, weight_init='XavierUniform', has_bias=False, pad_mode="same")
1966>>>
1967>>> #2) using subclass of class Initializer
1968>>> def conv3x3(in_channels, out_channels)
1969>>>   return nn.Conv2d(in_channels, out_channels, weight_init=XavierUniform(), has_bias=False, pad_mode="same")
1970```
1971
1972</td>
1973</tr>
1974</table>
1975
1976Advantages:
1977After modification, we can use the same instance of Initializer to initialize parameters of different shapes, which was not allowed before.
1978
1979<table>
1980<tr>
1981<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
1982</tr>
1983<tr>
1984<td>
1985
1986```python
1987>>> import mindspore.nn as nn
1988>>> from mindspore.common import initializer
1989>>> from mindspore.common.initializer import XavierUniform
1990>>>
1991>>> weight_init_1 = XavierUniform(gain=1.1)
1992>>> conv1 = nn.Conv2d(3, 6, weight_init=weight_init_1)
1993>>> weight_init_2 = XavierUniform(gain=1.1)
1994>>> conv2 = nn.Conv2d(6, 10, weight_init=weight_init_2)
1995```
1996
1997</td>
1998<td>
1999
2000```python
2001>>> import mindspore.nn as nn
2002>>> from mindspore.common import initializer
2003>>> from mindspore.common.initializer import XavierUniform
2004>>>
2005>>> weight_init = XavierUniform(gain=1.1)
2006>>> conv1 = nn.Conv2d(3, 6, weight_init=weight_init)
2007>>> conv2 = nn.Conv2d(6, 10, weight_init=weight_init)
2008```
2009
2010</td>
2011</tr>
2012</table>
2013
2014###### Modify get_seed function ([!7429](https://gitee.com/mindspore/mindspore/pulls/7429/files))
2015
2016Modify get_seed function implementation
2017
2018Previously, if seed is not set, the value of seed is default, parameters initialized by the normal function are the same every time.
2019
2020After modification, if seed is not set, the value of seed is generated randomly, the initialized parameters change according to the random seed.
2021
2022If you want to fix the initial value of parameters, we suggest to set seed.
2023
2024```python
2025>>> from mindspore.common import set_seed
2026>>> set_seed(1)
2027```
2028
2029###### `nn.LinSpace` ([!9494](https://gitee.com/mindspore/mindspore/pulls/9494)) has been removed and modify `ops.LinSpace` ([!8920](https://gitee.com/mindspore/mindspore/pulls/8920))
2030
2031The `nn.LinSpace` interface only support passing the value by args previously. For the convenience, we provided enhancive `ops.LinSpace` interface, which support passing the value by the inputs at the latest version. So there is no need for `nn.LinSpace`.
2032
2033<table>
2034<tr>
2035<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2036</tr>
2037<tr>
2038<td>
2039
2040```python
2041>>> from mindspore import nn
2042>>>
2043>>> start = 1
2044>>> stop = 10
2045>>> num = 5
2046>>> linspace = nn.LinSpace(start, stop, num)
2047>>> output = linspace()
2048```
2049
2050</td>
2051<td>
2052
2053```python
2054>>> import mindspore
2055>>> from mindspore import Tensor
2056>>> from mindspore import ops
2057>>>
2058>>> linspace = ops.LinSpace()
2059>>> start = Tensor(1, mindspore.float32)
2060>>> stop = Tensor(10, mindspore.float32)
2061>>> num = 5
2062>>> output = linspace(start, stop, num)
2063```
2064
2065</td>
2066</tr>
2067</table>
2068
2069###### Parts of `Optimizer` add target interface ([!6760](https://gitee.com/mindspore/mindspore/pulls/6760/files))
2070
2071The usage of the sparse optimizer is changed.
2072
2073The target interface is used to set the execution backend of the sparse operator.
2074
2075The add_primitive_attr interface is no longer allowed.
2076
2077The following optimizers add the target interface:  Adam, FTRL, LazyAdam, ProximalAdagrad
2078
2079<table>
2080<tr>
2081<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2082</tr>
2083<tr>
2084<td>
2085
2086```python
2087>>> from mindspore.nn import Adam
2088>>>
2089>>> net = LeNet5()
2090>>> optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters()))
2091>>> optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU")
2092```
2093
2094</td>
2095<td>
2096
2097```python
2098>>> from mindspore.nn import Adam
2099>>>
2100>>> net = LeNet5()
2101>>> optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters()))
2102>>> optimizer.target = 'CPU'
2103```
2104
2105</td>
2106</tr>
2107</table>
2108
2109###### `export` Modify the input parameters and export's file name ([!7385](https://gitee.com/mindspore/mindspore/pulls/7385), [!9057](https://gitee.com/mindspore/mindspore/pulls/9057/files))
2110
2111Export the MindSpore prediction model to a file in the specified format.
2112
2113The reference includes: `net`, `*inputs`, `file_name`, `file_format`, `**kwargs`.
2114
2115Input parameters can be input according to specific export requirements.
2116
2117Add the file name extension based on the format.
2118
2119<table>
2120<tr>
2121<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2122</tr>
2123<tr>
2124<td>
2125
2126```python
2127>>> from mindspore.train.quant import quant
2128>>>
2129>>> network = LeNetQuant()
2130>>> inputs = Tensor(np.ones([1, 1, 32, 32]), mindspore.float32)
2131>>> quant.export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR')
2132lenet_quant.mindir
2133```
2134
2135</td>
2136<td>
2137
2138```python
2139>>> from mindspore import export
2140>>>
2141>>> network = LeNetQuant()
2142>>> inputs = Tensor(np.ones([1, 1, 32, 32]), mindspore.float32)
2143>>> export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO')
2144lenet_quant.mindir
2145```
2146
2147</td>
2148</tr>
2149</table>
2150
2151###### `Dense`, `Conv2dBnAct`, `DenseBnAct`, `DenseQuant` support setting the activation attribute as an instance of a class derived from `nn.Cell` or `Primtive` ([!7581](https://gitee.com/mindspore/mindspore/pulls/7581))
2152
2153activation (Union[str, Cell, Primitive]): activate function applied to the output of the fully connected layer
2154
2155<table>
2156<tr>
2157<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2158</tr>
2159<tr>
2160<td>
2161
2162```python
2163>>> import mindspore.nn as nn
2164>>>
2165>>> dense = nn.Dense(1, 1, activation='relu')
2166```
2167
2168</td>
2169<td>
2170
2171```python
2172>>> import mindspore.nn as nn
2173>>> import mindspore.ops as ops
2174>>>
2175>>> dense = nn.Dense(1, 1, activation=nn.ReLU())
2176>>> dense = nn.Dense(1, 1, activation=ops.ReLU())
2177```
2178
2179</td>
2180</tr>
2181</table>
2182
2183###### `tensor.dim()`, `tensor.size()` has been renamed to `tensor.ndim`, `tensor.size` ([!10175](https://gitee.com/mindspore/mindspore/pulls/10175))
2184
2185Previously, tensor.size() and tensor.dim() were used for checking the total number of elements/dimensions in the tensor.
2186However, from a user's perspective, tensor.size and tensor.ndim (methods -> properties) are better choices, since they follow the numpy naming convention.
2187
2188<table>
2189<tr>
2190<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2191</tr>
2192<tr>
2193<td>
2194
2195```python
2196>>> from mindspore import Tensor
2197>>>
2198>>> Tensor((1,2,3)).size()
2199>>> Tensor((1,2,3)).dim()
2200```
2201
2202</td>
2203<td>
2204
2205```python
2206>>> from mindspore import Tensor
2207>>>
2208>>> Tensor((1,2,3)).size
2209>>> Tensor((1,2,3)).ndim
2210```
2211
2212</td>
2213</tr>
2214</table>
2215
2216###### `EmbeddingLookup` add a config in the interface: sparse ([!8202](https://gitee.com/mindspore/mindspore/pulls/8202))
2217
2218sparse (bool): Using sparse mode. When 'target' is set to 'CPU', 'sparse' has to be true. Default: True.
2219
2220<table>
2221<tr>
2222<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2223</tr>
2224<tr>
2225<td>
2226
2227```python
2228>>> from mindspore.nn import EmbeddingLookup
2229>>>
2230>>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32)
2231>>> result = EmbeddingLookup(4,2)(input_indices)
2232>>> print(result.shape)
2233(2, 2, 2)
2234```
2235
2236</td>
2237<td>
2238
2239```python
2240>>> from mindspore.nn import EmbeddingLookup
2241>>>
2242>>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32)
2243>>> result = EmbeddingLookup(4,2)(input_indices, sparse=False)
2244>>> print(result.shape)
2245(2, 2, 2)
2246```
2247
2248</td>
2249</tr>
2250</table>
2251
2252###### `nn.probability.bijector` change types of attributes from (int, float) to (float, list, numpy.ndarray, Tensor) ([!8191](https://gitee.com/mindspore/mindspore/pulls/8191))
2253
2254Attributes Type change: (int, float) -> (float, list, numpy.ndarray, Tensor).
2255Int type is not supported anymore. Parameters of all bijectors should be type float, list, numpy.ndarray or Tensor.
2256
2257<table>
2258<tr>
2259<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2260</tr>
2261<tr>
2262<td>
2263
2264```python
2265>>> import mindspore.nn.probability.bijector as msb
2266>>>
2267>>> power = 2
2268>>> bijector = msb.PowerTransform(power=power)
2269```
2270
2271</td>
2272<td>
2273
2274```python
2275>>> import mindspore.nn.probability.bijector as msb
2276>>>
2277>>> power = 2.0
2278>>> bijector = msb.PowerTransform(power=power)
2279```
2280
2281</td>
2282</tr>
2283</table>
2284
2285###### `nn.probability.bijector.GumbelCDF` remove a attribute in the interface: dtype ([!8191](https://gitee.com/mindspore/mindspore/pulls/8191))
2286
2287dtype is removed from GumbelCDF and is no longer an argument of the class.
2288
2289<table>
2290<tr>
2291<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2292</tr>
2293<tr>
2294<td>
2295
2296```python
2297>>> import mindspore.nn.probability.bijector as msb
2298>>> from mindspore import dtype as mstype
2299>>>
2300>>> bijector = msb.GumbelCDF(loc=0.0, scale=1.0, dtype=mstype.float32)
2301```
2302
2303</td>
2304<td>
2305
2306```python
2307>>> import mindspore.nn.probability.bijector as msb
2308>>>
2309>>> bijector = msb.GumbelCDF(loc=0.0, scale=1.0)
2310```
2311
2312</td>
2313</tr>
2314</table>
2315
2316###### `nn.layer.combined.Conv2dBnAct`, `nn.layer.combined.DenseBnAct` move from nn.layer.quant to nn.layer.combined ([!8187](https://gitee.com/mindspore/mindspore/pulls/8187))
2317
2318Previously Conv2dBnAct and DenseBnAct are in nn.layer.quant, since they are not quant cells, now they are moved to nn.layer.combined. If you import Conv2dBnAct, DenseBnAct from mindspore.nn, then your code doesn't need any change.
2319
2320<table>
2321<tr>
2322<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td>
2323</tr>
2324<tr>
2325<td>
2326
2327```python
2328>>> from mindspore.nn.layer.quant import Conv2dBnAct, DenseBnAct
2329```
2330
2331</td>
2332<td>
2333
2334```python
2335>>> from mindspore.nn import Conv2dBnAct, DenseBnAct
2336```
2337
2338</td>
2339</tr>
2340</table>
2341
2342###### `nn.layer.conv.Conv2D`, `nn.layer.quant.Conv2dBnFoldQuant`, `nn.layer.quant.Conv2dBnWithoutFoldQuant` change weight shape when group > 1 in Ascend platform ([!9723](https://gitee.com/mindspore/mindspore/pulls/9723))
2343
2344In Ascend platform, if group > 1, the weight shape of Conv2D change from [in_channels//group, out_channels, kernel_size, kernel_size] to [out_channels, in_channels//group, kernel_size, kernel_size]. Previously, checkpoints of the networks are used, which use Conv2D with group > 1, such as MobileNet, can not be directly used now, need to transpose the first and second axis of the weight.
2345
2346### Bug fixes
2347
2348#### FrontEnd
2349
2350- [STABLE] Fix the problem of the cse optimization in the situation of control flow. (Ascend/GPU)
2351
2352#### Auto Parallel
2353
2354- [STABLE] Resolve the restriction: input and output layouts of Reshape are restricted in tensor redistribution. (Ascend/GPU)
2355- [STABLE] Resolve the restriction: output strategy should be data parallel in model evaluation. (Ascend/GPU)
2356
2357#### Executor
2358
2359- [STABLE] Fix fusion operator compilation cache. (Ascend)
2360- [STABLE] Fix compilation error of dynamic shape operator. (Ascend)
2361- [STABLE] Fix bug of pynative cannot insert transdata of node output when node should be spilted in the backend opt.(Ascend)
2362- [STABLE] Fix the bug of TensorMove and memcpy_async merge to one after backend cse pass (Ascend)
2363
2364#### DataSet
2365
2366- [STABLE] Fix cache server hang on RequestFreeTag. (Ascend/GPU/CPU)
2367- [STABLE] Fix hung when use pyfunc multi-processing. (Ascend/GPU/CPU)
2368- [STABLE] Fix add multiple parent nodes to tree node cause core dump. (Ascend/GPU/CPU)
2369
2370## MindSpore Lite
2371
2372### Major Features and Improvements
2373
2374#### Converter and runtime
2375
23761. Support dynamic shape in MindSpore Lite Converter.
23772. Optimize sub-graph mechanism by dynamically splitting the entire graph into multiple subgraphs based on the operator supported, backend hardware and user configuration.
23783. Support TensorList and TensorList operators such as TensorListFromTensor, TensorListGetItem and so on.
23794. Support BatchMatMul fusion and LSTM fusion in MindSpore Lite Converter.
23805. Support converting model and run inference on Windows operator system.
23816. Support Model(.ms) visualization on Netron.
23827. Support Tensorflow model in MindSpore Lite Converter
23838. Add 86 converter parsers.
23849. Convert aware training model without user’s awareness
238510. Support scalar tensor in MindSpore Lite Converter and Runtime
238611. Support NPU backend on HUAWEI Kirin SoC.[BETA]
238712. Merge timeprofiler into benchmark
2388
2389#### CPU backend optimization
2390
23911. Add 50+ new operators, including new Op type(like Adder, Gru).
23922. Enhanced performance on armv8.2 supported platform. For example, utilizing sdot instruction more efficiently.
23933. Optimize all operators(fp32, fp16, int8) by implementing multi-thread, SIMD tech as much as possible. Model inference time can reduce at least 20% after these optimizations.
23944. Extending to support operators for x86_64 platform based on SSE/AVX instruction set.
2395
2396#### OpenCL backend
2397
23981. Add new ops: add 10+ ops, total 58 ops;
23992. Performance optimization: by memory layout optimize, Winograd Convolution select strategyoptimize, SIMT local size optimize, local cache optimize,  GPU performance improvement up to 20+% vs MSLITE Version1.0
24003. Add Online Graph optimzation: by fusion Convolution/Matmul/Fullconnection and add/mul/pad/reshape, improve performance up to 50+% for some networks;
24014. Add auto tuning: by online tuning in the graph compilation phase, optimize performance up to 10%;
24025. Add weight quant: support weight quant
24036. Add opencl kernel binary cache: improve Initialization time .
2404
2405#### Post quantization
2406
2407MindSpore Lite supports both weight quantization and full quantization. Currently, Weights can be quantized into 1 ~ 16 bits according to user configuration. In internal testing, quantization of networks, such as classification, detection, segmentation and transformer are well supported. To ensure high accuracy of quantized models, MindSpore Lite uses a pipeline quantization method. In the first phase, the weight and activation value are quantized using linear quantization methods, such as MIN-MAX. In the second phase, the quantization error is analyzed, and uses statistical methods to compensate loss caused by fp32 quantization to a fixed point such as Int8 to quantized models. The features of Post-training quantization are:
2408
24091. perchannel asymmetric quantization for weights, such as MAX_MIN and KMEANS
24102. Perlayer symmetric quantization for activation, such as KL and MAX_MIN.
24113. perlayer asymmetrical quantization for activation, such as, RemoveOutlier.
24124. accuracy loss compensation, such as BiasCorrection
2413
2414| mobilenet_v2   | ACC (ImageNet)  |
2415|---|---|
2416| FP32  | 71.56%  |
2417|A8W8   | 71.16%  |
2418| A8W8(without BiasCorrection)  | 70.74% |
2419| A8W7  | 71.06%  |
2420| A7W7  | 70.78%  |
2421
2422The above table uses the mobilenet_v2 model from TF official website. Using MindSpore Lite quantization, the precision of A8W8 (8-bit activation value quantization and 8-bit weight quantization) decreases from 0.82% to 0.4% after accuracy loss compensation, for 7-bit quantization, the precision loss is still no more than 1%.
2423
2424#### Training on Device
2425
2426Within MindSpore 1.1 release, the MindSpore Lite provides the following Training-on-Device (ToD) capabilities:
2427
24281. Learning from scratch and Transfer Learning strategies are supported
24292. MindSpore based models can be converted and used in training on the device. (Third-party models such as TensorFlow and PyTorch for now cannot be directly imported to the framework)
24303. Grad operations are supported for more than 30 operators such as Dense layers, Convolutions and Batch Normalizations. Momentum, SGD, and ADAM optimizers are supported.
24314. Supports networks such as LeNet, Alexnet, Resnet, MobileNetV1/V2/V3, and EffectiveNet, and provides complete model loading, conversion, and Python training scripts on the device side.
2432
2433The MindSpore Lite ToD framework is already in use in the newest Huawei Smart TV, providing a unique and personalized user experience as a family entertainment center.
2434
2435### API Change
2436
2437#### API Incompatible Change
2438
2439##### C++ API
2440
2441- [Modify] Context now support multi-context configuration.(Context.h)
2442- [Modify] Callback is move from lite_session.h into ms_tensor.h.
2443- [Modify] GetInputsByName in lite_session.h is changed into GetInputsByTensorName
2444- [Add] add static LiteSession *CreateSession(const char*model_buf, size_t size, const lite::Context *context) in lite_session.h
2445- [Add] add GetErrorInfo interface returning error message in errorcode.h
2446- [Delete] Remove model_generated.h, ops_generated.h and headers of FlatBuffers library from interfaces
2447
2448##### Java API
2449
2450- [Add] Implement JNI layer and add Java api for CPU and GPU backend
2451
2452#### Deprecations
2453
2454##### C++ API
2455
2456Deprecate Interface GetOutputsByNodeName
2457
2458### Bug fixes
2459
2460- [BUGFIX] Fix the bug in sub-graph segmentation
2461- [BUGFIX] Fix the bug in Tensor getitem in which the ellipsis matches the wrong dim-size.
2462- [BUGFIX] Fix the bug that activation modification after defining Dense will not take effect.
2463
2464## Contributors
2465
2466Thanks goes to these wonderful people:
2467
2468zhouyifengCode, huqi, JulyAi, damon0626, chenbo116, rmdyh, davidmc, gray0v0, doitH, Gogery, zymaa, xinyunfan
2469
2470Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa
2471
2472Contributions of any kind are welcome!
2473
2474# MindSpore 1.0.0 Release Notes
2475
2476## Major Features and Improvements
2477
2478### MindSpore Training and Inference Framework
2479
2480#### Ascend 910
2481
2482- New models
2483    - DenseNet121: a dense convolutional neural network, which connects each layer to every other layer in a feed-forward fashion for object recognition on ImageNet dataset.
2484    - UNet2D-Medical: Unet Medical model for 2D image segmentation, Convolutional Networks for Biomedical Image Segmentation on ISBI Challenge database.
2485- Frontend and user interface
2486    - Second-Order Optimization
2487        - Enable second-order optimization for Bert on Ascend 910, which can achieve a masked lm accuracy of 71.3% in 800 seconds using 8 Ascend 910 (Bert-Large @MLPerf v0.7 dataset).
2488    - New GNN model BGCF
2489        - Bayesian Graph Convolutional Filtering network which naturally incorporate the uncertainty in the user-item interaction graph shows excellent recommendation performance on Amazon-Beauty dataset.
2490    - Add append interface for SequentialCell.
2491    - Add a level `auto` for AMP.
2492- Executor and performance optimization
2493    - Support quantitative network (Resnet50 & YoloV3 & MobileNetV2).
2494    - Project ease of use optimization: project compilation time optimization, CMakelist regularization, cudnn, cuda independent compilation and installation independent.
2495- Data processing, augmentation, and save format
2496    - Support GeneratorDataset return string type
2497
2498#### Other Hardware Support
2499
2500- GPU platform
2501    - Enable second-order optimization for resnet50 on GPU, which achieve 30% improvement on training time compared to SGD with Momentum (Resnet50 @ImageNet).
2502
2503#### User interfaces change log
2504
2505- Remove global object GradOperation in Autodiff([!5011](https://gitee.com/mindspore/mindspore/pulls/5011))
2506- Remove useless attribute 'name' in Autodiff([!5172](https://gitee.com/mindspore/mindspore/pulls/5172))
2507- Rectification distributed init([!5350](https://gitee.com/mindspore/mindspore/pulls/5350))
2508- Move the setting of ParalleMode from train.parallel_utils to context([!5351](https://gitee.com/mindspore/mindspore/pulls/5351))
2509- Modification of save_checkpoint([!5482](https://gitee.com/mindspore/mindspore/pulls/5482))
2510- Wrap numpy random seed into an api([!5634](https://gitee.com/mindspore/mindspore/pulls/5634))
2511- Delete enable_fused_layernorm in some modelzoo scripts([!5665](https://gitee.com/mindspore/mindspore/pulls/5665))
2512- Move 'multi-subgraphs' interface to internal([!5696](https://gitee.com/mindspore/mindspore/pulls/5696))
2513- Rename mirror_mean to gradient_mean([!5700](https://gitee.com/mindspore/mindspore/pulls/5700))
2514- Remove default value of 'group' of DepthWiseConv2d([!5865](https://gitee.com/mindspore/mindspore/pulls/5865))
2515- Modify interface for function and remove duplicated def([!5958](https://gitee.com/mindspore/mindspore/pulls/5958))
2516- Unify Conv2d and DepthwiseConv2d([!5916](https://gitee.com/mindspore/mindspore/pulls/5916))
2517- Modification of SoftmaxCrossEntropyWithLogits([!5502](https://gitee.com/mindspore/mindspore/pulls/5502))
2518- Change API set_strategy() to shard()([!5991](https://gitee.com/mindspore/mindspore/pulls/5991))
2519- Move batch_size from bert_cfg_cfg to cfg([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
2520- Remove unused parameters from SummaryRecord __init__([!5548](https://gitee.com/mindspore/mindspore/pulls/5548))
2521- remove sens parameter of TrainOneStepWithLossScaleCell([!5753](https://gitee.com/mindspore/mindspore/pulls/5753))
2522- optimize the TrainOneStepCell for user's define([!6159](https://gitee.com/mindspore/mindspore/pulls/6159))
2523- delete seed0 and seed1 of nn.Dropout([!5735](https://gitee.com/mindspore/mindspore/pulls/5735))
2524- delete DataWrapper([!6101](https://gitee.com/mindspore/mindspore/pulls/6101))
2525- LSTM API optimization([!6374](https://gitee.com/mindspore/mindspore/pulls/6374))
2526- Merge P\C\F of ops([!5645](https://gitee.com/mindspore/mindspore/pulls/5645))
2527- delete SoftmaxCrossEntropyExpand interface([!6607](https://gitee.com/mindspore/mindspore/pulls/6607))
2528- Adjust GroupNorm interface([!6329](https://gitee.com/mindspore/mindspore/pulls/6329))
2529- Modify init interface to internal interface([!6651](https://gitee.com/mindspore/mindspore/pulls/6651))
2530- Log optimization([!5842](https://gitee.com/mindspore/mindspore/pulls/5842))
2531- Remove useless API dataset.set_dataset_size([!5806](https://gitee.com/mindspore/mindspore/pulls/5806))
2532- Some of Dataset API add usage parameter([!5605](https://gitee.com/mindspore/mindspore/pulls/5605))
2533- Change the import path, such as from mindspore.dataset.transforms.vision to mindspore.dataset.vision.transforms([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
2534- Rename ImageFolderDatasetV2 to ImageFolderDataset([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
2535- Dataset.map parameter optimization([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
2536- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
2537- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384))
2538- Remove useless API MindRecord finish([!5580](https://gitee.com/mindspore/mindspore/pulls/5580))
2539
2540### MindSpore Lite
2541
2542- Converter
2543    - Add 6 TFLite op, 7 Caffe op, 1 ONNX op.
2544    - Add support for Windows.
2545    - Support parallel inference of multiple sessions to adapt to more scenarios
2546    - Support 8bits only weight-quantization, most main-stream models has small accuracy loss (less than 0.5%) when compared to non-qunantized fp32 model.
2547
2548- CPU & GPU
2549    - Add 20 CPU ops,include FP32, int8/uint8, FP16 and int32 ops.
2550    - Add supporting FP16 for GPU, add 14 GPU ops include FP32/FP16.
2551    - Add Buffer/Image2D transform op for GPU
2552    - Performance optimization for CPU ops focus on ARM32.
2553    - Performance optimization for GPU Convolution using winograd.
2554
2555- Tool & example
2556    - Add object detection Android Demo.
2557
2558## Bugfixes
2559
2560- Models
2561    - fix the constant folding problem in multiply.([!6092](https://gitee.com/mindspore/mindspore/pulls/6092))
2562    - move batch_size from bert_net_cfg to cfg in bert scripts.([!6233](https://gitee.com/mindspore/mindspore/pulls/6233))
2563    - modify the checkpoint file path.([!6137](https://gitee.com/mindspore/mindspore/pulls/6137))
2564- Python API
2565    - fix semi auto parallel parameter of reshape has another user([!5722](https://gitee.com/mindspore/mindspore/pulls/5722))
2566    - raise ValueError when call hook function in graph mode([!5831](https://gitee.com/mindspore/mindspore/pulls/5831))
2567- Executor
2568    - fix pynative mode to build temporary nn objects.([!6189](https://gitee.com/mindspore/mindspore/pulls/6189))
2569    - fix the accuracy problem of multiple inputs of multi-card communication operator broadcast.([!6522](https://gitee.com/mindspore/mindspore/pulls/5622))
2570    - fix the problem that the sample distribution interface categorical does not support graph mode.([!5772](https://gitee.com/mindspore/mindspore/pulls/5772))
2571    - fix the random seed failure problem of the polynomial downsampling distribution operator.([!5948](https://gitee.com/mindspore/mindspore/pulls/5948))
2572    - fix unnecessary address binding issues in GPU heterogeneous scenarios.([!6232](https://gitee.com/mindspore/mindspore/pulls/6232))
2573- GPU platform
2574    - fix for kernel resource leak([!5315](https://gitee.com/mindspore/mindspore/pulls/5315))
2575    - fix for insufficient memory for continuous unit test running([!5617](https://gitee.com/mindspore/mindspore/pulls/5617))
2576    - fix for the memory leak in the sparse slicer([!5578](https://gitee.com/mindspore/mindspore/pulls/5578))
2577- Data processing
2578    - fix hang when use pyfunc([!6346](https://gitee.com/mindspore/mindspore/pulls/6346))
2579    - fix GPU device queue does not release GIL during resource clean up([!5964](https://gitee.com/mindspore/mindspore/pulls/5964))
2580    - fix hang if scripte exit unnormally([!6441](https://gitee.com/mindspore/mindspore/pulls/6441))
2581- Third party
2582    - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
2583    - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
2584
2585## Contributors
2586
2587Thanks goes to these wonderful people:
2588
2589Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, danish, Danish, dayschan, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, gongdaguo, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, root, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, Zichun, Zirui, Ziyan, zjun, ZPaC
2590
2591Contributions of any kind are welcome!
2592
2593# MindSpore 0.7.0-beta Release Notes
2594
2595## Major Features and Improvements
2596
2597### MindSpore Training and Inference Framework
2598
2599#### Ascend 910
2600
2601- New models
2602    - TinyBert: a smaller and faster version of BERT using transformer distillation for natural language understanding on GLUE benchmark.
2603    - SE-ResNet50: add Squeeze-and-Excitation blocks(SE-Blocks) to the resnet50 network to improve channel interdependencies for image classification on ImageNet 2012 dataset.
2604    - Inception V3: the third version of Inception convolutional architectures for image classification on ImageNet 2012 dataset.
2605- Frontend and user interface
2606    - Embedding operator high-level packaging to support segmented by field for Wide&Deep.
2607    - Load multi-node checkpoint into single-process to support host-device hybrid inference.
2608    - Support Concat/Tile/Strideslice distributed operators.
2609    - Support cumulative gradient and batch training split.
2610    - Support variable parameter input for Cell object.
2611    - Parameter mixed calculation optimization for pynative mode.
2612    - Deep Probabilistic Programming
2613        - Support statistical distributions classes used to generate stochastic tensors.
2614        - Support probabilistic inference algorithms.
2615        - Support BNN layers used to construct BNN in Graph mode.
2616        - Support interfaces for the transformation between BNN and DNN in Graph mode.
2617        - Support uncertainty estimation to estimate epistemic uncertainty and aleatoric uncertainty.
2618    - User interfaces change log
2619        - change base class of parameter([!3473](https://gitee.com/mindspore/mindspore/pulls/3473))
2620        - change binary to mindir([!4258](https://gitee.com/mindspore/mindspore/pulls/4258))
2621        - change export from geir to air([!4269](https://gitee.com/mindspore/mindspore/pulls/4269))
2622        - Init parameter data by default([!3967](https://gitee.com/mindspore/mindspore/pulls/3967))
2623        - change IndexedSlices to RowTensor([!4031](https://gitee.com/mindspore/mindspore/pulls/4031))
2624        - Must set or change parallel mode before any Initializer created([!4801](https://gitee.com/mindspore/mindspore/pulls/4801))
2625- Executor and performance optimization
2626    - MindSpore graph compilation process performance improved by 20%.
2627    - Decoupling C++ and Python modules to achieve separate compilation of core modules.
2628- Data processing, augmentation, and save format
2629    - Support automatic data augmentation
2630    - Support GNN distributed cache in single node
2631    - Support ConcatDataset using distributed sampler
2632
2633#### Other Hardware Support
2634
2635- GPU platform
2636    - New model supported: VGG16, ResNet101, DeepFM.
2637    - Support some distributed operators in ResNet50 and Wide&Deep.
2638    - Support automatic parallel for Wide&Deep.
2639    - Support function funcs[i](*inputs) (such as switch-case).
2640    - Support distributed training with parameter server.
2641    - Support GPU operator profiling.
2642    - Performance optimization of the distributed training with allreduce.
2643    - Performance optimization of the mixed precision training.
2644    - Performance optimization of the pynative mode.
2645    - Performance optimization of the convolution operator, batch normalization operator.
2646- CPU platform
2647    - Support MobileNetV2 Re-Training: Re-train the network with different class number.
2648
2649### MindSpore Lite
2650
2651- Converter
2652    - Support third-party models, including TFLite/Caffe/ONNX.
2653    - Add 93 TFLite op.
2654    - Add 24 Caffe op.
2655    - Add 62 ONNX op.
2656    - Add 11 optimized passes, include fusion/const fold.
2657    - Support aware-training and Post-training quantization.
2658- CPU
2659    - Add 100+ops,support fp32, int8/uint8, FP16 ops
2660    - Support fast convolution algorithms: Sliding Window, Img2col + Gemm, Strassen, Winograd
2661    - Support assembly/neon instruction.
2662    - Support CPU fp16 and sdot on ARM v8.2+.
2663- GPU
2664    - Add 20+ ops for OpenCL.
2665    - Support image2D/buffer format.
2666    - Optimize online initialization time.
2667    - add optimized convolution1X1/3X3/depthwise/convolution_transposed for OpenCL.
2668- Tool & example
2669    - Add benchmark and TimeProfile tools.
2670    - Add image classification Android Demo.
2671
2672## Bugfixes
2673
2674- Models
2675    - normalize the readme file([!5410](https://gitee.com/mindspore/mindspore/pulls/5410))
2676    - fix a sink_size bug for transformer([!5393](https://gitee.com/mindspore/mindspore/pulls/5393))
2677    - fix bool type optional for resnet50([!5363](https://gitee.com/mindspore/mindspore/pulls/5363))
2678- Python API
2679    - improve interface '__bool__' for tensor([!4000](https://gitee.com/mindspore/mindspore/pulls/4000))
2680    - fix GPU-ResizeNearestNeighbor([!3760](https://gitee.com/mindspore/mindspore/pulls/3760))
2681    - fix topK multi dimension grad func([!3711](https://gitee.com/mindspore/mindspore/pulls/3711))
2682    - fix scatterop error msg([!3699](https://gitee.com/mindspore/mindspore/pulls/3699))
2683    - fix bug of cast dtype when using mix_presion in pynative mode([!3730](https://gitee.com/mindspore/mindspore/pulls/3730))
2684- Executor
2685    - fix etsnet train error when UnsegmentSum's first input shape is (1,) ([!4573](https://gitee.com/mindspore/mindspore/pulls/4573))
2686    - fix bug of result error in while control flow because of unsupporting for value reference ([!4103](https://gitee.com/mindspore/mindspore/pulls/4103))
2687    - fix bug of the output tensor does not carry device data type ([!3774](https://gitee.com/mindspore/mindspore/pulls/3774))
2688    - fix bug of avoiding multi attr value are eliminated in pynative mode ([!4225](https://gitee.com/mindspore/mindspore/pulls/4225))
2689    - fix bug of AssignAdd unable to work normally in multi-cases ([!5171](https://gitee.com/mindspore/mindspore/pulls/5171))
2690- GPU platform
2691    - improve the environment variable checking for nvcc compiler path ([!5140](https://gitee.com/mindspore/mindspore/pulls/5140))
2692    - fix bug of error in cast operator conversion from fp16 to fp32 ([!4147](https://gitee.com/mindspore/mindspore/pulls/4147))
2693    - fix bug of the array out of bound in case of make_tuple operator ([!5219](https://gitee.com/mindspore/mindspore/pulls/5219))
2694- Data processing and Pro
2695    - fix GeneratorDataset time out([!3624](https://gitee.com/mindspore/mindspore/pulls/3624))
2696    - fix concat operator get_dataset_size error([!4701](https://gitee.com/mindspore/mindspore/pulls/4701))
2697    - fixing python validator for Repeat Op([!4366](https://gitee.com/mindspore/mindspore/pulls/4366))
2698- Third party
2699    - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
2700    - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
2701
2702## Contributors
2703
2704Thanks goes to these wonderful people:
2705
2706Adel, Alexey, andy, andy_wangrui, anthonyaje, anzhengqi, askmiao, avakh, baihuawei, bingyaweng, BowenK, buxue, caifubi, CaoJian, caozhou, Cathy, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chenzupeng, chujinjin, cjh9368, Corleone, cristoval, danish, dengyutao, eric, Eric, ervinzhang, etone-chan, fangzehua, fary86, fuzhiye, gengdongjie, genglishuai, Giancarlo, gongdaguo, gukecai, guohongzilong, GuoMengHao, hangq, hanhaocheng, hanhuifeng2020, hanjun996, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, hongxing, huangdongrun, huanghui, huangxinjing, islam_amin, Jesse, jianghui58, jiangzhiwen, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, kai00, kingfo, kpy, kswang, laiyongqiang, leilei_snow, leopz, Li, liangzelang, lianliguang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, lingyunli63, linqingke, lirongzhen1, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuzhongkai, Lixia, lixian, liyong, lizhenyu, looop5, luoyang, lvchangquan, lvliang, lvwenyuan, lyvette, mahdi, Mahdi, mamba_ni, maning202007, Margaret_wangrui, mayang, meixiaowei, meng_chunyang, ms_yan, nhussain, panbingao, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, pengyongrong, Pengyongrong, qianlong, qujianwei, root, shenwei41, shibeiji, simson, songhonglei413, Su, sunsuodong, suteng, tao_yunhao, TFbunny, tinazhang, tom__chen, tony_liu2, tronzhang, VectorSL, wandongdong, wangdongxu, wanghua, wangmin, wangshaocong, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, wuyongkang, xiefangqi, xuanyue, Xun, xutianchun, xuyongfei, yanghaitao, yangjie159, YangLuo, yangruoqi713, yangyongjie, yangzhenzhang, yankai, yao_yf, yelihua, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zhangxuetong, zhaizhiqiang, Zhang, zhangxinfeng3, zhangxuetong, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaoting, zhaozhenlong, zhengjun10, zhongligeng, zhoufeng, zhousiyi, zhouyaqiang, zhouyuanshen, Zichun, Zirui, zjun, zongha, ZPaC, lijiaqi, liangchenghui, wangminggui
2707
2708Contributions of any kind are welcome!
2709
2710# MindSpore 0.6.0-beta Release Notes
2711
2712## Major Features and Improvements
2713
2714### Ascend 910 Training and Inference Framework
2715
2716- New models
2717    - There are official, research and community under modelzoo.
2718        - Official is maintained  with the newest APIs by MindSpore team,  MaskRCNN are added.
2719        - Research is uploaded by researchers for official review, and APIs may not  be updated in time.
2720        - Community reprints the relevant links of partner research results.
2721    - Hub added on the same level as modelzoo, synchronous storage of materials needed for official hub web pages which will be launched soon.
2722    - Support pre-trained models, few lines of code can be used to download and load pre-trained models, supporting inference or transfer learning.
2723- Frontend and user interface
2724    - Supports user side operator compilation and graph execution error rendering.
2725    - Uniform definition dynamic learning rate behavior in optimizers.
2726    - Support IndexSlice in sparse expression.
2727    - Support use parent construct method during construct.
2728    - Support asynchronous execution save checkpoint file.
2729    - Support implicit type conversion in pynative mode.
2730    - User interfaces change log
2731        - unform learning rate behavior in optimizers([!2755](https://gitee.com/mindspore/mindspore/pulls/2755))
2732        - rename operator of sparse optimizer([!3217](https://gitee.com/mindspore/mindspore/pulls/3217))
2733        - move profiler module from mindinsight to mindspore([!3075](https://gitee.com/mindspore/mindspore/pulls/3075))
2734        - VOCDataset output change to multi-columns([!3093](https://gitee.com/mindspore/mindspore/pulls/3093))
2735        - GetDatasize feature([!3212](https://gitee.com/mindspore/mindspore/pulls/3212))
2736        - dataset: modify config api([!2936](https://gitee.com/mindspore/mindspore/pulls/2936))
2737- Executor and performance optimization
2738    - Decouple C++ and python, so make the architecture more extensible.
2739    - Parameter Server for distributed deep learning supported.
2740    - Serving:a flexible service deployment framework for deep learning models.
2741    - Memory reuse is enhanced, and the batch size of Bert large model is increased from 96 to 160 on a single server.
2742- Data processing, augmentation, and save format
2743    - Support MindRecord save operator after  date processing
2744    - Support automatic fusion operator, such as decode/resize/crop
2745    - Support CSV dataset loading
2746
2747### Other Hardware Support
2748
2749- GPU platform
2750    - New model supported: ResNext50, WarpCTC and GoogLeNet.
2751    - Support hyperparametric search and data enhanced automl on GPU.
2752    - Support Resnet50 automatic parallel in GPU backend.
2753
2754## Bugfixes
2755
2756- Models
2757    - Improved the performance and accuracy on ResNet50([!3456](https://gitee.com/mindspore/mindspore/pulls/3456))
2758    - Fixed the performance test case of bert([!3486](https://gitee.com/mindspore/mindspore/pulls/3486))
2759- Python API
2760    - Fix assign used in while loop([!2720](https://gitee.com/mindspore/mindspore/pulls/2720))
2761    - Revert optimize the graph output of all nop node.([!2857](https://gitee.com/mindspore/mindspore/pulls/2857))
2762    - Print tensor as numpy.([!2859](https://gitee.com/mindspore/mindspore/pulls/2859))
2763    - Support weight decay for sparse optimizer([!2668](https://gitee.com/mindspore/mindspore/pulls/2668))
2764    - Fix BatchToSpaceND([!2741](https://gitee.com/mindspore/mindspore/pulls/2741))
2765    - Fixing type check mistakes of InplaceAdd and Inplace Sub ops([!2744](https://gitee.com/mindspore/mindspore/pulls/2744]))
2766    - Change order param only equal to group param([!2748](https://gitee.com/mindspore/mindspore/pulls/2748))
2767- Executor
2768    - The performance of graph with control flow is optimized([!2931](https://gitee.com/mindspore/mindspore/pulls/2931))
2769    - Fix bug of wrong number of tuple layers([!3390](https://gitee.com/mindspore/mindspore/pulls/3390))
2770    - Fix cpu multi graph memory exception([!3631](https://gitee.com/mindspore/mindspore/pulls/3631))
2771    - Enable data sync when calling operator without defining a cell([!3081](https://gitee.com/mindspore/mindspore/pulls/3081))
2772    - Fix argmaxwith value error in pynative mode on GPU([!3082](https://gitee.com/mindspore/mindspore/pulls/3082))
2773    - Fix precision error with fp16 input on pynative mode([!3196](https://gitee.com/mindspore/mindspore/pulls/3196))
2774- Data processing
2775    - Fix bug of RandomColor and RandomSharpness default parameter checking  ([!2833](https://gitee.com/mindspore/mindspore/pulls/2833))
2776    - Fix process hung when training and eval  ([!3469](https://gitee.com/mindspore/mindspore/pulls/3469))
2777- Third party
2778    - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
2779    - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
2780
2781## Contributors
2782
2783Thanks goes to these wonderful people:
2784
2785Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu
2786
2787Contributions of any kind are welcome!
2788
2789# MindSpore 0.5.2-beta Release Notes
2790
2791## Major Features and Improvements
2792
2793### Ascend 910 Training and Inference Framework
2794
2795- New models
2796    - DenseNet121: a convolution based neural network for the task of image classification on ImageNet 2012 dataset.
2797
2798## Bugfixes
2799
2800- Models
2801    - VGG16,Alexnet,GoogleNet,optimize network for better performance. ([!5539](https://gitee.com/mindspore/mindspore/pulls/5539))
2802    - YOLOV3, fix yolov3_darknet53 dataset bug. ([!5658](https://gitee.com/mindspore/mindspore/pulls/5658))
2803
2804## Contributors
2805
2806Thanks goes to these wonderful people:
2807
2808Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu
2809
2810Contributions of any kind are welcome!
2811
2812# MindSpore 0.5.0-beta Release Notes
2813
2814## Major Features and Improvements
2815
2816### Ascend 910 Training and Inference Framework
2817
2818- New models
2819    - ResNext50: a simple, highly modularized network architecture using aggregated resdiual transformations for image classification on ImageNet 2012 dataset.
2820    - MASS: a pre-training method for sequence to sequence based language generation tasks on Text Summarization and Conversational Response Generation using News Crawls 2007-2017 dataset, Gigaword corpus and Cornell movie dialog corpus.
2821    - Transformer: a neural network architecture for language understanding on WMT 2014 English-German dataset.
2822    - GCN:Graph Convolutional Networks for the task of classification of nodes in a graph on Cora and Citeseer datasets.
2823    - GAT:an attention-based graph neural network for node classification on Cora and CiteSeer dataset.
2824- Frontend and user interface
2825    - Support tensor value and assignment of mixed tensor index in graph mode.
2826    - Support tensor comparison, len operator, constexpr syntax, value and assignment of tensor index in pynative mode.
2827    - Support converting MindSpore IR to pb format for infer model.
2828    - Support print operator to write data directly on the hard disk.
2829    - Add the double recursive programming solution for very high speed parallel strategy search in automatic parallel.
2830    - User interfaces change log
2831        - Allow the learning rate of AdamWeightDecayDynamicLR and Lamb to be 0([!1826](https://gitee.com/mindspore/mindspore/pulls/1826))
2832        - Restricting the entire network input parameter is Tensor([!1967](https://gitee.com/mindspore/mindspore/pulls/1967))
2833        - Turn shape and dtype into attributes instead of interfaces([!1919](https://gitee.com/mindspore/mindspore/pulls/1919))
2834        - Delete multitypefungraph([!2116](https://gitee.com/mindspore/mindspore/pulls/2116))
2835        - Refactor the callback module in an encapsulated way, use _CallbackManager instead of_build_callbacks([!2236](https://gitee.com/mindspore/mindspore/pulls/2236))
2836        - Delete EmbeddingLookup([!2163](https://gitee.com/mindspore/mindspore/pulls/2163))
2837        - Checkpoint add model_type([!2517](https://gitee.com/mindspore/mindspore/pulls/2517))
2838- Executor and performance optimization
2839    - Heterogeneous execution on CPU and Ascend devices supported, and is verified in Wide&Deep model.
2840    - Quantitative training of MobileNetV2, Lenet and Resnet50 on Ascend-910 are supported.
2841    - Support new fusion architecture, which can do fusion optimization across graphs and kernels to improve execution speed.
2842- Data processing, augmentation, and save format
2843    - Support data processing pipeline performance profiling.
2844    - Support public dataset loading, such as CLUE and Coco.
2845    - Support more text processing, such as more tokenizers and vocab data.
2846    - Support MindRecord padded data.
2847
2848### Other Hardware Support
2849
2850- GPU platform
2851    - New model supported: Bert / Wide&Deep.
2852    - Support setting max device memory.
2853- CPU platform
2854    - New model supported: LSTM.
2855
2856## Bugfixes
2857
2858- Models
2859    - Bert, Move Bert from `example` to `model_zoo`, optimize network for better performance. ([!1902](https://gitee.com/mindspore/mindspore/pulls/1902))
2860    - VGG16, Move VGG16 from `example` to `model_zoo`, optimize network for better accuracy. ([!2645](https://gitee.com/mindspore/mindspore/pulls/2645))
2861    - Alexnet, modify parameter setting to improve accuracy ([!1364](https://gitee.com/mindspore/mindspore/pulls/2370))
2862    - Wide&Deep, Move Wide&Deep from `example` to `model_zoo`, optimize network for better performance. ([!2221](https://gitee.com/mindspore/mindspore/pulls/2221))
2863- Python API
2864    - Fix bug in auto cast([!1766](https://gitee.com/mindspore/mindspore/pulls/1766))
2865    - Fix bug of register_backward_hook([!2148](https://gitee.com/mindspore/mindspore/pulls/2148))
2866    - Fix bug of tuple args in pynative mode([!1878](https://gitee.com/mindspore/mindspore/pulls/1878))
2867    - Fix bug of checking numbers of arguments and graph parameters([!1701](https://gitee.com/mindspore/mindspore/pulls/1701))
2868- Executor
2869    - Fix bug of loading input data repeatedly in pynative mode([!1966](https://gitee.com/mindspore/mindspore/pulls/1966))
2870    - Fix bug of list cannot be used as input in pynative mode([!1765](https://gitee.com/mindspore/mindspore/pulls/1765))
2871    - Fix bug of kernel select ([!2103](https://gitee.com/mindspore/mindspore/pulls/2103))
2872    - Fix bug of pattern matching for batchnorm fusion in the case of auto mix precision.([!1851](https://gitee.com/mindspore/mindspore/pulls/1851))
2873    - Fix bug of generate hccl's kernel info.([!2393](https://gitee.com/mindspore/mindspore/pulls/2393))
2874- GPU platform
2875    - Fix bug of summary feature invalid([!2173](https://gitee.com/mindspore/mindspore/pulls/2173))
2876- Data processing
2877    - Fix bug of Cifar dataset reading([!2096](https://gitee.com/mindspore/mindspore/pulls/2096))
2878    - Fix bug of C++ behavior in RandomCropAndResize([!2026](https://gitee.com/mindspore/mindspore/pulls/2026))
2879    - Fix the bug of mindrecord shuffle([!2420](https://gitee.com/mindspore/mindspore/pulls/2420))
2880- Third party
2881    - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655).
2882
2883## Contributors
2884
2885Thanks goes to these wonderful people:
2886
2887Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu
2888
2889Contributions of any kind are welcome!
2890
2891# MindSpore 0.3.1-alpha Release Notes
2892
2893## Major Features and Improvements
2894
2895### Ascend 910 Training and Inference Framework
2896
2897- Frontend and User Interface
2898    - Independent model init interface.
2899- Data processing, augmentation, and save format
2900    - Support sample padding for minddataset.
2901
2902## Bugfixes
2903
2904- Python API
2905    - Fix bugs in the lars optimizer([!1894](https://gitee.com/mindspore/mindspore/pulls/1894))
2906- Data processing
2907    - Fix accuracy problem of RandomCropDecodeResize ([!2340](https://gitee.com/mindspore/mindspore/pulls/2340))
2908
2909# Release 0.3.0-alpha
2910
2911## Major Features and Improvements
2912
2913### Ascend 910 Training and Inference Framework
2914
2915- New models
2916    - DeepFM: a factorization-machine based neural network for CTR prediction on Criteo dataset.
2917    - DeepLabV3: significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2007 semantic image segmentation benchmark.
2918    - Faster-RCNN: towards real-time object detection with region proposal networks on COCO 2017 dataset.
2919    - SSD: a single stage object detection methods on COCO 2017 dataset.
2920    - GoogLeNet: a deep convolutional neural network architecture codenamed Inception V1 for classification and detection on CIFAR-10 dataset.
2921    - Wide&Deep: jointly trained wide linear models and deep neural networks for recommender systems on Criteo dataset.
2922- Frontend and User Interface
2923    - Complete numpy advanced indexing method. Supports value and assignment through tensor index.
2924    - Some optimizers support separating parameter groups. Different parameter groups can set different `learning_rate` and `weight_decay`.
2925    - Support setting submodule's logging level independently, e.g. you can set logging level of module `A` to warning and set logging level of module `B` to info.
2926    - Support weights to be compiled according to shape to solve the problem of large memory overhead.
2927    - Add some operators implement and grammar support in pynative mode. To be consistent with graph mode.
2928    - User interfaces change log
2929        - Learning rate and weight decay making group params([!637](https://gitee.com/mindspore/mindspore/pulls/637))
2930        - Support weights to be compiled according to shape([!1015](https://gitee.com/mindspore/mindspore/pulls/1015))
2931        - delete some context param([!1100](https://gitee.com/mindspore/mindspore/pulls/1100))
2932        - ImageSummary/ScalarSummary/TensorSummary/HistogramSummary([!1329](https://gitee.com/mindspore/mindspore/pulls/1329))([!1425](https://gitee.com/mindspore/mindspore/pulls/1425))
2933- Executor and Performance Optimization
2934    - Support doing evaluation while in training process, so that the accuracy of training can be easily obtained.
2935    - Enable second-order optimization for resnet50, which can achieve 75.9% accuracy in 45 epochs (Resnet50 @ImageNet).
2936    - Optimize pynative implementation and improve it's execution performance.
2937    - Optimize summary record implementation and improve its performance.
2938- Data processing, augmentation, and save format
2939    - Support simple text processing, such as tokenizer/buildvocab/lookup.
2940    - Support padding batch.
2941    - Support split or concat dataset.
2942    - Support MindDataset reading from file list.
2943
2944### Other Hardware Support
2945
2946- GPU platform
2947    - New models supported: MobileNetV2, MobileNetV3.
2948    - Support mixed precision training.
2949    - Support device memory swapping.
2950
2951## Bugfixes
2952
2953- Python API
2954    - An exception to the broadcast input data type check([!712](https://gitee.com/mindspore/mindspore/pulls/712))
2955    - Fix issues assignsub return value 0([!1036](https://gitee.com/mindspore/mindspore/pulls/1036))
2956    - Fix issue Conv2dBackpropInput bprop should return 3 instead of 2 items([!1001](https://gitee.com/mindspore/mindspore/pulls/1001))
2957    - Fix sens shape error of TrainOneStepWithLossScaleCell([!1050](https://gitee.com/mindspore/mindspore/pulls/1050))
2958    - Fix BatchNormGrad operator([!1344](https://gitee.com/mindspore/mindspore/pulls/1344))
2959- Executor
2960    - Fix dropout,topK and addn errors in PyNative mode ([!1285](https://gitee.com/mindspore/mindspore/pulls/1285), [!1138](https://gitee.com/mindspore/mindspore/pulls/1138), [!1033](https://gitee.com/mindspore/mindspore/pulls/1033)).
2961    - Fix memory leaks after execution in PyNatvie mode ([!1201](https://gitee.com/mindspore/mindspore/pulls/1201)).
2962    - Fix HCCL failure in some special scenes ([!1204](https://gitee.com/mindspore/mindspore/pulls/1204), [!1252](https://gitee.com/mindspore/mindspore/pulls/1252)).
2963    - Fix SSD network when Select failed, can't find kernel info([!1449](https://gitee.com/mindspore/mindspore/pulls/1449)).
2964    - Fix Topk operator selection strategy bug between aicore and aicpu([!1367](https://gitee.com/mindspore/mindspore/pulls/1367)).
2965    - Fix input memory size of 'assign' op unequal in control sink mode when assigning a data from one child graph to another child graph([!802](https://gitee.com/mindspore/mindspore/pulls/802)).
2966    - Fix allreduce ir inconsistency([!989](https://gitee.com/mindspore/mindspore/pulls/989)).
2967- GPU platform
2968    - Fix summary for gradient collection ([!1364](https://gitee.com/mindspore/mindspore/pulls/1364))
2969    - Fix the slice operator ([!1489](https://gitee.com/mindspore/mindspore/pulls/1489))
2970- Data processing
2971    - Fix memory problems of GeneratorDataset of sub-process ([!907](https://gitee.com/mindspore/mindspore/pulls/907))
2972    - Fix getting data timeout when training the cifar10 dataset under the lenet([!1391](https://gitee.com/mindspore/mindspore/pulls/1391))
2973
2974## Contributors
2975
2976Thanks goes to these wonderful people:
2977
2978Alexey Shevlyakov, Amir Lashkari, anthony, baihuawei, biffex, buxue, caifubi, candanzg, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenzomi, chujinjin, cristoval, dengwentao, eric, etone-chan, fary86, gaojing, gengdongjie, gongchen, guohongzilong, guozhijian, heleiwang, hesham, He Wei, Hoai Linh Tran, hongxing, huangdongrun, huanghui, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jonwe, jonyguo, Junhan Hu, Kang, kingfo, kswang, laiyongqiang, leopz, lichenever, lihongkang, limingqi107, liubuyu, liuliyan2, liuwenhao4, liuxiao, liuxiao, liyong, lizhenyu, lvliang, Margaret_wangrui, meixiaowei, ms_yan, Nat Sutyanyong, ougongchang, panfengfeng, panyifeng, Peilin Wang, peixu_ren, qianlong, rick_sanchez, seatea, sheng, shijianning, simson, sunsuodong, Tinazhang, VectorSL, wandongdong, wangcong, wanghua, wangnan39, Wei Luning, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuxuejian, Xiaoda Zhang, xiefangqi, xulei2020, Yang, yangjie159, yangruoqi713, yangyongjie, yangzhenzhang, Yanjun Peng, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yujianfeng, YuJianfeng, yvetteliu, zhangdengcheng, Zhang Qinghua, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, zhouyuanshen, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang
2979
2980Contributions of any kind are welcome!
2981
2982# MindSpore 0.2.0-alpha Release Notes
2983
2984## Major Features and Improvements
2985
2986### Ascend 910 Training and Inference Framework
2987
2988- New models
2989    - MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2990    - ResNet101: Deep Residual Learning for Image Recognition.
2991
2992- Frontend and User Interface
2993    - Support for all python comparison operators.
2994    - Support for math operators **,//,%. Support for other python operators like and/or/not/is/is not/ in/ not in.
2995    - Support for the gradients of function with variable arguments.
2996    - Support for tensor indexing assignment for certain indexing type.
2997    - Support for dynamic learning rate.
2998    - User interfaces change log
2999        - DepthwiseConv2dNative, DepthwiseConv2dNativeBackpropFilter, DepthwiseConv2dNativeBackpropInput([!424](https://gitee.com/mindspore/mindspore/pulls/424))
3000        - ReLU6, ReLU6Grad([!224](https://gitee.com/mindspore/mindspore/pulls/224))
3001        - GeneratorDataset([!183](https://gitee.com/mindspore/mindspore/pulls/183))
3002        - VOCDataset([!477](https://gitee.com/mindspore/mindspore/pulls/477))
3003        - MindDataset, PKSampler([!514](https://gitee.com/mindspore/mindspore/pulls/514))
3004        - map([!506](https://gitee.com/mindspore/mindspore/pulls/506))
3005        - Conv([!226](https://gitee.com/mindspore/mindspore/pulls/226))
3006        - Adam([!253](https://gitee.com/mindspore/mindspore/pulls/253))
3007        - _set_fusion_strategy_by_idx,_set_fusion_strategy_by_size([!189](https://gitee.com/mindspore/mindspore/pulls/189))
3008        - CheckpointConfig([!122](https://gitee.com/mindspore/mindspore/pulls/122))
3009        - Constant([!54](https://gitee.com/mindspore/mindspore/pulls/54))
3010- Executor and Performance Optimization
3011    - Support parallel execution of data prefetching and forward/backward computing.
3012    - Support parallel execution of gradient aggregation and forward/backward computing in distributed training scenarios.
3013    - Support operator fusion optimization.
3014    - Optimize compilation process and improve the performance.
3015- Data processing, augmentation, and save format
3016    - Support multi-process of GeneratorDataset/PyFunc for high performance
3017    - Support variable batchsize
3018    - Support new Dataset operators, such as filter,skip,take,TextLineDataset
3019
3020### Other Hardware Support
3021
3022- GPU platform
3023    - Use dynamic memory pool by default on GPU.
3024    - Support parallel execution of computation and communication.
3025    - Support continuous address allocation by memory pool.
3026- CPU platform
3027    - Support for windows 10 OS.
3028
3029## Bugfixes
3030
3031- Models
3032    - Fix mixed precision bug for VGG16 model ([!629](https://gitee.com/mindspore/mindspore/pulls/629)).
3033- Python API
3034    - Fix ControlDepend operator bugs on CPU and GPU ([!396](https://gitee.com/mindspore/mindspore/pulls/396)).
3035    - Fix ArgMinWithValue operator bugs ([!338](https://gitee.com/mindspore/mindspore/pulls/338)).
3036    - Fix Dense operator bugs on PyNative mode ([!276](https://gitee.com/mindspore/mindspore/pulls/276)).
3037    - Fix MatMul operator bugs on PyNative mode ([!288](https://gitee.com/mindspore/mindspore/pulls/288)).
3038- Executor
3039    - Fix operator selection bugs and make it general ([!300](https://gitee.com/mindspore/mindspore/pulls/300)).
3040    - Fix memory reuse bug for GetNext op ([!291](https://gitee.com/mindspore/mindspore/pulls/291)).
3041- GPU platform
3042    - Fix memory allocation in multi-graph scenarios ([!444](https://gitee.com/mindspore/mindspore/pulls/444)).
3043    - Fix bias_add_grad under fp16 precision ([!598](https://gitee.com/mindspore/mindspore/pulls/598)).
3044    - Fix support for fp16 kernels on nvidia 1080Ti([!571](https://gitee.com/mindspore/mindspore/pulls/571)).
3045    - Fix parsing of tuple type parameters ([!316](https://gitee.com/mindspore/mindspore/pulls/316)).
3046- Data processing
3047    - Fix TypeErrors about can't pickle mindspore._c_dataengine.DEPipeline objects([!434](https://gitee.com/mindspore/mindspore/pulls/434)).
3048    - Add TFRecord file verification([!406](https://gitee.com/mindspore/mindspore/pulls/406)).
3049
3050## Contributors
3051
3052Thanks goes to these wonderful people:
3053
3054Alexey_Shevlyakov, Cathy, Chong, Hoai, Jonathan, Junhan, JunhanHu, Peilin, SanjayChan, StrawNoBerry, VectorSL, Wei, WeibiaoYu, Xiaoda, Yanjun, YuJianfeng, ZPaC, Zhang, ZhangQinghua, ZiruiWu, amongo, anthonyaje, anzhengqi, biffex, caifubi, candanzg, caojian05, casgj, cathwong, ch-l, chang, changzherui, chenfei, chengang, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, dengwentao, dinghao, fanglei, fary86, flywind, gaojing, geekun, gengdongjie, ghzl, gong, gongchen, gukecai, guohongzilong, guozhijian, gziyan, h.farahat, hesham, huangdongrun, huanghui, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, jonathan_yan, jonyguo, jzw, kingfo, kisnwang, laiyongqiang, leonwanghui, lianliguang, lichen, lichenever, limingqi107, liubuyu, liuxiao, liyong, liyong126, lizhenyu, lupengcheng, lvliang, maoweiyong, ms_yan, mxm, ougongchang, panfengfeng, panyifeng, pengyanjun, penn, qianlong, seatea, simson, suteng, thlinh, vlne-v1, wangchengke, wanghua, wangnan39, wangqiuliang, wenchunjiang, wenkai, wukesong, xiefangqi, xulei, yanghaitao, yanghaoran, yangjie159, yangzhenzhang, yankai10, yanzhenxiang2020, yao_yf, yoonlee666, zhangbuxue, zhangz0911gm, zhangzheng, zhaojichen, zhaoting, zhaozhenlong, zhongligeng, zhoufeng, zhousiyi, zjun, zyli2020, yuhuijun, limingqi107, lizhenyu, chenweifeng.
3055
3056Contributions of any kind are welcome!
3057
3058# MindSpore 0.1.0-alpha Release Notes
3059
3060## Main Features
3061
3062### Ascend 910 Training and Inference Framework
3063
3064- Recommended OS: Ubuntu 16.04 (or later) or EulerOS 2.5 or EulerOS 2.8
3065- Python version: 3.7.5
3066- Preset models
3067    - ResNet-50: residual structure-based convolutional neural network (CNN) for image classification, which is widely used.
3068    - AlexNet: classic CNN for image classification, achieving historical results in ImageNet LSVRC-2012.
3069    - LeNet: classic CNN for image classification, which was proposed by Yann LeCun.
3070    - VGG16: classic CNN for image classification, which was proposed by Oxford Visual Geometry Group.
3071    - YoloV3: real-time object detection network.
3072    - NEZHA: BERT-based Chinese pre-training network produced by Huawei Noah's Ark Laboratory.
3073- Execution modes
3074    - Graph mode: provides graph optimization methods such as memory overcommitment, IR fusion, and buffer fusion to achieve optimal execution performance.
3075    - PyNative mode: single-step execution mode, facilitating process debugging.
3076- Debugging capability and methods
3077    - Save CheckPoints and Summary data during training.
3078    - Support asynchronous printing.
3079    - Dump the computing data.
3080    - Support profiling analysis of the execution process performance.
3081- Distributed execution
3082    - Support AllReduce, AllGather, and BroadCast collective communication.
3083    - AllReduce data parallel: Each device obtains different training data, which accelerates the overall training process.
3084    - Collective communication-based layerwise parallel: Models are divided and allocated to different devices to solve the problem of insufficient memory for large model processing and improve the training speed.
3085    - Automatic parallel mode: The better data and model parallel mode can be predicted based on the cost model. It is recommended that this mode be used on ResNet series networks.
3086- Automatic differentiation
3087    - Implement automatic differentiation based on Source to Source.
3088    - Support distributed scenarios and automatic insertion of reverse communication operators.
3089- Data processing, augmentation, and save format
3090    - Load common datasets such as ImageNet, MNIST, CIFAR-10, and CIFAR-100.
3091    - Support common data loading pipeline operations, such as shuffle, repeat, batch, map, and sampler.
3092    - Provide basic operator libraries to cover common CV scenarios.
3093    - Support users to customize Python data augmentation operators through the Pyfunc mechanism.
3094    - Support the access of user-defined datasets through the GeneratorDataset mechanism.
3095    - Provide the MindSpore data format, data aggregation and storage, random access example, data partition, efficient parallel read, user-defined index, and dataset search.
3096    - Convert user datasets to the MindSpore data format.
3097    - After data processing and augmentation, provide training applications in feed and graph modes.
3098- FP32/16 mixed precision computation, supporting automatic and manual configuration
3099- Provide common operators such as nn, math, and array, which can be customized.
3100
3101### Inference Deployment
3102
3103- Deploy models in MindSpore format on the Ascend 310 platform for inference.
3104- Save models in ONNX format.
3105- Support saving models in LITE format and running models based on the lightweight inference framework.
3106    - Recommended OS: Android 4.3 or later
3107    - Supported network type: LeNet
3108    - Provide the generalization operators generated by TVM and operators generated after specific networks are tuned.
3109
3110### Other Hardware Support
3111
3112- GPU platform training
3113    - Recommended OS: Ubuntu 16.04
3114    - CUDA version: 9.2 or 10.1
3115    - CuDNN version: 7.6 or later
3116    - Python version: 3.7.5
3117    - NCCL version: 2.4.8-1
3118    - OpenMPI version: 3.1.5
3119    - Supported models: AlexNet, LeNet, and LSTM
3120    - Supported datasets: MNIST and CIFAR-10
3121    - Support data parallel.
3122- CPU platform training
3123    - Recommended OS: Ubuntu 16.04
3124    - Python version: 3.7.5
3125    - Supported model: LeNet
3126    - Supported dataset: MNIST
3127    - Provide only the stand-alone operation version.
3128
3129## Peripherals and Tools
3130
3131- [MindSpore Official Website](https://www.mindspore.cn/)
3132- [MindInsight Visualization Debugging and Optimization](https://gitee.com/mindspore/mindinsight)
3133- [MindArmour Model Security Hardening Package](https://gitee.com/mindspore/mindarmour)
3134- [GraphEngine Computational Graph Engine](https://gitee.com/mindspore/graphengine)
3135