1# MindSpore 1.5.1 2 3## MindSpore 1.5.1 Release Notes 4 5### Bug fixes 6 7- Fix code specification, pclint, codedex alarm. 8- Fix yolov4 network probabilistic segment error. 9 10### Contributors 11 12Thanks goes to these wonderful people: 13 14Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking. 15 16Contributions of any kind are welcome! 17 18 19# MindSpore 1.5.0 20 21## MindSpore 1.5.0 Release Notes 22 23### Major Features and Improvements 24 25#### NewModels 26 27- [STABLE] Add CV model on Ascend: Fast-SCNN 28- [BETA] Add CV models on Ascend: midas_V2, attgan, FairMOT, CenterNet_resnet101, SEResNext, YOLOV3-tiny, RetinaFace 29- [STABLE] Add CV models on GPU: ssd_mobilenetv1_fpn, shufflenetv1, tinyDarkNet, CNN-CTC, unet++, DeepText, SqueezeNet 30- [STABLE] Add NLP models on GPU: GRU, GNMT2, Bert-Squad 31- [STABLE] Add recommend models on GPU: NCF 32- [BETA] Add CV models on GPU: FaceAttribute, FaceDetection, FaceRecongnition SENet, 33- [BETA] Add Audio models on GPU: DeepSpeech2 34- [STABLE]`model_zoo` has been separated to an individual repository`models` 35 36#### FrontEnd 37 38- [STABLE] Support`while` and`break`,`continue` statements of training network in`GRAPH_MODE`. 39- [BETA] Support export MindIR file after model training in cloud side and evaluate in edge side by import the MindIR file. 40- [STABLE] Support forward mode auto-diff interface Jvp(Jacobian-Vector-Product). 41- [STABLE] Support backward mode auto-diff interface Vjp(Vector-Jacobian-Product). 42 43#### Auto Parallel 44 45- [STABLE] Support distributed pipeline inference. 46- [STABLE] Add implementation of the sparse attention and its distributed operator. 47- [STABLE] Add implementations of distributed operator of Conv2d/Conv2dTranspose/Conv2dBackpropInput/Maxpool/Avgpool/Batchnorm/Gatherd. 48- [STABLE] Support configuring the dataset strategy on distributed training and inference mode. 49- [STABLE] Add high level API of the Transformer module. 50 51#### Executor 52 53- [STABLE] Support AlltoAll operator. 54- [STABLE] CPU operator (Adam) performance optimization increased by 50%. 55- [BETA] Support Adam offload feature, reduce the static memory usage of Pangu large model by 50%. 56- [STABLE] MindSpore Ascend backend supports configuration operator generation and loading cache path. 57- [STABLE] MindSpore Ascend backend supports lazy build in PyNaitve mode and compilation performance improved by 10 times. 58- [STABLE] The function or Cell decorated by ms_function supports gradient calculation in PyNative mode. 59- [STABLE] The outermost network supports parameters of non tensor type in PyNative mode. 60 61#### DataSet 62 63- [BETA] Add a new method for class Model to support auto data preprocessing in scenario of Ascend 310 inference. 64- [STABLE] Add a new drawing tool to visualize detection/segmentation datasets. 65- [STABLE] Support a new tensor operation named ConvertColor to support color space transform of images. 66- [STABLE] Enhance the following tensor operations to handle multiple columns simultaneously: RandomCrop, RandomHorizontalFlip, RandomResize, RandomResizedCrop, RandomVerticalFlip. 67- [STABLE] Support electromagnetic simulation dataset loading and data augmentation. 68- [STABLE] Optimize the error logs of Dataset to make them more friendly to users. 69 70#### Federated Learning 71 72- [STABLE] Change the deployment environment of FL-Client. 73 74#### Running Data Recorder 75 76- [STABLE] RDR saves collected data files within directories named by Rank ID on distributed training on Ascend, GPU and CPU. 77 78#### GraphKernel Fusion 79 80#### Boost 81 82- [BETA] Add LessBN algorithm, achieves 1.14x faster training throughput while maintaining negligible or no impact on the accuracy in our benchmark. 83- [BETA] Add gradient frozen algorithm, achieves 1.1x faster training throughput while maintaining negligible on the accuracy in our benchmark. 84- [BETA] Add "boost_level" input parameter in the Model interface to control boost level, where you can choose O1/O2 for 1.15x/1.2x faster. 85 86### API Change 87 88#### Backwards Incompatible Change 89 90##### Python API 91 92###### New Recomputation Configuration for AutoParallel and SemiAutoParallel Scenarios 93 94Configuring the recomputation of the communication operations generated by the model parallel and optimizer parallel to save the memory on the 95devices. Users can pass `mp_comm_recompute` and `parallel_optimizer_comm_recompute` to enable the recomputation of the communication operations. 96 97### Bug fixes 98 99#### FrontEnd 100 101- Fix bug of too many subgraphs when network include`for` statement.([!23669](https://gitee.com/mindspore/mindspore/pulls/23669)) 102 103#### Executor 104 105- RunTask failed when parameter_broadcast is enabled in PyNative mode. ([!23255](https://gitee.com/mindspore/mindspore/pulls/23255)) 106- An illegal memory access was encountered in the dynamic shape net on GPU. 107- Fix tune failed for DynamicRnn. ([!21081](https://gitee.com/mindspore/mindspore/pulls/21081)) 108 109#### Dataset 110 111- Optimize thread monitoring to solve the problem of running multiple multiprocessesing on Windwos. ([!23232](https://gitee.com/mindspore/mindspore/pulls/23232)) 112- Fix bugs of Dataset tensor operations in lite mode. ([!21999](https://gitee.com/mindspore/mindspore/pulls/21999)) 113- Fix memory increasing when using create_dict_iterator in for loop. ([!22529](https://gitee.com/mindspore/mindspore/pulls/22529))([!22529](https://gitee.com/mindspore/mindspore/pulls/22529)) 114 115## MindSpore Lite 116 117### Major Features and Improvements 118 119#### Converter and runtime 120 1211. Optimize TDNN-like streaming model by reusing the result of last inference. 1222. Support dynamic filter Convolution. 1233. Support serializing float32 weight into float16 weight for reducing size of model file. 1244. Provide unified runtime API for developer reusing their code between cloud side and end side. 1255. Now developer can configure built-in pass as custom passes. 1266. Now user can specify format and shape of model inputs while converting model. 1277. Support multiple devices inference, includeing CPU, NPU, GPU. User can set devices in mindspore::Context. 1288. Support mixed precision inference. User can set inference precision by LoadConfig API. 1299. Support custom operator registration and enable inference on third-party hardware. 130 131#### ARM backend optimization 132 1331. Support the nchw data format of some Operators, such as Conv, InstanceNorm, etc. The performance of some models convertered from onnx and caffe is greatly improved. 1342. Fix bugs of memory leak on NPU. 135 136#### Post quantization 137 1381. Weight quantization supports mixed bit quantization. 1392. Full quantization supports data pre-processing. 1403. Adjust the quantization parameters from the command line to the configuration file. 141 142#### Training on Device 143 1441. Unify lite external api with MindSpore. 1452. Implement static memory allocator and common workspace for TOD,save memory 10-20%. 1463. Provide getgradients and setgradients interface,get and set optimizer params interfaces to support MOE Model. 1474. Support user specified output node when export IOD Model. 1485. Support more text networks (tinybert,albert) and operators. 149 150#### Codegen 151 1521. Support kernel register for custom op. Third-party hardware like NNIE can be accessed through it. 153 154### API Change 155 156#### API Incompatible Change 157 158##### C++ API 159 160### Contributors 161 162Thanks goes to these wonderful people: 163 164Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking. 165 166Contributions of any kind are welcome! 167 168# MindSpore 1.4.0 169 170## MindSpore 1.4.0 Release Notes 171 172### Major Features and Improvements 173 174#### NewModels 175 176#### FrontEnd 177 178#### Auto Parallel 179 180- Add distributed operators: Conv2D/Conv2DTranspose/Conv2DBackpropInput/MaxPool/AvgPool/BatchNorm/GatherD 181- Support to configure shard strategy for dataset 182 183#### Executor 184 185#### DataSet 186 187- Add SlicePatchesOperation for Remote Sensing feature([!18179](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/18179)) 188 189#### FederatedLearning 190 191#### Running Data Recorder 192 193#### GraphKernel Fusion 194 195#### Profiler 196 197- [STABLE] Support MS_DIAGNOSTIC_DATA_PATH for profiler feature.(Ascend/GPU) 198 199#### Dump 200 201- [STABLE] Support MS_DIAGNOSTIC_DATA_PATH for dump feature.(Ascend/GPU/CPU) 202 203### API Change 204 205#### Backwards Incompatible Change 206 207##### Python API 208 209##### Command Line Interface 210 211###### Dump Config 212 213Previously, we need to set the dump path in dump config file. To make the dump feature easier to use on cloud, we support new environment parameter `MS_DIAGNOSTIC_DATA_PATH`. 214 215| 1.3.0 | 1.4.0 | 216| ------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------- | 217| `path` is a mandatory field. | `path` field is optional. If `path` field is not provided or is empty string, `MS_DIAGNOSTIC_DATA_PATH` should be set in environment. | 218 219### Bug fixes 220 221#### FrontEnd 222 223#### Executor 224 225#### Dataset 226 227- Fix module 'signal' has no attribute 'SIGCHLD' problem under windows platform. ([!21232](https://gitee.com/mindspore/mindspore/pulls/21232)) 228 229## MindSpore Lite 230 231### Major Features and Improvements 232 233#### Converter and runtime 234 235#### x86 backend optimization 236 237#### ARM backend optimization 238 239#### Cuda backend optimization 240 241#### OpenCL backend 242 243#### Post quantization 244 245#### Training on Device 246 247#### Codegen 248 249### API Change 250 251#### API Incompatible Change 252 253##### C++ API 254 255#### New features 256 257##### Java API 258 259### Bug fixes 260 261#### Deprecations 262 263### Contributors 264 265Thanks goes to these wonderful people: 266 267Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking. 268 269Contributions of any kind are welcome! 270 271# MindSpore 1.3.0 272 273## MindSpore 1.3.0 Release Notes 274 275### Major Features and Improvements 276 277#### NewModels 278 279- [STABLE] Add CV models on Ascend: CPM, FCN8s, SSD-ResNet50-FPN, EAST, AdvancedEast. 280- [STABLE] Add NLP models on Ascend: DGU, TextCNN, SentimentNet(LSTM). 281- [STABLE] Add CV models on GPU: Faster-RCNN, FCN8s, CycleGAN, AdvancedEast. 282- [BETA] Add CV models on Ascend: CycleGAN, PoseNet, SimCLR. 283- [BETA] Add NLP models on Ascend: DGU, EmoTect, Senta, KT-Net. 284- [BETA] Add NLP models on GPU: DGU, EmoTect. 285- [BETA] Add EPP-MVSNet: a novel deep learning network for 3D reconstruction from multi-view stereo, which has won the first place in Tanks & Temples leaderboard(until April 1, 2021)(GPU). 286 287#### FrontEnd 288 289- [STABLE] The default running mode of MindSpore is changed to Graph mode. 290- [STABLE] Support interface `run_check` to check whether MindSpore is working properly or not. 291- [STABLE] Support saving custom information in the checkpoint file. 292- [STABLE] Normal class adds mean parameter. 293- [STABLE] Support export YOLOv3-DarkNet53 and YOLOv4 ONNX model. 294- [STABLE] Support 40+ operator export ONNX model. 295- [STABLE] The Metric module supports `set_indexes` to select the inputs of `update` in the specified order. 296- [STABLE] Switch `_Loss` to an external API `LossBase` as the base class of losses. 297 298#### Auto Parallel 299 300- [STABLE] Add distributed operators: Select/GatherNd/ScatterUpdate/TopK. 301- [STABLE] Support basic pipeline parallelism. 302- [STABLE] Optimize sharding strategy setting of `Gather`. 303- [STABLE] Optimize mix precision and shared parameter scenarios. 304- [STABLE] Optimize distributed prediction scenarios. 305 306#### Executor 307 308- [STABLE] Support unified runtime in GPU and CPU backend. 309- [STABLE] MindSpore GPU support CUDA11 with cuDNN8. 310- [STABLE] MindSpore GPU inference performance optimization by integrating TensorRT. 311- [STABLE] MindSpore built on one Linux distribution can now be used on multiple Linux distributions with the same CPU architecture (e.g. EulerOS, Ubuntu, CentOS). 312- [STABLE] MindSpore now supports Ascend310 and Ascend910 environments with one single wheel package and provides an alternate binary package for Ascend310 specifically. 313- [STABLE] MindSpore Ascend support group convolution. 314 315#### DataSet 316 317- [STABLE] Support caching over MindRecord dataset. 318- [STABLE] Support new shuffle mode for MindRecord dataset. 319- [STABLE] Support a cropper tool for MindSpore Lite to allow the user to customize MindData binary file according to their script. 320- [STABLE] Support share memory mechanism to optimize the multi-processing efficiency of GeneratorDataset/Map/Batch. 321- [STABLE] Add features for the GNN dataset to support molecular dynamics simulation scenarios. 322 323#### FederatedLearning 324 325- [STABLE] Support Cross-device federated learning framework. 326- [STABLE] Support FL-Server distributed networking including TCP and HTTP communication. 327- [STABLE] Support FL-Server distributed federated aggregation,support autoscaling and fault tolerance. 328- [STABLE] Develop FL-Client framework. 329- [STABLE] Supports local differential privacy algorithms. 330- [STABLE] MPC-based security aggregation algorithm. 331- [STABLE] MindSpore Lite Device-side Inference & Training Interconnection with FL-Client. 332 333#### Running Data Recorder 334 335- [STABLE] Provide records of multi-stage computational graphs, memory allocation information and graph execution order when a "Launch kernel failed" occurs. (CPU) 336 337#### GraphKernel Fusion 338 339- [STABLE] Add options to control the optimization level. 340- [STABLE] Enhance the generalization ability on GPU. GraphKernel is enabled by default in 40+ networks which cover the field of NLP, CV, Recommender, NAS and Audio. The result shows their throughput is significantly improved, and you are Recommended enabling GraphKernel in your network. 341 342#### Debug 343 344- [STABLE] Unified dump function. 345 346### API Change 347 348#### Backwards Incompatible Change 349 350##### Python API 351 352###### `mindspore.dataset.Dataset.device_que` interface removes unused parameter `prefetch_size`([!18973](https://gitee.com/mindspore/mindspore/pulls/18973)) 353 354Previously, we have a parameter `prefetch_size` in `device_que` to define the prefetch number of records ahead of the user's request. But indeed this parameter is never used which means it is an ineffective parameter. Therefore, we remove this parameter in 1.3.0 and users can set this configuration by [mindspore.dataset.config.set_prefetch_size](https://www.mindspore.cn/docs/api/en/r1.3/api_python/mindspore.dataset.config.html#mindspore.dataset.config.set_prefetch_size). 355 356<table> 357<tr> 358<td style="text-align:center"> 1.2.1 </td> <td style="text-align:center"> 1.3.0 </td> 359</tr> 360<tr> 361<td> 362 363```python 364device_que(prefetch_size=None, send_epoch_end=True, create_data_info_queue=False) 365``` 366 367</td> 368<td> 369 370```python 371device_que(send_epoch_end=True, create_data_info_queue=False) 372``` 373 374</td> 375</tr> 376</table> 377 378###### `mindspore.nn.optim.thor` interface changes to lowercase `thor` and adds two parameters `enable_clip_grad` and `frequency`([!17212](https://gitee.com/mindspore/mindspore/pulls/17212)) 379 380The parameter `enable_clip_grad` is used for gradient clipping and another parameter `frequency` is used to control the update interval of second order information matrix. 381 382<table> 383<tr> 384<td style="text-align:center"> 1.2.1 </td> <td style="text-align:center"> 1.3.0 </td> 385</tr> 386<tr> 387<td> 388 389```python 390THOR(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32, 391 use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None) 392``` 393 394</td> 395<td> 396 397```python 398thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32, 399 use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None, enable_clip_grad=False, 400 frequency=100) 401``` 402 403</td> 404</tr> 405</table> 406 407##### Dump Config 408 409Previously, we could only dump tensor data for one or all steps. To make the dump feature easier to use, we changed the dump configuration format and dump structure. View the [New Dump Tutorial](https://www.mindspore.cn/docs/programming_guide/en/r1.5/dump_in_graph_mode.html#dump). 410 411| 1.2.1 | 1.3.0 | 412| ------------------------------------------------------ | ------------------------------------------------------------------------------------------- | 413| `iteration` is an int. | `iteration` is a string. | 414| `op_debug_mode` is in `async_dump_settings` field. | `op_debug_mode` is in `common_dump_settings` field. `async_dump_settings` is removed. | 415 416### Bug fixes 417 418#### FrontEnd 419 420- Fix exception when use import module in while body such as 'F.xxx'.([!17635](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/17635)) 421- Fix the exception of 'exceeding limit call depth' in compile graph process when using while expression with grad operation. ([!18662](https://e.gitee.com/mind_spore/repos/mindspore/mindspore/pulls/18662)) 422 423#### Executor 424 425- Fix reallocate memory bug for communication op.([!14492](https://gitee.com/mindspore/mindspore/pulls/14492)) 426- Replace memcpy_async op with tensor_move op.([!15204](https://gitee.com/mindspore/mindspore/pulls/15204)) 427- Fix the build error when multiple python versions are installed in the environment. ([!19165](https://gitee.com/mindspore/mindspore/pulls/19165)) 428- The warning when the te/topi/hccl version does not match is optimized, and fix the repeated warning. ([!18704](https://gitee.com/mindspore/mindspore/pulls/18704)) 429- Fix the error in a cluster with more than 8 pcs in pynative mode. ([!16376](https://gitee.com/mindspore/mindspore/pulls/16376)) 430- Fix graph ring problem in UB fusion.([!16109](https://gitee.com/mindspore/mindspore/pulls/16109)) 431- Fix AllGather op select problem when the shape is not divisible by 16. ([!18878](https://gitee.com/mindspore/mindspore/pulls/18878)) 432 433#### Dataset 434 435- Fix an out-of-memory error when ImagefolderDataset gets an illegal directory. ([!16196](https://gitee.com/mindspore/mindspore/pulls/16196)) 436- Fix bugs of vision transformations in lite mode. ([!14722](https://gitee.com/mindspore/mindspore/pulls/14722),[!14774](https://gitee.com/mindspore/mindspore/pulls/14774),[!15050](https://gitee.com/mindspore/mindspore/pulls/15050)) 437- Fix default numbers of parallel workers of MindData for those CPUs with fewer cores. ([!15921](https://gitee.com/mindspore/mindspore/pulls/15921)) 438- Fix MindRecord writing failed probabilistically in multiprocessing. ([!15242](https://gitee.com/mindspore/mindspore/pulls/15242)) 439 440## MindSpore Lite 441 442### Major Features and Improvements 443 444#### Converter and runtime 445 4461. Support Caffe model running on Hi3516D. 4472. Support delegate mechanism to run your models(part or whole) on user specified executor. 4483. Support control flow models. 4494. Support cross-compiling for iOS, so that we can inference models on iOS devices. 450 451#### x86 backend optimization 452 4531. Optimize kernels for x86 using Advanced Vector Extensions(AVX). 454 455#### ARM backend optimization 456 4571. Optimize fp16 kernels. 4582. Support arm32 fp16 instruction acceleration on ARMv8.2. 459 460#### Cuda backend optimization 461 4621. Support NV GPU backend base on delegate mechanism(use TensorRT as delegate). 463 464#### OpenCL backend 465 4661. Optimize the strategy of workgroup and blocksize to improve performance. 4672. Support OpenCL dynamic infershape. 4683. Support INT32 type ops. 469 470#### Post quantization 471 4721. Support fp32 training model converts to quantization training model. 473 474#### Training on Device 475 4761. Support fp32 training model export to quantization model after training process end. 4772. Unify APIs and output package name of training and inference. 4783. Simplify implementation of Train Session. 4794. Optimize train and infer compile, reduce libmindspore-lite-train.so memory. 4805. Training memory optimization: memory reduce 10-50% compare with r1.2. 4816. Training performance optimization: for 1*1 special input shape Cov2DGradInput and SparseSoftmaxCrossEntropyWithLogits operator optimization, improved 10%-20%. 4827. Support more networks(transformer, albert). 483 484#### Codegen 485 4861. Support deployment on HarmonyOS for device. 487 488### API Change 489 490#### API Incompatible Change 491 492##### C++ API 493 494###### Unify LiteSession and TrainSession, Merge LiteSession And TrainSession.([!17356](https://gitee.com/mindspore/mindspore/pulls/17356)) 495 496Previously, Training on Device use TrainSession while Inference on Device use LiteSession. To simplify implementation, we move TrainSession functions to LiteSession as virtual function. and move APIs previous defined in train_session.h to lite_session.h. 497 498```cpp 499class MS_API LiteSession { 500... 501static LiteSession *CreateTrainSession(const std::string &filename, const lite::Context *context, 502 bool train_mode = false, const lite::TrainCfg *cfg = nullptr); 503 static LiteSession *CreateTransferSession(const std::string &filename_backbone, const std::string &filename_head, 504 const lite::Context *context, bool train_mode = false, 505 const lite::TrainCfg *cfg = nullptr); 506virtual int Train() { return mindspore::lite::RET_ERROR; } 507virtual int Eval() { return mindspore::lite::RET_OK; } 508virtual int SetupVirtualBatch(int virtual_batch_multiplier, float lr = -1.0f, float momentum = -1.0f) { 509 return mindspore::lite::RET_ERROR; 510 } 511virtual std::vector<tensor::MSTensor *> GetPredictions() const { 512 std::vector<tensor::MSTensor *> outputs; 513 return outputs; 514 } 515... 516``` 517 518###### Add Export API for Training on device, obsolete SaveToFile API.([!17356](https://gitee.com/mindspore/mindspore/pulls/17356)) 519 520Previously, Training on Device uses SaveToFile API to save the training model to file. Export API was added in this release to support more format, more model type(train or interface part of the model), and save weight quant model of train. 521 522```cpp 523virtual int Export(const std::string &file_name, lite::ModelType model_type = lite::MT_TRAIN, 524 lite::QuantizationType quant_type = lite::QT_DEFAULT, lite::FormatType = lite::FT_FLATBUFFERS) { 525 return mindspore::lite::RET_ERROR; 526 } 527``` 528 529###### Add GetFeatureMaps and UpdateFeatureMaps interface for Training on device.([!18344](https://gitee.com/mindspore/mindspore/pulls/18344)) 530 531When Training on the device, we may need to update the model featuremap and get model featuremap.particularly in MindSpore Federated Scenario. 532 533```cpp 534virtual std::vector<tensor::MSTensor *> GetFeatureMaps() const { 535 std::vector<tensor::MSTensor *> features; 536 return features; 537 } 538 virtual int UpdateFeatureMaps(const std::vector<tensor::MSTensor *> &features) { return mindspore::lite::RET_ERROR; } 539``` 540 541#### New features 542 543##### Java API 544 545###### new static method for creating LiteSession by MSConifg in LiteSession.class 546 547Previously, if we want to create a LiteSession object, we need to call two APIs: 548 549```js 550MSConfig config; 551// config options ... 552LiteSession liteSession = new LiteSession(); 553boolean ret = liteSession.init(config); 554if (!ret) { 555 // handle init LiteSession failed ... 556} 557``` 558 559now we can create a LiteSession object with new API just like: 560 561```js 562MSConfig config; 563// config options ... 564LiteSession liteSession = createSession(config); 565if (liteSession == null) { 566 // handle create LiteSession failed ... 567} 568``` 569 570###### new static method for creating LiteSession byModelBuffer and MSConfig in LiteSession.class 571 572Previously, if we want to inference a model, we need to call APIs like: 573 574```js 575MSConfig config; 576// config options ... 577LiteSession liteSession = new LiteSession(); 578boolean initSessionRet = liteSession.init(config); 579if (!initSessionRet) { 580 // handle init LiteSession failed and return ... 581} 582Model model = new Model(); 583boolean loadModelRet = model.loadModel(modelMappedByteBuffer); 584if (!loadModelRet) { 585 // handle load model failed and return ... 586} 587boolean compileModelRet = liteSession.compileGraph(model); 588if (!loadModelRet) { 589 // handle compile model failed and return ... 590} 591model.free(); 592// liteSession is ready to inference model, call runGraph in LiteSession.class ... 593``` 594 595now we can use new API just like: 596 597```js 598MSConfig config; 599// config options ... 600LiteSession liteSession = createSession(modelMappedByteBuffer, config); 601if (liteSession == null) { 602 // handle init LiteSession failed and return ... 603} 604// liteSession is ready to inference model, call runGraph in LiteSession.class ... 605``` 606 607New createSession method is an API that integrates four old APIs: LiteSession.init, Model.loadModel, LiteSession.compileGraph and model.free. It is simple and efficient as it reduces one modelBuffer copy operation. 608 609###### new methods getFeaturesMap and updateFeatures for in LiteSession.class 610 611Recently, we add a new C++ api in LiteSession class, Correspondingly we add a new java API in LiteSession.java. 612 613```java 614public List<MSTensor> getFeaturesMap() { 615 List<Long> ret = this.getFeaturesMap(this.sessionPtr); 616 ArrayList<MSTensor> tensors = new ArrayList<MSTensor>(); 617 for (Long msTensorAddr : ret) { 618 MSTensor msTensor = new MSTensor(msTensorAddr); 619 tensors.add(msTensor); 620 } 621 return tensors; 622 } 623 public boolean updateFeatures(List<MSTensor> features) { 624 long[] inputsArray = new long[features.size()]; 625 for (int i = 0; i < features.size(); i++) { 626 inputsArray[i] = features.get(i).getMSTensorPtr(); 627 } 628 return this.updateFeatures(this.sessionPtr, inputsArray); 629 } 630``` 631 632###### new methods export to replace saveToFile API in LiteSession.class 633 634Recently, we add a new C++ api in LiteSession class, Correspondingly we add a new java API in LiteSession.java. 635 636```java 637public boolean export(String modelFileName, int modelType, int quantizationType) { 638 return this.export(this.sessionPtr, modelFileName, modelType, quantizationType); 639 } 640``` 641 642###### new train related API moved to LiteSession.class from TrainSession.class 643 644Align with update of C++ api in LiteSession class, add new java API to LiteSession.java Correspondingly. 645 646```java 647public class LiteSession { 648... 649public static LiteSession createTrainSession(String modelName, final MSConfig config, boolean trainMode){...} 650public boolean train() {...} 651public boolean eval() {...} 652... 653``` 654 655### Bug fixes 656 6571. Fix the bug that the train session does not release memory cause of refcount bug. 658 659#### Deprecations 660 661### Contributors 662 663Thanks goes to these wonderful people: 664 665Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking. 666 667Contributions of any kind are welcome! 668 669# MindSpore 1.2.1 670 671## MindSpore 1.2.1 Release Notes 672 673### Major Features and Improvements 674 675#### FrontEnd 676 677- [STABLE] Add MaskedSelect aicpu operation.(Ascend) 678 679#### Auto Parallel 680 681- [STABLE] Support distributed checkpoint loading.(Ascend/GPU) 682 683# MindSpore 1.2.0 684 685## MindSpore 1.2.0 Release Notes 686 687### Major Features and Improvements 688 689#### NewModels 690 691- [STABLE] Add CV models on Ascend: 3D Unet, Unet++, SSD-Resnet50-fpn, SSD-VGG16, crnn_seq2seq_ocr for BSI, CTPN, resnet18, DPN 692- [STABLE] Add CV models on GPU: Faster-RCNN 693- [STABLE] Add NLP models on Ascend: NAML, Fasttext, GRU, LSTM 694- [BETA] Add TPRR: Thinking Path Re-Ranker, an original ranked-base framework for Multi-Hop Question Answering which has won the first place in HotpotQA leaderboard.(Ascend) 695 696#### FrontEnd 697 698- [STABLE] Support side effects expression to ensure that the perform order of user's semantics is correct.(Ascend/GPU/CPU) 699- [STABLE] Support calculating the gradient for network that contain non-Tensor input parameters(int, float, bool, mstype,int, mstype.float, mstype.uint, mstype.bool_, tuple, list, dict).(Ascend/GPU/CPU) 700- [STABLE] Support the inverse of a bool Tensor.(Ascend/GPU/CPU) 701- [STABLE] Uniform the interface `isinstance`.(Ascend/GPU/CPU) 702- [STABLE] Support negative indexes.(Ascend/GPU/CPU) 703- [STABLE] Support 110+ Numpy-like interfaces in mindspore.numpy.(Ascend/GPU/CPU) 704- [STABLE] Support export/load mindir model with a size greater than 2 GB. 705- [STABLE] The optimizer supports gradient centralization.(Ascend) 706- [STABLE] Support support auc metric, rou metric, bleu score metric, confusion matrix metric, cosine similarity metric, dice metric, hausdorff distance metric, occlusion sensitivity metric, perplexity metric, mean surface distance metric, root mean surface distance metric. 707- [STABLE] Support use EmbeddingLookup with cache.(Ascend) 708- [STABLE] Add MaskedSelect aicpu operation.(Ascend) 709 710#### Auto Parallel 711 712- [STABLE] Support AllGather and ReduceScatter fusion.(Ascend) 713- [STABLE] Support gradient accumulation feature in auto parallel mode.(Ascend/GPU) 714- [STABLE] Support running parallel optimizer with gradient accumulation.(Ascend) 715- [STABLE] Add the configuration of communication operators' fusion.(Ascend) 716- [STABLE] Support distributed checkpoint loading.(Ascend/GPU) 717 718#### Executor 719 720- [STABLE] Support inference with Nvidia GPU. 721- [STABLE] Support data parallelism in PyNative mode.(Ascend/GPU) 722- [STABLE] Optimize LSTM inference memory consumption in Graph mode with CPU. 723 724#### Sponge 725 726- [STABLE] Add SPONGE modules for molecular dynamics simulation, including Bond, Angle, Dihedral, Non Bond 14, NeighborList, Particle Mesh Ewald, Langevin MD and LIUJIAN MD.(GPU) 727 728#### DataSet 729 730- [STABLE] If the libnuma library is installed in the environment, you can run `export DATASET_ENABLE_NUMA=True` to configure NUMA binding. In multi-card training scenarios, the training data processing speed can be improved, thereby improving the network training efficiency. 731- [STABLE] Unify API Tensor structure of Training/Inference interfaces in C++ SDK. 732- [STABLE] Optimize duplicated Decode in data preprocess using cache, improve preprocess efficiency. 733- [STABLE] Support eager mode to run data augmentation in Python & C++. 734- [STABLE] Support more data augmentation operators(e.g. Affine, Perspective) in MindSpore-Lite. 735- [STABLE] Support light pipeline to process MindData in MindSpore-Lite training. 736- [STABLE] Support more data preprossing operators based on DVPP hardware module and can be used on on Ascend310 platform. 737- [STABLE] Support copy-free property for data in Ascend310 inference process scenarios. 738 739#### Running Data Recorder 740 741- [STABLE] Support running data recorder (RDR) for exception demarcation. 742- [STABLE] Provide records of multi-stage computational graphs, memory allocation information, graph execution order, stream execution order and task debug information when a "run task error" or "distribute task failed" occurs. (Ascend) 743- [STABLE] Provide records of multi-stage computational graphs, memory allocation information and graph execution order when a "SyncStream error" occurs. (GPU) 744 745#### 3D Feature 746 747- [STABLE] Support 3D ops: Conv3D, Conv3DBackpropInput, Conv3DBackpropFilter, Conv3DTranspose, BiasAdd, BiasAddGrad, PReLU, Transpose, Reshape, transdata, StrideSlice, MaxPool3D, MaxPool3DGrad, BinaryCrossEntropy, SigmoidCrossEntropyWithLogits, SigmoidCrossEntropyWithLogitsGrad, SoftmaxCrossEntropyWithLogits, SigmoidCrossEntropyWithLogits, SigmoidCrossEntropyWithLogitsGrad, BatchNorm3d, BatchNorm3dGrad, Dropout3d. 748- [STABLE] Support RMSELoss loss function, MAELoss loss function, FocalLoss loss function, DiceLoss binary loss function, and MultiClassDiceLoss multi-type loss function for 2D/3D network. 749- [STABLE] Add optimizer: AdamApplyOne(3D), ApplyMomentum(3D), SGD(3D). 750 751### API Change 752 753#### Backwards Incompatible Change 754 755##### Python API 756 757###### `mindspore.numpy.array()`, `mindspore.numpy.asarray()`, `mindspore.numpy.asfarray()`, `mindspore.numpy.copy()` now support GRAPH mode, but cannot accept `numpy.ndarray` as input arguments anymore([!12726](https://gitee.com/mindspore/mindspore/pulls/12726)) 758 759Previously, these interfaces can accept numpy.ndarray as arguments and convert numpy.ndarray to Tensor, but cannot be used in GRAPH mode. 760However, currently MindSpore Parser cannot parse numpy.ndarray in JIT-graph. To support these interfaces in graph mode, we have to remove `numpy.ndarray` support. With that being said, users can still use `Tensor` to convert `numpy.ndarray` to tensors. 761 762<table> 763<tr> 764<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 765</tr> 766<tr> 767<td> 768 769```python 770>>> import mindspore.numpy as mnp 771>>> import numpy 772>>> 773>>> nd_array = numpy.array([1,2,3]) 774>>> tensor = mnp.asarray(nd_array) # this line cannot be parsed in GRAPH mode 775``` 776 777</td> 778<td> 779 780```python 781>>> import mindspore.numpy as mnp 782>>> import numpy 783>>> 784>>> tensor = mnp.asarray([1,2,3]) # this line can be parsed in GRAPH mode 785``` 786 787</td> 788</tr> 789</table> 790 791###### mindspore.numpy interfaces remove support for keyword arguments `out` and `where`([!12726](https://gitee.com/mindspore/mindspore/pulls/12726)) 792 793Previously, we have incomplete support for keyword arguments `out` and `where` in mindspore.numpy interfaces, however, the `out` argument is only functional when `where` argument is also provided, and `out` cannot be used to pass reference to numpy functions. Therefore, we have removed these two arguments to avoid any confusion users may have. Their original functionality can be found in [np.where](https://www.mindspore.cn/docs/api/en/r1.5/api_python/numpy/mindspore.numpy.where.html#mindspore.numpy.where) 794 795<table> 796<tr> 797<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 798</tr> 799<tr> 800<td> 801 802```python 803>>> import mindspore.numpy as np 804>>> 805>>> a = np.ones((3,3)) 806>>> b = np.ones((3,3)) 807>>> out = np.zeros((3,3)) 808>>> where = np.asarray([[True, False, True],[False, False, True],[True, True, True]]) 809>>> res = np.add(a, b, out=out, where=where) # `out` cannot be used as a reference, therefore it is misleading 810``` 811 812</td> 813<td> 814 815```python 816>>> import mindspore.numpy as np 817>>> 818>>> a = np.ones((3,3)) 819>>> b = np.ones((3,3)) 820>>> out = np.zeros((3,3)) 821>>> where = np.asarray([[True, False, True],[False, False, True],[True, True, True]]) 822>>> res = np.add(a, b) 823>>> out = np.where(where, x=res, y=out) # instead of np.add(a, b, out=out, where=where) 824``` 825 826</td> 827</tr> 828</table> 829 830###### Turn `ops.MakeRefKey` into an internal interface ([!12010](https://gitee.com/mindspore/mindspore/pulls/12010)) 831 832Previously MakeRefKey is an external interface that is not used, now make it an internal interface with the same usage. We do not recommend users to use this interface, and we will remove the relevant introduction of this interface from the official website. 833 834###### `ops.ApplyFtrl`, `ops.ApplyMomentum`, `ops.ApplyRMSProp`, `ops.ApplyCenteredRMSProp` change the output on Ascend backend from multiple to a single. ([!11895](https://gitee.com/mindspore/mindspore/pulls/11895)) 835 836Previously the number of outputs of these operator is different on different backends. To unify their definition we change their output on Ascend backend from multiple to a single. 837 838##### `P.FusedBatchNorm`, `P.FusedBatchNormEx` deleted ([!12115](https://gitee.com/mindspore/mindspore/pulls/12115)) 839 840The FusedBatchNorm and FusedBatchNormEx interface has been deleted. Please use the batchnorm operator to replace it. 841 842##### `MetaTensor` deleted ([!10325](https://gitee.com/mindspore/mindspore/pulls/10325)) 843 844The MetaTensor interface has been deleted. The function of MetaTensor has been integrated into tensor. 845 846###### `ControlDepend` is deleted, use `Depend` instead. The decorator `@C.add_flags(has_effect=True)` does not work. ([!13793](https://gitee.com/mindspore/mindspore/pulls/13793)) 847 848Previously, we used ControlDepend to control the execution order of multiple operators. In version 1.2.0, mindspore introduces the auto-monad side effects expression to ensure that the perform order of user's semantics is correct. Therefore, ControlDepend is deleted and Depend is recommended. 849 850In most scenarios, if operators have IO side effects (such as print) or memory side effects (such as assign), they will be executed according to the user's semantics. In some scenarios, if the two operators A and B have no order dependency, and A must be executed before B, we recommend using Depend to specify their execution order. See the API documentation of the Depend operator for specific usage. 851 852<table> 853<tr> 854<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 855</tr> 856<tr> 857<td> 858 859```python 860 In some side-effect scenarios, we need to ensure the execution order of operators. 861 In order to ensure that operator A is executed before operator B, it is recommended 862 to insert the Depend operator between operators A and B. 863 864 Previously, the ControlDepend operator was used to control the execution order. 865 Since the ControlDepend operator is deprecated from version 1.1, it is recommended 866 to use the Depend operator instead. The replacement method is as follows:: 867 868 a = A(x) ---> a = A(x) 869 b = B(y) ---> y = Depend(y, a) 870 ControlDepend(a, b) ---> b = B(y) 871``` 872 873</td> 874<td> 875 876```python 877 In most scenarios, if operators have IO side effects or memory side effects, 878 they will be executed according to the user's semantics. In some scenarios, 879 if the two operators A and B have no order dependency, and A must be executed 880 before B, we recommend using Depend to specify their execution order. The 881 usage method is as follows:: 882 883 a = A(x) ---> a = A(x) 884 b = B(y) ---> y = Depend(y, a) 885 ---> b = B(y) 886``` 887 888</td> 889</tr> 890</table> 891 892After the introduction of the auto-monad side effect expression feature, the decorator `@C.add_flags(has_effect=True)` does not work. If the decorator is used in the script, please modify. Take the overflow identification operator (without side effects) as an example, the modification method is as follows: 893 894<table> 895<tr> 896<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 897</tr> 898<tr> 899<td> 900 901```python 902@C.add_flags(has_effect=True) 903def construct(self, *inputs): 904 ... 905 loss = self.network(*inputs) 906 init = self.allo_status() 907 self.clear_status(init) 908 ... 909``` 910 911</td> 912<td> 913 914```python 915def construct(self, *inputs): 916 ... 917 loss = self.network(*inputs) 918 init = self.allo_status() 919 init = F.depend(init, loss) 920 clear_status = self.clear_status(init) 921 ... 922``` 923 924</td> 925</tr> 926</table> 927 928##### C++ API 929 930###### C++ API support dual ABI now.([!12432](https://gitee.com/mindspore/mindspore/pulls/12432)) 931 9321.1.1 supports only the old ABI. Currently, both the new and the old are supported. 933 934<table> 935<tr> 936<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 937</tr> 938<tr> 939<td> 940 941```cmake 942add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) 943``` 944 945</td> 946<td> 947 948```cmake 949add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) # old ABI are supported 950add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=1) # new ABI are supprrted, too 951 # write nothing, use new ABI as default 952``` 953 954</td> 955</tr> 956</table> 957 958###### Context refactor.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 959 960The `Context` class is refactored. For details, see the API docs. 961 962<table> 963<tr> 964<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 965</tr> 966<tr> 967<td> 968 969```cpp 970GlobalContext::SetGlobalDeviceTarget(kDeviceTypeAscend310); // set device target is ascend310 971GlobalContext::SetGlobalDeviceID(0); // set device id is 0 972auto model_context = std::make_shared<ModelContext>(); // create a model context 973ModelContext::SetInsertOpConfigPath(model_context, "./aipp.cfg") // set aipp config file is ./aipp.cfg 974``` 975 976</td> 977<td> 978 979```cpp 980auto model_context = std::make_shared<Context>(); // create a model context 981auto ascend310_info = std::make_shared<Ascend310DeviceInfo>(); 982model_context.MutableDeviceInfo().push_back(ascend310_info ); // set device target is ascend310 983ascend310_info->SetDeviceID(0); // set device id is 0 984ascend310_info->SetInsertOpConfigPath("./aipp.cfg"); // set aipp config file is ./aipp.cfg 985``` 986 987</td> 988</tr> 989</table> 990 991###### LoadModel interface changes.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 992 993`LoadModel` is renamed `Load`. No exception is thrown new but the return status should be checked. 994 995<table> 996<tr> 997<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 998</tr> 999<tr> 1000<td> 1001 1002```cpp 1003try { 1004 auto graph = Serialization::LoadModel(model_file_path, kMindIR); 1005} catch (...) { ... } 1006``` 1007 1008</td> 1009<td> 1010 1011```cpp 1012Graph graph; 1013auto ret = Serialization::Load(model_file_path, kMindIR, &graph); 1014if (ret != kSuccess) { ... } 1015``` 1016 1017</td> 1018</tr> 1019</table> 1020 1021###### Model ctor changes.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 1022 1023`Model` uses a non-parameter ctor now, and arguments are passed in through `Build`. 1024 1025<table> 1026<tr> 1027<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 1028</tr> 1029<tr> 1030<td> 1031 1032```cpp 1033Model net(net_cell, model_context); 1034auto ret = net.Build(); 1035if (ret != kSuccess) { ... } 1036``` 1037 1038</td> 1039<td> 1040 1041```cpp 1042Model net; 1043auto ret = net.Build(net_cell, model_context); 1044if (ret != kSuccess) { ... } 1045``` 1046 1047</td> 1048</tr> 1049</table> 1050 1051###### MSTensor::CreateTensor returns a native pointer now.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 1052 1053`MSTensor::CreateTensor` and `MSTensor::CreateRefTensor` returns a native pointer now, need to be destroy by `DestroyTensorPtr`. 1054 1055<table> 1056<tr> 1057<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 1058</tr> 1059<tr> 1060<td> 1061 1062```cpp 1063auto tensor = MSTensor::CreateTensor(xxx, xxx, ...); 1064auto name = tensor.Name(); 1065``` 1066 1067</td> 1068<td> 1069 1070```cpp 1071auto tensor = MSTensor::CreateTensor(xxx, xxx, ...); 1072auto name = tensor->Name(); 1073MSTensor::DestroyTensorPtr(tensor); 1074``` 1075 1076</td> 1077</tr> 1078</table> 1079 1080#### New features 1081 1082##### Python API 1083 1084- Add SPONGE functions: `mindspore.ops.operations.BondForceWithAtomEnergy`, `mindspore.ops.operations.AngleForceWithAtomEnergy`, `mindspore.ops.operations.DihedralForceWithAtomEnergy`, `mindspore.ops.operations.Dihedral14LJCFForceWithAtomEnergy`, `mindspore.ops.operations.LJForceWithPMEDirectForce`, `mindspore.ops.operations.PMEExcludedForce`, `mindspore.ops.operations.PMEReciprocalForce`,`mindspore.ops.operations.BondEnergy`, `mindspore.ops.operations.AngleEnergy`,`mindspore.ops.operations.DihedralEnergy`, `mindspore.ops.operations.Dihedral14LJEnergy`, `mindspore.ops.operations.Dihedral14CFEnergy`,`mindspore.ops.operations.LJEnergy`, `mindspore.ops.operations.PMEEnergy`. All operators are supported in `GPU`. 1085 1086#### Deprecations 1087 1088##### Python API 1089 1090###### `nn.MatMul` is now deprecated in favor of `ops.matmul` ([!12817](https://gitee.com/mindspore/mindspore/pulls/12817)) 1091 1092[ops.matmul](https://www.mindspore.cn/docs/api/en/r1.5/api_python/ops/mindspore.ops.matmul.html#mindspore.ops.matmul) follows the API of [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html) as closely as possible. As a function interface, [ops.matmul](https://www.mindspore.cn/docs/api/en/r1.5/api_python/ops/mindspore.ops.matmul.html#mindspore.ops.matmul) is applied without instantiation, as opposed to `nn.MatMul`, which should only be used as a class instance. 1093 1094<table> 1095<tr> 1096<td style="text-align:center"> 1.1.1 </td> <td style="text-align:center"> 1.2.0 </td> 1097</tr> 1098<tr> 1099<td> 1100 1101```python 1102>>> import numpy as np 1103>>> from mindspore import Tensor, nn 1104>>> 1105>>> x = Tensor(np.ones((2, 3)).astype(onp.float32) 1106>>> y = Tensor(np.ones((3, 4)).astype(onp.float32) 1107>>> nn.MatMul()(x, y) 1108``` 1109 1110</td> 1111<td> 1112 1113```python 1114>>> import numpy as np 1115>>> from mindspore import Tensor, ops 1116>>> 1117>>> x = Tensor(np.ones((2, 3)).astype(onp.float32) 1118>>> y = Tensor(np.ones((3, 4)).astype(onp.float32) 1119>>> ops.matmul(x, y) 1120``` 1121 1122</td> 1123</tr> 1124</table> 1125 1126### Bug fixes 1127 1128#### FrontEnd 1129 1130- fix the null pointer problem of evaluator in control flow.([!13312](https://gitee.com/mindspore/mindspore/pulls/13312)) 1131- fix parameter naming conflict bug for CellList and SequentialCell. ([!13260](https://gitee.com/mindspore/mindspore/pulls/13260)) 1132 1133#### Executor 1134 1135- fix executor pending task not execute in some heterogeneous cases.([!13465](https://gitee.com/mindspore/mindspore/pulls/13465)) 1136- add passes to support frontend IR unification, including following operations: SliceGrad([!11783](https://gitee.com/mindspore/mindspore/pulls/11783)), ApplyFtrl, ApplyMomentum, ApplyRMSProp, CenteredRMSProp([!11895](https://gitee.com/mindspore/mindspore/pulls/11895)), AvgPoolGrad([!12813](https://gitee.com/mindspore/mindspore/pulls/12813)), BatchNorm([!12115](https://gitee.com/mindspore/mindspore/pulls/12115)) 1137 1138#### Dataset 1139 1140- Fix getter functions(e.g. GetDatasetSize) terminated abnormally when use python multi-processing. ([!13571](https://gitee.com/mindspore/mindspore/pulls/13571), [!13823](https://gitee.com/mindspore/mindspore/pulls/13823)) 1141- Fix unclear error log of data augmentation operators. ([!12398](https://gitee.com/mindspore/mindspore/pulls/12398), [!12883](https://gitee.com/mindspore/mindspore/pulls/12883), [!13176](https://gitee.com/mindspore/mindspore/pulls/13176)) 1142- Fix profiling performs abnormally when sink_size = False, as saving data is later than profiling analysis. ([!13944](https://gitee.com/mindspore/mindspore/pulls/13944)) 1143 1144## MindSpore Lite 1145 1146### Major Features and Improvements 1147 1148#### Converter and runtime 1149 11501. Support TensorFlow model in Converter except aware-training model. 11512. Add fusion pattern for same horizontal operators in Converter. 11523. Support Jar in x86_64 system for integrating into server with Java backend conveniently. 11534. Provide unified runtime API for developer reusing their code between cloud side and end side.[BETA] 11545. Improve control-flow capabilities continually: Support GRU fusion in Converter; Support weight-quant for control-flow model; Support control-flow model inference with half precision; Support nested control-flow model.[BETA] 1155 1156#### ARM backend optimization 1157 11581. Add NLP dependent float16 operators(like lstm) to enhance inference performance. 11592. Optimize operators: lstm, gru, depthwise. 11603. Add 6 NPU operators(like FullConnection), and fix some bugs about buildIR failed. 1161 1162#### OpenCL backend 1163 11641. Add new ops:add 10+ ops,total 72 ops; 11652. Performance optimization:by memory layout optimize,block tiling,Performance improved by 30% compared to version 1.1 at Adreno GPU. 11663. Initialization time optimization:initialization time improve 100% vs MSLITE Version1.1 by store kernel cache as binary. 11674. Support Java call on Mali or Adreno GPU. 1168 1169#### Post quantization 1170 11711. Support quantization of gather and lstm ops. 11722. Support quantizatizing TF Lite models with sub-graph node. 11733. Add quantiztion strategy to decide quantize ops or not,less accuracy loss and higher compression rate. 1174 1175#### Training on Device 1176 11771. Virtual batching, use mini-batch to minic large batch in theorical with few RAM consumption. 11782. Converter unify, do not compile tod and iod converter separately. 11793. Performance optimization to BWD ops. 11804. TrainLoop with Off-The-Shelf Functionality blocks, like LR scheduler, Loss Monitor, Ckpt Saver, Accuracy Monitor. 11815. Integration of code with Minddata lite. 11826. Support more networks (googlenet, densenet, shufflenetv2, nin, vgg) and operators. 1183 1184#### Codegen 1185 11861. Support 79 ops for the ARM platform and all CMSIS ops for Arm Cortex-M Series. 11872. Multiplatform support, including Android, IoT Devices. 11883. Support offline model weight preprocessing while compiling. 11894. Support offline memory reuse computing for minimum runtime buffer size. 11905. Support kernel register for custom op. Third-party hardware like NNIE can be accessed through it. 1191 1192### API Change 1193 1194#### API Incompatible Change 1195 1196##### C++ API 1197 1198###### Add header file named lite_types.h for some common data structs. ([!12262](https://gitee.com/mindspore/mindspore/pulls/12262)) 1199 1200Previously, some common data structs such as `CpuBindMode` and `DeviceType` are in context.h, this may cause cross-dependency between headers. So we create a new header named lite_types.h for some common data structs and move `CpuBindMode` and `DeviceType` from context.h into lite_types.h. 1201 1202<table> 1203<tr> 1204<td style="text-align:center"> lite_types.h </td> 1205</tr> 1206<tr> 1207<td> 1208 1209```cpp 1210namespace mindspore::lite { 1211/// \brief CpuBindMode defined for holding bind cpu strategy argument. 1212typedef enum { 1213 NO_BIND, /**< no bind */ 1214 HIGHER_CPU, /**< bind higher cpu first */ 1215 MID_CPU /**< bind middle cpu first */ 1216} CpuBindMode; 1217 1218/// \brief DeviceType defined for holding user's preferred backend. 1219typedef enum { 1220 DT_CPU, /**< CPU device type */ 1221 DT_GPU, /**< GPU device type */ 1222 DT_NPU /**< NPU device type */ 1223} DeviceType; 1224} // namespace mindspore::lite 1225``` 1226 1227</td> 1228</tr> 1229</table> 1230 1231###### Add some new interfaces in ms_tensor.h for unified runtime API.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 1232 1233Previously, users could not create `MSTensor` or modify ``MSTensor, all `MSTensor` are created and managed by framework. However users need to create or modify MSTensor sometimes such as pre-processing input data. So we provide two new interfaces in ms_tensor.h: `CreateTensor` interface for creating `MSTensor` by user and `set_shape` interface for modifying the shape of `MSTensor`. 1234 1235<table> 1236<tr> 1237<td style="text-align:center"> CreateTensor </td> 1238</tr> 1239<tr> 1240<td> 1241 1242```cpp 1243/// \brief Create a MSTensor. 1244/// 1245/// \return Pointer to an instance of MindSpore Lite MSTensor. 1246static MSTensor *CreateTensor(const std::string &name, TypeId type, const std::vector<int> &shape, const void *data, 1247 size_t data_len); 1248``` 1249 1250</td> 1251</tr> 1252</table> 1253 1254<table> 1255<tr> 1256<td style="text-align:center"> set_shape </td> 1257</tr> 1258<tr> 1259<td> 1260 1261```cpp 1262/// \brief Set the shape of MSTensor. 1263virtual void set_shape(const std::vector<int> &shape) = 0; 1264``` 1265 1266</td> 1267</tr> 1268</table> 1269 1270Previously, users could access to data of `MSTensor` by interface named `MutableData`. However `MutableData` is not only returning data of tensor but also allocating data for tensor if its data is nullptr. So we provide a new interfaces in ms_tensor.h named `data` for returning data of tensor without allocating automatically. 1271 1272<table> 1273<tr> 1274<td style="text-align:center"> data </td> 1275</tr> 1276<tr> 1277<td> 1278 1279```cpp 1280/// \brief Get the pointer of data in MSTensor. 1281/// 1282/// \note The data pointer can be used to both write and read data in MSTensor. No memory buffer will be 1283/// allocated. 1284/// 1285/// \return the pointer points to data in MSTensor. 1286virtual void *data() = 0; 1287``` 1288 1289</td> 1290</tr> 1291</table> 1292 1293###### Delete `DimensionSize()` in ms_tensor.h.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 1294 1295The interface named `DimensionSize` is fuinctionally overlapped with the interface named `shape`. For the simplicity of the interface, we delete `DimensionSize` and recommend users to use the new interface named `shape` instead. 1296 1297<table> 1298<tr> 1299<td style="text-align:center"> DimensionSize() </td> 1300</tr> 1301<tr> 1302<td> 1303 1304```cpp 1305/// \brief Get size of the dimension of the MindSpore Lite MSTensor index by the parameter index. 1306/// 1307/// \param[in] index Define index of dimension returned. 1308/// 1309/// \return Size of dimension of the MindSpore Lite MSTensor. 1310virtual int DimensionSize(size_t index) const = 0; 1311``` 1312 1313</td> 1314</tr> 1315</table> 1316 1317###### Move allocator from namespace mindspore::lite to namespace lite for unified runtime API.([!13515](https://gitee.com/mindspore/mindspore/pulls/13515)) 1318 1319Previously, class `Allocator` is in namespace mindspore::lite. Considering unified allocator interface for unified runtime API, we move `Allocator` to namespace mindspore. 1320 1321<table> 1322<tr> 1323<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.2.0 </td> 1324</tr> 1325<tr> 1326<td> 1327 1328```cpp 1329namespace mindspore::lite { 1330/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically. 1331/// 1332/// \note List public class and interface for reference. 1333class Allocator; 1334} 1335``` 1336 1337</td> 1338<td> 1339 1340```cpp 1341namespace mindspore { 1342/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically. 1343/// 1344/// \note List public class and interface for reference. 1345class Allocator; 1346} 1347``` 1348 1349</td> 1350</tr> 1351</table> 1352 1353### Bug fixes 1354 13551. Fix the bug that the array in kernel registrar is not initialized. 13562. Fix segment fault caused by releasing of OpParameter in Crop kernel in mistake. 13573. Fix the bug that the MINDIR aware-training model is finally interpreted as weight-quant model. 1358 1359## Contributors 1360 1361Thanks goes to these wonderful people: 1362 1363Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa. 1364 1365Contributions of any kind are welcome! 1366 1367# MindSpore 1.1.1 Release Notes 1368 1369## MindSpore 1370 1371### Major Features and Improvements 1372 1373#### NewModels 1374 1375- [STABLE] BGCF: a Bayesian Graph Collaborative Filtering(BGCF) framework used to model the uncertainty in the user-item interaction graph and thus recommend accurate and diverse items on Amazon recommendation dataset.(Ascend) 1376- [STABLE] GRU: a recurrent neural network architecture like the LSTM(Long-Short Term Memory) on Multi30K dataset.(Ascend) 1377- [STABLE] FastText: a simple and efficient text classification algorithm on AG's news topic classification dataset, DBPedia Ontology classification dataset and Yelp Review Polarity dataset.(Ascend) 1378- [STABLE] LSTM: a recurrent neural network architecture used to learn word vectors for sentiment analysis on aclImdb_v1 dataset.(Ascend) 1379- [STABLE] SimplePoseNet: a convolution-based neural network for the task of human pose estimation and tracking on COCO2017 dataset.(Ascend) 1380 1381#### FrontEnd 1382 1383- [BETA] Support Tensor Fancy Index Getitem with tuple and list. (Ascend/GPU/CPU) 1384 1385### Backwards Incompatible Change 1386 1387#### Python API 1388 1389##### `ops.AvgPool`, `ops.MaxPool`, `ops.MaxPoolWithArgmax` change attr name from 'ksize', 'padding' to 'kernel_size', 'pad_mode' ([!11350](https://gitee.com/mindspore/mindspore/pulls/11350)) 1390 1391Previously the kernel size and pad mode attrs of pooling ops are named "ksize" and "padding", which is a little puzzling and inconsistent with convolution ops. So they are rename to "kernel_size" and "pad_mode". 1392 1393<table> 1394<tr> 1395<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1396</tr> 1397<tr> 1398<td> 1399 1400```python 1401>>> import mindspore.ops as ops 1402>>> 1403>>> avg_pool = ops.AvgPool(ksize=2, padding='same') 1404>>> max_pool = ops.MaxPool(ksize=2, padding='same') 1405>>> max_pool_with_argmax = ops.MaxPoolWithArgmax(ksize=2, padding='same') 1406``` 1407 1408</td> 1409<td> 1410 1411```python 1412>>> import mindspore.ops as ops 1413>>> 1414>>> avg_pool = ops.AvgPool(kernel_size=2, pad_mode='same') 1415>>> max_pool = ops.MaxPool(kernel_size=2, pad_mode='same') 1416>>> max_pool_with_argmax = ops.MaxPoolWithArgmax(kernel_size=2, pad_mode='same') 1417``` 1418 1419</td> 1420</tr> 1421</table> 1422 1423##### `ops.TensorAdd`, change API name to `ops.Add` ([!11568](https://gitee.com/mindspore/mindspore/pulls/11568)) 1424 1425The operator name TensorAdd is not standardized, it is changed to Add. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface. 1426 1427<table> 1428<tr> 1429<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1430</tr> 1431<tr> 1432<td> 1433 1434```python 1435>>> import mindspore.ops as ops 1436>>> 1437>>> add = ops.TensorAdd() 1438``` 1439 1440</td> 1441<td> 1442 1443```python 1444>>> import mindspore.ops as ops 1445>>> 1446>>> add = ops.Add() 1447``` 1448 1449</td> 1450</tr> 1451</table> 1452 1453##### `ops.Gelu`, `ops.GeluGrad`, `ops.FastGelu`, `ops.FastGeluGrad`, change API name to `ops.GeLU`, `ops.GeLUGrad`, `ops.FastGeLU`, `ops.FastGeLUGrad` ([!11603](https://gitee.com/mindspore/mindspore/pulls/11603)) 1454 1455Gelu, GeluGrad, FastGelu, and FastGeluGrad names are unified into ReLU naming rules, "lu" is changed to the uppercase "LU". The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface. 1456 1457<table> 1458<tr> 1459<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1460</tr> 1461<tr> 1462<td> 1463 1464```python 1465>>> import mindspore.ops as ops 1466>>> 1467>>> gelu = ops.Gelu() 1468>>> gelu_grad = ops.GeluGrad() 1469>>> fast_gelu = ops.FastGelu() 1470>>> fast_gelu_grad = ops.FastGeluGrad() 1471``` 1472 1473</td> 1474<td> 1475 1476```python 1477>>> import mindspore.ops as ops 1478>>> 1479>>> gelu = ops.GeLU() 1480>>> gelu_grad = ops.GeLUGrad() 1481>>> fast_gelu = ops.FastGeLU() 1482>>> fast_gelu_grad = ops.FastGeLUGrad() 1483``` 1484 1485</td> 1486</tr> 1487</table> 1488 1489##### `ops.GatherV2`, change API name to `ops.Gather` ([!11713](https://gitee.com/mindspore/mindspore/pulls/11713)) 1490 1491GatherV2 is changed to Gather. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface. 1492 1493<table> 1494<tr> 1495<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1496</tr> 1497<tr> 1498<td> 1499 1500```python 1501>>> import mindspore.ops as ops 1502>>> 1503>>> gather = ops.GatherV2() 1504``` 1505 1506</td> 1507<td> 1508 1509```python 1510>>> import mindspore.ops as ops 1511>>> 1512>>> gather = ops.Gather() 1513``` 1514 1515</td> 1516</tr> 1517</table> 1518 1519##### `ops.Pack`、`ops.Unpack`, change API name to `ops.Stack`、`ops.Unstack` ([!11828](https://gitee.com/mindspore/mindspore/pulls/11828)) 1520 1521Pack is changed to Stack, and Unpack is changed to Unstack. The old interface can be used continuously, but will be deleted in subsequent versions, it is recommended to use and switch to the latest interface. 1522 1523<table> 1524<tr> 1525<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1526</tr> 1527<tr> 1528<td> 1529 1530```python 1531>>> import mindspore.ops as ops 1532>>> 1533>>> pack= ops.Pack() 1534>>> unpack= ops.Unpack() 1535``` 1536 1537</td> 1538<td> 1539 1540```python 1541>>> import mindspore.ops as ops 1542>>> 1543>>> stack= ops.Stack() 1544>>> unstack= ops.Unstack() 1545``` 1546 1547</td> 1548</tr> 1549</table> 1550 1551##### `ops.ControlDepend`, add deprecated to ControlDepend ([!11844](https://gitee.com/mindspore/mindspore/pulls/11844)) 1552 1553ControlDepend is deprecated and will be removed in a future version, use Depend instead. 1554 1555<table> 1556<tr> 1557<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1558</tr> 1559<tr> 1560<td> 1561 1562```pythonNote: 1563Note: 1564 This operation does not work in `PYNATIVE_MODE`. 1565``` 1566 1567</td> 1568<td> 1569 1570```python 1571Note: 1572 This operation does not work in `PYNATIVE_MODE`. 1573 `ControlDepend` is deprecated from version 1.1 and will be removed in a future version, use `Depend` instead. 1574``` 1575 1576</td> 1577</tr> 1578</table> 1579 1580##### `ops.Depend`, add operator description and use case ([!11815](https://gitee.com/mindspore/mindspore/pulls/11815)), ([!11879](https://gitee.com/mindspore/mindspore/pulls/11879)) 1581 1582Since the ControlDepend operator will be deprecated from version 1.2, it is recommended to use the Depend operator instead. 1583 1584<table> 1585<tr> 1586<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1587</tr> 1588<tr> 1589<td> 1590 1591```python 1592Depend is used for processing side-effect operations. 1593 1594Inputs: 1595 - **value** (Tensor) - the real value to return for depend operator. 1596 - **expr** (Expression) - the expression to execute with no outputs. 1597 1598Outputs: 1599 Tensor, the value passed by last operator. 1600 1601Supported Platforms: 1602 ``Ascend`` ``GPU`` ``CPU`` 1603``` 1604 1605</td> 1606<td> 1607 1608```python 1609Depend is used for processing dependency operations. 1610 1611In some side-effect scenarios, we need to ensure the execution order of operators. 1612In order to ensure that operator A is executed before operator B, it is recommended 1613to insert the Depend operator between operators A and B. 1614 1615Previously, the ControlDepend operator was used to control the execution order. 1616Since the ControlDepend operator will be deprecated from version 1.2, it is 1617recommended to use the Depend operator instead. The replacement method is as follows:: 1618 1619 a = A(x) ---> a = A(x) 1620 b = B(y) ---> y = Depend(y, a) 1621 ControlDepend(a, b) ---> b = B(y) 1622 1623Inputs: 1624 - **value** (Tensor) - the real value to return for depend operator. 1625 - **expr** (Expression) - the expression to execute with no outputs. 1626 1627Outputs: 1628 Tensor, the value passed by last operator. 1629 1630Supported Platforms: 1631 ``Ascend`` ``GPU`` ``CPU`` 1632 1633Examples: 1634 >>> import numpy as np 1635 >>> import mindspore 1636 >>> import mindspore.nn as nn 1637 >>> import mindspore.ops.operations as P 1638 >>> from mindspore import Tensor 1639 >>> class Net(nn.Cell): 1640 ... def __init__(self): 1641 ... super(Net, self).__init__() 1642 ... self.softmax = P.Softmax() 1643 ... self.depend = P.Depend() 1644 ... 1645 ... def construct(self, x, y): 1646 ... mul = x - y 1647 ... y = self.depend(y, mul) 1648 ... ret = self.softmax(y) 1649 ... return ret 1650 ... 1651 >>> x = Tensor(np.ones([4, 5]), dtype=mindspore.float32) 1652 >>> y = Tensor(np.ones([4, 5]), dtype=mindspore.float32) 1653 >>> net = Net() 1654 >>> output = net(x, y) 1655 >>> print(output) 1656 [[0.2 0.2 0.2 0.2 0.2] 1657 [0.2 0.2 0.2 0.2 0.2] 1658 [0.2 0.2 0.2 0.2 0.2] 1659 [0.2 0.2 0.2 0.2 0.2]] 1660``` 1661 1662</td> 1663</tr> 1664</table> 1665 1666#### C++ API 1667 1668##### change namespace from `mindspore::api` to `mindspore` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1669 1670<table> 1671<tr> 1672<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1673</tr> 1674<tr> 1675<td> 1676 1677```c++ 1678namespace ms = mindspore::api; 1679``` 1680 1681</td> 1682<td> 1683 1684```c++ 1685namespace ms = mindspore; 1686``` 1687 1688</td> 1689</tr> 1690</table> 1691 1692##### `Context` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1693 1694<table> 1695<tr> 1696<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1697</tr> 1698<tr> 1699<td> 1700 1701```c++ 1702ms::Context::Instance().SetDeviceTarget(ms::kDeviceTypeAscend310).SetDeviceID(0); 1703``` 1704 1705</td> 1706<td> 1707 1708```c++ 1709ms::GlobalContext::SetGlobalDeviceTarget(ms::kDeviceTypeAscend310); 1710ms::GlobalContext::SetGlobalDeviceID(0); 1711``` 1712 1713</td> 1714</tr> 1715</table> 1716 1717##### rename `Tensor` to `MSTensor` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1718 1719<table> 1720<tr> 1721<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1722</tr> 1723<tr> 1724<td> 1725 1726```c++ 1727ms::Tensor a; 1728``` 1729 1730</td> 1731<td> 1732 1733```c++ 1734ms::MSTensor a; 1735``` 1736 1737</td> 1738</tr> 1739</table> 1740 1741##### `Model` move setting of model options from `Build` to ctor `Model` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1742 1743<table> 1744<tr> 1745<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1746</tr> 1747<tr> 1748<td> 1749 1750```c++ 1751ms::Model model(graph_cell); 1752model.Build(model_options); 1753``` 1754 1755</td> 1756<td> 1757 1758```c++ 1759ms::Model model(graph_cell, model_context); 1760model.Build(); 1761``` 1762 1763</td> 1764</tr> 1765</table> 1766 1767##### `Model` modify `GetInputsInfo`, `GetOutputsInfo` to `GetInputs`, `GetOutputs` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1768 1769<table> 1770<tr> 1771<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1772</tr> 1773<tr> 1774<td> 1775 1776```c++ 1777std::vector<std::string> names; 1778std::vector<ms::DataType> types; 1779std::vector<std::vector<int64_t>> shapes; 1780std::vector<size_t> mem_sizes; 1781model.GetInputsInfo(&names, &types, &shapes, &mem_sizes); 1782std::cout << "Input 0 name: " << names[0] << std::endl; 1783``` 1784 1785</td> 1786<td> 1787 1788```c++ 1789auto inputs = model.GetInputs(); 1790std::cout << "Input 0 name: " << inputs[0].Name() << std::endl; 1791``` 1792 1793</td> 1794</tr> 1795</table> 1796 1797##### `Model` modify `Predict` parameters type from `Buffer` to `MSTensor` ([!11574](https://gitee.com/mindspore/mindspore/pulls/11574)) 1798 1799<table> 1800<tr> 1801<td style="text-align:center"> 1.1.0 </td> <td style="text-align:center"> 1.1.1 </td> 1802</tr> 1803<tr> 1804<td> 1805 1806```c++ 1807std::vector<ms::Buffer> inputs; 1808std::vector<ms::Buffer> outputs; 1809model.Predict(inputs, &outputs); 1810``` 1811 1812</td> 1813<td> 1814 1815```c++ 1816std::vector<ms::MSTensor> inputs; 1817std::vector<ms::MSTensor> outputs; 1818model.Predict(inputs, &outputs); 1819``` 1820 1821</td> 1822</tr> 1823</table> 1824 1825### Deprecations 1826 1827#### Python API 1828 1829##### `ops.SpaceToBatch`, `ops.BatchToSpace` are deprecated in favor of `ops.SpaceToBatchND`, `ops.BatchToSpaceND`([!11527](https://gitee.com/mindspore/mindspore/pulls/11527)) 1830 1831The `ops.SpaceToBatchND`, `ops.BatchToSpaceND` are more general and have same behavior as `ops.SpaceToBatch`, `ops.BatchToSpace` when `block_shape` is a int. 1832 1833##### `ops.DepthwiseConv2dNative` is deprecated in favor of `nn.Conv2D`([!11702](https://gitee.com/mindspore/mindspore/pulls/11702)) 1834 1835The `ops.DepthwiseConv2dNative` is only supported by Ascend, it is recommended to directly use `nn.Conv2D`. If `group` is equal to `in_ channels` and `out_channels`, the 2D convolution layer is also a 2D depthwise convolution layer. 1836 1837## Contributors 1838 1839Thanks goes to these wonderful people: 1840 1841Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa 1842 1843Contributions of any kind are welcome! 1844 1845# MindSpore 1.1.0 Release Notes 1846 1847## MindSpore 1848 1849### Major Features and Improvements 1850 1851#### NewModels 1852 1853- [STABLE] GNMT v2: similar to the model described in Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, which is mainly used for corpus translation, on WMT Englis-German dataset.(Ascend) 1854- [STABLE] MaskRCNN: a conceptually simple, flexible, and general framework for object instance segmentation on COCO2017 dataset.(Ascend) 1855- [STABLE] YOLOv4: a state-of-the-art detector which is faster and more accurate than all available alternative detectors on MS COCO dataset.(Ascend) 1856- [STABLE] Openpose: proposes a bottom-up human attitude estimation algorithm using Part Affinity Fields on COCO2017 dataset.(Ascend) 1857- [STABLE] CNN-CTC: proposes three major contributions to addresses scene text recognition (STR) on MJSynth and SynthText dataset.(Ascend) 1858- [STABLE] CenterFace: a practical anchor-free face detection and alignment method for edge devices on WiderFace dataset.(Ascend) 1859- [STABLE] ShuffleNetV2: a much faster and more accurate network than the previous networks on ImageNet 2012 dataset.(GPU) 1860- [STABLE] EfficientNet-B0: a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient on ImageNet 2012 dataset.(GPU) 1861- [BETA] SSD-GhostNet: based on an Ghost module structure which generate more features from cheap operations on Oxford-IIIT Pet dataset.(Ascend) 1862- [BETA] DS-CNN: Depthwise separable convolutional neural network on Speech commands dataset.(Ascend) 1863- [BETA] DeepPotentialH2O: A neural network model for molecular dynamics simulations. (Ascend) 1864- [BETA] GOMO: A classical numerical method called GOMO for ocean simulation. (GPU) 1865 1866#### FrontEnd 1867 1868- [STABLE] Refactor the MINDIR to support 310 inference(Ascend). 1869- [STABLE] The execution backend of sparse operations in optimizer can be set through 'target'. (Ascend/GPU/CPU) 1870- [STABLE] Support saving specified network to checkpoint and filtering parameters according to prefix when load checkpoint. (Ascend/GPU/CPU) 1871- [STABLE] Allow users choose whether to load parameter into network strictly.(Ascend/GPU/CPU) 1872- [STABLE] Before training, in graph mode, in order to have the same network initialization parameter values for all devices, broadcast the parameters on device 0 to other devices. (Ascend/GPU) 1873- [STABLE] Support if by if of control flow subgraph. (Ascend/GPU) 1874- [STABLE] Support the judgment that whether a tensor is in a list. (Ascend/GPU/CPU) 1875- [STABLE] Support to get a value by using the corresponding key in a dictionary in the network; Support to get keys and values of a dictionary in the network. (Ascend/GPU/CPU) 1876- [STABLE] Support Tensor in enumerate. (Ascend/GPU/CPU) 1877- [STABLE] Support multilevel index assignment. (Ascend/GPU/CPU) 1878- [STABLE] Support the 'expand_as','view','abs','mean' method of Tensor. (Ascend/GPU/CPU) 1879- [STABLE] Support ResizeBilinear operation transfer ratio. (Ascend) 1880- [STABLE] nn.Matmul supports matrix-vector product and batched matrix multiply. (Ascend/GPU) 1881- [STABLE] nn.Dense supports input tensor whose dimension can be greater than 2. (Ascend/GPU) 1882- [BETA] Support higher order differentiation for partial operators.(CPU/GPU/Ascend) 1883- [STABLE] Support Tensor Augassign.(Ascend/GPU) 1884- [BETA] Support 22 numpy native interfaces. 1885 1886#### Auto Parallel 1887 1888- [STABLE] Support parallel optimizer with weight shard. (Ascend/GPU) 1889- [STABLE] Support distributed operators: element-wise series, UnsortedSegmentSum, UnsortedSegmentMin, Split, BroadcastTo and Unique etc. (Ascend/GPU) 1890- [STABLE] Support distributed model prediction. (Ascend/GPU) 1891- [STABLE] Support auto mixed precision level "O2" in auto and semi auto parallel mode. (Ascend/GPU) 1892- [STABLE] Add MultiFieldEmbeddingLookup high-level interface. (Ascend/GPU) 1893 1894#### Executor 1895 1896- [STABLE] ResNet50 performance optimize. (GPU) 1897- [STABLE] Support modelzoo net in PyNative mode(Ascend 29, GPU 23, CPU 2).(Ascend/GPU/CPU) 1898- [STABLE] Support PyNative mode on CPU.(CPU) 1899- [STABLE] Optimize performance in PyNative mode.(Ascend/GPU/CPU) 1900- [STABLE] Support Safe Optimized Memory Allocation Solver (SOMAS) on Ascend to improve the memory-reuse, the batch size of Bert large model (128 sequence length) is increased from 160 to 208.(Ascend) 1901- [BETA] Support second order differentiation in PyNative mode.(Ascend/GPU) 1902- [DEMO] Add distributed trainning in PyNative mode.(Ascend/GPU) 1903 1904#### MDP 1905 1906- [STABLE] Add new operators for Ascend and GPU: IGamma, LGamma, DiGamma; 1907- [STABLE] Add new distributions for Ascend and GPU: LogNormal, and Logistic; 1908- [BETA] Add new distributions for Ascend only: Gumbel, Cauchy, Gamma, Beta, and Poisson; Add Categorical distribution for GPU; 1909- [STABLE] Add new bijectors for Ascend and GPU: GumbelCDF, Invert; 1910- [STABLE] Add Bayesian layer realized by local reparameterization method for Ascend and GPU; 1911- [STABLE] Add Anomaly Detection Toolbox based on VAE for Ascend and GPU. 1912 1913#### DataSet 1914 1915- [STABLE] Support single node multi-p distributed cache data sharing 1916- [STABLE] Support GPU profiling with data processing 1917- [STABLE] Support YOLOV3 dynamic shape in sink mode with dataset 1918- [STABLE] Support unique processing in the data processing pipeline 1919- [STABLE] Python layer parameter verification error information unified 1920 1921### API Change 1922 1923#### Backwards Incompatible Change 1924 1925##### Python API 1926 1927###### Delete shape and dtype of class Initializer ([!7373](https://gitee.com/mindspore/mindspore/pulls/7373/files)) 1928 1929Delete shape and dtype attributes of Initializer class. 1930 1931###### Modify the return type of initializer ([!7373](https://gitee.com/mindspore/mindspore/pulls/7373/files)) 1932 1933Previously, the return type of initializer function may be string, number, instance of class Tensor or subclass of class Initializer. 1934 1935After modification, initializer function will return instance of class MetaTensor, class Tensor or subclass of class Initializer. 1936 1937Noted that the MetaTensor is forbidden to initialize parameters, so we recommend that use str, number or subclass of Initializer for parameters initialization rather than the initializer functions. 1938 1939<table> 1940<tr> 1941<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 1942</tr> 1943<tr> 1944<td> 1945 1946```python 1947>>> import mindspore.nn as nn 1948>>> from mindspore.common import initializer 1949>>> from mindspore import dtype as mstype 1950>>> 1951>>> def conv3x3(in_channels, out_channels) 1952>>> weight = initializer('XavierUniform', shape=(3, 2, 32, 32), dtype=mstype.float32) 1953>>> return nn.Conv2d(in_channels, out_channels, weight_init=weight, has_bias=False, pad_mode="same") 1954``` 1955 1956</td> 1957<td> 1958 1959```python 1960>>> import mindspore.nn as nn 1961>>> from mindspore.common.initializer import XavierUniform 1962>>> 1963>>> #1) using string 1964>>> def conv3x3(in_channels, out_channels) 1965>>> return nn.Conv2d(in_channels, out_channels, weight_init='XavierUniform', has_bias=False, pad_mode="same") 1966>>> 1967>>> #2) using subclass of class Initializer 1968>>> def conv3x3(in_channels, out_channels) 1969>>> return nn.Conv2d(in_channels, out_channels, weight_init=XavierUniform(), has_bias=False, pad_mode="same") 1970``` 1971 1972</td> 1973</tr> 1974</table> 1975 1976Advantages: 1977After modification, we can use the same instance of Initializer to initialize parameters of different shapes, which was not allowed before. 1978 1979<table> 1980<tr> 1981<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 1982</tr> 1983<tr> 1984<td> 1985 1986```python 1987>>> import mindspore.nn as nn 1988>>> from mindspore.common import initializer 1989>>> from mindspore.common.initializer import XavierUniform 1990>>> 1991>>> weight_init_1 = XavierUniform(gain=1.1) 1992>>> conv1 = nn.Conv2d(3, 6, weight_init=weight_init_1) 1993>>> weight_init_2 = XavierUniform(gain=1.1) 1994>>> conv2 = nn.Conv2d(6, 10, weight_init=weight_init_2) 1995``` 1996 1997</td> 1998<td> 1999 2000```python 2001>>> import mindspore.nn as nn 2002>>> from mindspore.common import initializer 2003>>> from mindspore.common.initializer import XavierUniform 2004>>> 2005>>> weight_init = XavierUniform(gain=1.1) 2006>>> conv1 = nn.Conv2d(3, 6, weight_init=weight_init) 2007>>> conv2 = nn.Conv2d(6, 10, weight_init=weight_init) 2008``` 2009 2010</td> 2011</tr> 2012</table> 2013 2014###### Modify get_seed function ([!7429](https://gitee.com/mindspore/mindspore/pulls/7429/files)) 2015 2016Modify get_seed function implementation 2017 2018Previously, if seed is not set, the value of seed is default, parameters initialized by the normal function are the same every time. 2019 2020After modification, if seed is not set, the value of seed is generated randomly, the initialized parameters change according to the random seed. 2021 2022If you want to fix the initial value of parameters, we suggest to set seed. 2023 2024```python 2025>>> from mindspore.common import set_seed 2026>>> set_seed(1) 2027``` 2028 2029###### `nn.LinSpace` ([!9494](https://gitee.com/mindspore/mindspore/pulls/9494)) has been removed and modify `ops.LinSpace` ([!8920](https://gitee.com/mindspore/mindspore/pulls/8920)) 2030 2031The `nn.LinSpace` interface only support passing the value by args previously. For the convenience, we provided enhancive `ops.LinSpace` interface, which support passing the value by the inputs at the latest version. So there is no need for `nn.LinSpace`. 2032 2033<table> 2034<tr> 2035<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2036</tr> 2037<tr> 2038<td> 2039 2040```python 2041>>> from mindspore import nn 2042>>> 2043>>> start = 1 2044>>> stop = 10 2045>>> num = 5 2046>>> linspace = nn.LinSpace(start, stop, num) 2047>>> output = linspace() 2048``` 2049 2050</td> 2051<td> 2052 2053```python 2054>>> import mindspore 2055>>> from mindspore import Tensor 2056>>> from mindspore import ops 2057>>> 2058>>> linspace = ops.LinSpace() 2059>>> start = Tensor(1, mindspore.float32) 2060>>> stop = Tensor(10, mindspore.float32) 2061>>> num = 5 2062>>> output = linspace(start, stop, num) 2063``` 2064 2065</td> 2066</tr> 2067</table> 2068 2069###### Parts of `Optimizer` add target interface ([!6760](https://gitee.com/mindspore/mindspore/pulls/6760/files)) 2070 2071The usage of the sparse optimizer is changed. 2072 2073The target interface is used to set the execution backend of the sparse operator. 2074 2075The add_primitive_attr interface is no longer allowed. 2076 2077The following optimizers add the target interface: Adam, FTRL, LazyAdam, ProximalAdagrad 2078 2079<table> 2080<tr> 2081<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2082</tr> 2083<tr> 2084<td> 2085 2086```python 2087>>> from mindspore.nn import Adam 2088>>> 2089>>> net = LeNet5() 2090>>> optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters())) 2091>>> optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU") 2092``` 2093 2094</td> 2095<td> 2096 2097```python 2098>>> from mindspore.nn import Adam 2099>>> 2100>>> net = LeNet5() 2101>>> optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters())) 2102>>> optimizer.target = 'CPU' 2103``` 2104 2105</td> 2106</tr> 2107</table> 2108 2109###### `export` Modify the input parameters and export's file name ([!7385](https://gitee.com/mindspore/mindspore/pulls/7385), [!9057](https://gitee.com/mindspore/mindspore/pulls/9057/files)) 2110 2111Export the MindSpore prediction model to a file in the specified format. 2112 2113The reference includes: `net`, `*inputs`, `file_name`, `file_format`, `**kwargs`. 2114 2115Input parameters can be input according to specific export requirements. 2116 2117Add the file name extension based on the format. 2118 2119<table> 2120<tr> 2121<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2122</tr> 2123<tr> 2124<td> 2125 2126```python 2127>>> from mindspore.train.quant import quant 2128>>> 2129>>> network = LeNetQuant() 2130>>> inputs = Tensor(np.ones([1, 1, 32, 32]), mindspore.float32) 2131>>> quant.export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR') 2132lenet_quant.mindir 2133``` 2134 2135</td> 2136<td> 2137 2138```python 2139>>> from mindspore import export 2140>>> 2141>>> network = LeNetQuant() 2142>>> inputs = Tensor(np.ones([1, 1, 32, 32]), mindspore.float32) 2143>>> export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO') 2144lenet_quant.mindir 2145``` 2146 2147</td> 2148</tr> 2149</table> 2150 2151###### `Dense`, `Conv2dBnAct`, `DenseBnAct`, `DenseQuant` support setting the activation attribute as an instance of a class derived from `nn.Cell` or `Primtive` ([!7581](https://gitee.com/mindspore/mindspore/pulls/7581)) 2152 2153activation (Union[str, Cell, Primitive]): activate function applied to the output of the fully connected layer 2154 2155<table> 2156<tr> 2157<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2158</tr> 2159<tr> 2160<td> 2161 2162```python 2163>>> import mindspore.nn as nn 2164>>> 2165>>> dense = nn.Dense(1, 1, activation='relu') 2166``` 2167 2168</td> 2169<td> 2170 2171```python 2172>>> import mindspore.nn as nn 2173>>> import mindspore.ops as ops 2174>>> 2175>>> dense = nn.Dense(1, 1, activation=nn.ReLU()) 2176>>> dense = nn.Dense(1, 1, activation=ops.ReLU()) 2177``` 2178 2179</td> 2180</tr> 2181</table> 2182 2183###### `tensor.dim()`, `tensor.size()` has been renamed to `tensor.ndim`, `tensor.size` ([!10175](https://gitee.com/mindspore/mindspore/pulls/10175)) 2184 2185Previously, tensor.size() and tensor.dim() were used for checking the total number of elements/dimensions in the tensor. 2186However, from a user's perspective, tensor.size and tensor.ndim (methods -> properties) are better choices, since they follow the numpy naming convention. 2187 2188<table> 2189<tr> 2190<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2191</tr> 2192<tr> 2193<td> 2194 2195```python 2196>>> from mindspore import Tensor 2197>>> 2198>>> Tensor((1,2,3)).size() 2199>>> Tensor((1,2,3)).dim() 2200``` 2201 2202</td> 2203<td> 2204 2205```python 2206>>> from mindspore import Tensor 2207>>> 2208>>> Tensor((1,2,3)).size 2209>>> Tensor((1,2,3)).ndim 2210``` 2211 2212</td> 2213</tr> 2214</table> 2215 2216###### `EmbeddingLookup` add a config in the interface: sparse ([!8202](https://gitee.com/mindspore/mindspore/pulls/8202)) 2217 2218sparse (bool): Using sparse mode. When 'target' is set to 'CPU', 'sparse' has to be true. Default: True. 2219 2220<table> 2221<tr> 2222<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2223</tr> 2224<tr> 2225<td> 2226 2227```python 2228>>> from mindspore.nn import EmbeddingLookup 2229>>> 2230>>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) 2231>>> result = EmbeddingLookup(4,2)(input_indices) 2232>>> print(result.shape) 2233(2, 2, 2) 2234``` 2235 2236</td> 2237<td> 2238 2239```python 2240>>> from mindspore.nn import EmbeddingLookup 2241>>> 2242>>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) 2243>>> result = EmbeddingLookup(4,2)(input_indices, sparse=False) 2244>>> print(result.shape) 2245(2, 2, 2) 2246``` 2247 2248</td> 2249</tr> 2250</table> 2251 2252###### `nn.probability.bijector` change types of attributes from (int, float) to (float, list, numpy.ndarray, Tensor) ([!8191](https://gitee.com/mindspore/mindspore/pulls/8191)) 2253 2254Attributes Type change: (int, float) -> (float, list, numpy.ndarray, Tensor). 2255Int type is not supported anymore. Parameters of all bijectors should be type float, list, numpy.ndarray or Tensor. 2256 2257<table> 2258<tr> 2259<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2260</tr> 2261<tr> 2262<td> 2263 2264```python 2265>>> import mindspore.nn.probability.bijector as msb 2266>>> 2267>>> power = 2 2268>>> bijector = msb.PowerTransform(power=power) 2269``` 2270 2271</td> 2272<td> 2273 2274```python 2275>>> import mindspore.nn.probability.bijector as msb 2276>>> 2277>>> power = 2.0 2278>>> bijector = msb.PowerTransform(power=power) 2279``` 2280 2281</td> 2282</tr> 2283</table> 2284 2285###### `nn.probability.bijector.GumbelCDF` remove a attribute in the interface: dtype ([!8191](https://gitee.com/mindspore/mindspore/pulls/8191)) 2286 2287dtype is removed from GumbelCDF and is no longer an argument of the class. 2288 2289<table> 2290<tr> 2291<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2292</tr> 2293<tr> 2294<td> 2295 2296```python 2297>>> import mindspore.nn.probability.bijector as msb 2298>>> from mindspore import dtype as mstype 2299>>> 2300>>> bijector = msb.GumbelCDF(loc=0.0, scale=1.0, dtype=mstype.float32) 2301``` 2302 2303</td> 2304<td> 2305 2306```python 2307>>> import mindspore.nn.probability.bijector as msb 2308>>> 2309>>> bijector = msb.GumbelCDF(loc=0.0, scale=1.0) 2310``` 2311 2312</td> 2313</tr> 2314</table> 2315 2316###### `nn.layer.combined.Conv2dBnAct`, `nn.layer.combined.DenseBnAct` move from nn.layer.quant to nn.layer.combined ([!8187](https://gitee.com/mindspore/mindspore/pulls/8187)) 2317 2318Previously Conv2dBnAct and DenseBnAct are in nn.layer.quant, since they are not quant cells, now they are moved to nn.layer.combined. If you import Conv2dBnAct, DenseBnAct from mindspore.nn, then your code doesn't need any change. 2319 2320<table> 2321<tr> 2322<td style="text-align:center"> 1.0.1 </td> <td style="text-align:center"> 1.1.0 </td> 2323</tr> 2324<tr> 2325<td> 2326 2327```python 2328>>> from mindspore.nn.layer.quant import Conv2dBnAct, DenseBnAct 2329``` 2330 2331</td> 2332<td> 2333 2334```python 2335>>> from mindspore.nn import Conv2dBnAct, DenseBnAct 2336``` 2337 2338</td> 2339</tr> 2340</table> 2341 2342###### `nn.layer.conv.Conv2D`, `nn.layer.quant.Conv2dBnFoldQuant`, `nn.layer.quant.Conv2dBnWithoutFoldQuant` change weight shape when group > 1 in Ascend platform ([!9723](https://gitee.com/mindspore/mindspore/pulls/9723)) 2343 2344In Ascend platform, if group > 1, the weight shape of Conv2D change from [in_channels//group, out_channels, kernel_size, kernel_size] to [out_channels, in_channels//group, kernel_size, kernel_size]. Previously, checkpoints of the networks are used, which use Conv2D with group > 1, such as MobileNet, can not be directly used now, need to transpose the first and second axis of the weight. 2345 2346### Bug fixes 2347 2348#### FrontEnd 2349 2350- [STABLE] Fix the problem of the cse optimization in the situation of control flow. (Ascend/GPU) 2351 2352#### Auto Parallel 2353 2354- [STABLE] Resolve the restriction: input and output layouts of Reshape are restricted in tensor redistribution. (Ascend/GPU) 2355- [STABLE] Resolve the restriction: output strategy should be data parallel in model evaluation. (Ascend/GPU) 2356 2357#### Executor 2358 2359- [STABLE] Fix fusion operator compilation cache. (Ascend) 2360- [STABLE] Fix compilation error of dynamic shape operator. (Ascend) 2361- [STABLE] Fix bug of pynative cannot insert transdata of node output when node should be spilted in the backend opt.(Ascend) 2362- [STABLE] Fix the bug of TensorMove and memcpy_async merge to one after backend cse pass (Ascend) 2363 2364#### DataSet 2365 2366- [STABLE] Fix cache server hang on RequestFreeTag. (Ascend/GPU/CPU) 2367- [STABLE] Fix hung when use pyfunc multi-processing. (Ascend/GPU/CPU) 2368- [STABLE] Fix add multiple parent nodes to tree node cause core dump. (Ascend/GPU/CPU) 2369 2370## MindSpore Lite 2371 2372### Major Features and Improvements 2373 2374#### Converter and runtime 2375 23761. Support dynamic shape in MindSpore Lite Converter. 23772. Optimize sub-graph mechanism by dynamically splitting the entire graph into multiple subgraphs based on the operator supported, backend hardware and user configuration. 23783. Support TensorList and TensorList operators such as TensorListFromTensor, TensorListGetItem and so on. 23794. Support BatchMatMul fusion and LSTM fusion in MindSpore Lite Converter. 23805. Support converting model and run inference on Windows operator system. 23816. Support Model(.ms) visualization on Netron. 23827. Support Tensorflow model in MindSpore Lite Converter 23838. Add 86 converter parsers. 23849. Convert aware training model without user’s awareness 238510. Support scalar tensor in MindSpore Lite Converter and Runtime 238611. Support NPU backend on HUAWEI Kirin SoC.[BETA] 238712. Merge timeprofiler into benchmark 2388 2389#### CPU backend optimization 2390 23911. Add 50+ new operators, including new Op type(like Adder, Gru). 23922. Enhanced performance on armv8.2 supported platform. For example, utilizing sdot instruction more efficiently. 23933. Optimize all operators(fp32, fp16, int8) by implementing multi-thread, SIMD tech as much as possible. Model inference time can reduce at least 20% after these optimizations. 23944. Extending to support operators for x86_64 platform based on SSE/AVX instruction set. 2395 2396#### OpenCL backend 2397 23981. Add new ops: add 10+ ops, total 58 ops; 23992. Performance optimization: by memory layout optimize, Winograd Convolution select strategyoptimize, SIMT local size optimize, local cache optimize, GPU performance improvement up to 20+% vs MSLITE Version1.0 24003. Add Online Graph optimzation: by fusion Convolution/Matmul/Fullconnection and add/mul/pad/reshape, improve performance up to 50+% for some networks; 24014. Add auto tuning: by online tuning in the graph compilation phase, optimize performance up to 10%; 24025. Add weight quant: support weight quant 24036. Add opencl kernel binary cache: improve Initialization time . 2404 2405#### Post quantization 2406 2407MindSpore Lite supports both weight quantization and full quantization. Currently, Weights can be quantized into 1 ~ 16 bits according to user configuration. In internal testing, quantization of networks, such as classification, detection, segmentation and transformer are well supported. To ensure high accuracy of quantized models, MindSpore Lite uses a pipeline quantization method. In the first phase, the weight and activation value are quantized using linear quantization methods, such as MIN-MAX. In the second phase, the quantization error is analyzed, and uses statistical methods to compensate loss caused by fp32 quantization to a fixed point such as Int8 to quantized models. The features of Post-training quantization are: 2408 24091. perchannel asymmetric quantization for weights, such as MAX_MIN and KMEANS 24102. Perlayer symmetric quantization for activation, such as KL and MAX_MIN. 24113. perlayer asymmetrical quantization for activation, such as, RemoveOutlier. 24124. accuracy loss compensation, such as BiasCorrection 2413 2414| mobilenet_v2 | ACC (ImageNet) | 2415|---|---| 2416| FP32 | 71.56% | 2417|A8W8 | 71.16% | 2418| A8W8(without BiasCorrection) | 70.74% | 2419| A8W7 | 71.06% | 2420| A7W7 | 70.78% | 2421 2422The above table uses the mobilenet_v2 model from TF official website. Using MindSpore Lite quantization, the precision of A8W8 (8-bit activation value quantization and 8-bit weight quantization) decreases from 0.82% to 0.4% after accuracy loss compensation, for 7-bit quantization, the precision loss is still no more than 1%. 2423 2424#### Training on Device 2425 2426Within MindSpore 1.1 release, the MindSpore Lite provides the following Training-on-Device (ToD) capabilities: 2427 24281. Learning from scratch and Transfer Learning strategies are supported 24292. MindSpore based models can be converted and used in training on the device. (Third-party models such as TensorFlow and PyTorch for now cannot be directly imported to the framework) 24303. Grad operations are supported for more than 30 operators such as Dense layers, Convolutions and Batch Normalizations. Momentum, SGD, and ADAM optimizers are supported. 24314. Supports networks such as LeNet, Alexnet, Resnet, MobileNetV1/V2/V3, and EffectiveNet, and provides complete model loading, conversion, and Python training scripts on the device side. 2432 2433The MindSpore Lite ToD framework is already in use in the newest Huawei Smart TV, providing a unique and personalized user experience as a family entertainment center. 2434 2435### API Change 2436 2437#### API Incompatible Change 2438 2439##### C++ API 2440 2441- [Modify] Context now support multi-context configuration.(Context.h) 2442- [Modify] Callback is move from lite_session.h into ms_tensor.h. 2443- [Modify] GetInputsByName in lite_session.h is changed into GetInputsByTensorName 2444- [Add] add static LiteSession *CreateSession(const char*model_buf, size_t size, const lite::Context *context) in lite_session.h 2445- [Add] add GetErrorInfo interface returning error message in errorcode.h 2446- [Delete] Remove model_generated.h, ops_generated.h and headers of FlatBuffers library from interfaces 2447 2448##### Java API 2449 2450- [Add] Implement JNI layer and add Java api for CPU and GPU backend 2451 2452#### Deprecations 2453 2454##### C++ API 2455 2456Deprecate Interface GetOutputsByNodeName 2457 2458### Bug fixes 2459 2460- [BUGFIX] Fix the bug in sub-graph segmentation 2461- [BUGFIX] Fix the bug in Tensor getitem in which the ellipsis matches the wrong dim-size. 2462- [BUGFIX] Fix the bug that activation modification after defining Dense will not take effect. 2463 2464## Contributors 2465 2466Thanks goes to these wonderful people: 2467 2468zhouyifengCode, huqi, JulyAi, damon0626, chenbo116, rmdyh, davidmc, gray0v0, doitH, Gogery, zymaa, xinyunfan 2469 2470Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, zymaa 2471 2472Contributions of any kind are welcome! 2473 2474# MindSpore 1.0.0 Release Notes 2475 2476## Major Features and Improvements 2477 2478### MindSpore Training and Inference Framework 2479 2480#### Ascend 910 2481 2482- New models 2483 - DenseNet121: a dense convolutional neural network, which connects each layer to every other layer in a feed-forward fashion for object recognition on ImageNet dataset. 2484 - UNet2D-Medical: Unet Medical model for 2D image segmentation, Convolutional Networks for Biomedical Image Segmentation on ISBI Challenge database. 2485- Frontend and user interface 2486 - Second-Order Optimization 2487 - Enable second-order optimization for Bert on Ascend 910, which can achieve a masked lm accuracy of 71.3% in 800 seconds using 8 Ascend 910 (Bert-Large @MLPerf v0.7 dataset). 2488 - New GNN model BGCF 2489 - Bayesian Graph Convolutional Filtering network which naturally incorporate the uncertainty in the user-item interaction graph shows excellent recommendation performance on Amazon-Beauty dataset. 2490 - Add append interface for SequentialCell. 2491 - Add a level `auto` for AMP. 2492- Executor and performance optimization 2493 - Support quantitative network (Resnet50 & YoloV3 & MobileNetV2). 2494 - Project ease of use optimization: project compilation time optimization, CMakelist regularization, cudnn, cuda independent compilation and installation independent. 2495- Data processing, augmentation, and save format 2496 - Support GeneratorDataset return string type 2497 2498#### Other Hardware Support 2499 2500- GPU platform 2501 - Enable second-order optimization for resnet50 on GPU, which achieve 30% improvement on training time compared to SGD with Momentum (Resnet50 @ImageNet). 2502 2503#### User interfaces change log 2504 2505- Remove global object GradOperation in Autodiff([!5011](https://gitee.com/mindspore/mindspore/pulls/5011)) 2506- Remove useless attribute 'name' in Autodiff([!5172](https://gitee.com/mindspore/mindspore/pulls/5172)) 2507- Rectification distributed init([!5350](https://gitee.com/mindspore/mindspore/pulls/5350)) 2508- Move the setting of ParalleMode from train.parallel_utils to context([!5351](https://gitee.com/mindspore/mindspore/pulls/5351)) 2509- Modification of save_checkpoint([!5482](https://gitee.com/mindspore/mindspore/pulls/5482)) 2510- Wrap numpy random seed into an api([!5634](https://gitee.com/mindspore/mindspore/pulls/5634)) 2511- Delete enable_fused_layernorm in some modelzoo scripts([!5665](https://gitee.com/mindspore/mindspore/pulls/5665)) 2512- Move 'multi-subgraphs' interface to internal([!5696](https://gitee.com/mindspore/mindspore/pulls/5696)) 2513- Rename mirror_mean to gradient_mean([!5700](https://gitee.com/mindspore/mindspore/pulls/5700)) 2514- Remove default value of 'group' of DepthWiseConv2d([!5865](https://gitee.com/mindspore/mindspore/pulls/5865)) 2515- Modify interface for function and remove duplicated def([!5958](https://gitee.com/mindspore/mindspore/pulls/5958)) 2516- Unify Conv2d and DepthwiseConv2d([!5916](https://gitee.com/mindspore/mindspore/pulls/5916)) 2517- Modification of SoftmaxCrossEntropyWithLogits([!5502](https://gitee.com/mindspore/mindspore/pulls/5502)) 2518- Change API set_strategy() to shard()([!5991](https://gitee.com/mindspore/mindspore/pulls/5991)) 2519- Move batch_size from bert_cfg_cfg to cfg([!6233](https://gitee.com/mindspore/mindspore/pulls/6233)) 2520- Remove unused parameters from SummaryRecord __init__([!5548](https://gitee.com/mindspore/mindspore/pulls/5548)) 2521- remove sens parameter of TrainOneStepWithLossScaleCell([!5753](https://gitee.com/mindspore/mindspore/pulls/5753)) 2522- optimize the TrainOneStepCell for user's define([!6159](https://gitee.com/mindspore/mindspore/pulls/6159)) 2523- delete seed0 and seed1 of nn.Dropout([!5735](https://gitee.com/mindspore/mindspore/pulls/5735)) 2524- delete DataWrapper([!6101](https://gitee.com/mindspore/mindspore/pulls/6101)) 2525- LSTM API optimization([!6374](https://gitee.com/mindspore/mindspore/pulls/6374)) 2526- Merge P\C\F of ops([!5645](https://gitee.com/mindspore/mindspore/pulls/5645)) 2527- delete SoftmaxCrossEntropyExpand interface([!6607](https://gitee.com/mindspore/mindspore/pulls/6607)) 2528- Adjust GroupNorm interface([!6329](https://gitee.com/mindspore/mindspore/pulls/6329)) 2529- Modify init interface to internal interface([!6651](https://gitee.com/mindspore/mindspore/pulls/6651)) 2530- Log optimization([!5842](https://gitee.com/mindspore/mindspore/pulls/5842)) 2531- Remove useless API dataset.set_dataset_size([!5806](https://gitee.com/mindspore/mindspore/pulls/5806)) 2532- Some of Dataset API add usage parameter([!5605](https://gitee.com/mindspore/mindspore/pulls/5605)) 2533- Change the import path, such as from mindspore.dataset.transforms.vision to mindspore.dataset.vision.transforms([!5384](https://gitee.com/mindspore/mindspore/pulls/5384)) 2534- Rename ImageFolderDatasetV2 to ImageFolderDataset([!5384](https://gitee.com/mindspore/mindspore/pulls/5384)) 2535- Dataset.map parameter optimization([!5384](https://gitee.com/mindspore/mindspore/pulls/5384)) 2536- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384)) 2537- Add new api dataset.get_col_names([!5384](https://gitee.com/mindspore/mindspore/pulls/5384)) 2538- Remove useless API MindRecord finish([!5580](https://gitee.com/mindspore/mindspore/pulls/5580)) 2539 2540### MindSpore Lite 2541 2542- Converter 2543 - Add 6 TFLite op, 7 Caffe op, 1 ONNX op. 2544 - Add support for Windows. 2545 - Support parallel inference of multiple sessions to adapt to more scenarios 2546 - Support 8bits only weight-quantization, most main-stream models has small accuracy loss (less than 0.5%) when compared to non-qunantized fp32 model. 2547 2548- CPU & GPU 2549 - Add 20 CPU ops,include FP32, int8/uint8, FP16 and int32 ops. 2550 - Add supporting FP16 for GPU, add 14 GPU ops include FP32/FP16. 2551 - Add Buffer/Image2D transform op for GPU 2552 - Performance optimization for CPU ops focus on ARM32. 2553 - Performance optimization for GPU Convolution using winograd. 2554 2555- Tool & example 2556 - Add object detection Android Demo. 2557 2558## Bugfixes 2559 2560- Models 2561 - fix the constant folding problem in multiply.([!6092](https://gitee.com/mindspore/mindspore/pulls/6092)) 2562 - move batch_size from bert_net_cfg to cfg in bert scripts.([!6233](https://gitee.com/mindspore/mindspore/pulls/6233)) 2563 - modify the checkpoint file path.([!6137](https://gitee.com/mindspore/mindspore/pulls/6137)) 2564- Python API 2565 - fix semi auto parallel parameter of reshape has another user([!5722](https://gitee.com/mindspore/mindspore/pulls/5722)) 2566 - raise ValueError when call hook function in graph mode([!5831](https://gitee.com/mindspore/mindspore/pulls/5831)) 2567- Executor 2568 - fix pynative mode to build temporary nn objects.([!6189](https://gitee.com/mindspore/mindspore/pulls/6189)) 2569 - fix the accuracy problem of multiple inputs of multi-card communication operator broadcast.([!6522](https://gitee.com/mindspore/mindspore/pulls/5622)) 2570 - fix the problem that the sample distribution interface categorical does not support graph mode.([!5772](https://gitee.com/mindspore/mindspore/pulls/5772)) 2571 - fix the random seed failure problem of the polynomial downsampling distribution operator.([!5948](https://gitee.com/mindspore/mindspore/pulls/5948)) 2572 - fix unnecessary address binding issues in GPU heterogeneous scenarios.([!6232](https://gitee.com/mindspore/mindspore/pulls/6232)) 2573- GPU platform 2574 - fix for kernel resource leak([!5315](https://gitee.com/mindspore/mindspore/pulls/5315)) 2575 - fix for insufficient memory for continuous unit test running([!5617](https://gitee.com/mindspore/mindspore/pulls/5617)) 2576 - fix for the memory leak in the sparse slicer([!5578](https://gitee.com/mindspore/mindspore/pulls/5578)) 2577- Data processing 2578 - fix hang when use pyfunc([!6346](https://gitee.com/mindspore/mindspore/pulls/6346)) 2579 - fix GPU device queue does not release GIL during resource clean up([!5964](https://gitee.com/mindspore/mindspore/pulls/5964)) 2580 - fix hang if scripte exit unnormally([!6441](https://gitee.com/mindspore/mindspore/pulls/6441)) 2581- Third party 2582 - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655). 2583 - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790). 2584 2585## Contributors 2586 2587Thanks goes to these wonderful people: 2588 2589Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, danish, Danish, dayschan, eric, Eric, fary86, fuzhiye, Gaoxiong, gengdongjie, gongdaguo, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huzhifeng, hwjiaorui, Jesse, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, r1chardf1d0, riemann_penn, root, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, Xiaoda, xiefangqi, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhoufeng, zhousiyi, zhouyaqiang, Zichun, Zirui, Ziyan, zjun, ZPaC 2590 2591Contributions of any kind are welcome! 2592 2593# MindSpore 0.7.0-beta Release Notes 2594 2595## Major Features and Improvements 2596 2597### MindSpore Training and Inference Framework 2598 2599#### Ascend 910 2600 2601- New models 2602 - TinyBert: a smaller and faster version of BERT using transformer distillation for natural language understanding on GLUE benchmark. 2603 - SE-ResNet50: add Squeeze-and-Excitation blocks(SE-Blocks) to the resnet50 network to improve channel interdependencies for image classification on ImageNet 2012 dataset. 2604 - Inception V3: the third version of Inception convolutional architectures for image classification on ImageNet 2012 dataset. 2605- Frontend and user interface 2606 - Embedding operator high-level packaging to support segmented by field for Wide&Deep. 2607 - Load multi-node checkpoint into single-process to support host-device hybrid inference. 2608 - Support Concat/Tile/Strideslice distributed operators. 2609 - Support cumulative gradient and batch training split. 2610 - Support variable parameter input for Cell object. 2611 - Parameter mixed calculation optimization for pynative mode. 2612 - Deep Probabilistic Programming 2613 - Support statistical distributions classes used to generate stochastic tensors. 2614 - Support probabilistic inference algorithms. 2615 - Support BNN layers used to construct BNN in Graph mode. 2616 - Support interfaces for the transformation between BNN and DNN in Graph mode. 2617 - Support uncertainty estimation to estimate epistemic uncertainty and aleatoric uncertainty. 2618 - User interfaces change log 2619 - change base class of parameter([!3473](https://gitee.com/mindspore/mindspore/pulls/3473)) 2620 - change binary to mindir([!4258](https://gitee.com/mindspore/mindspore/pulls/4258)) 2621 - change export from geir to air([!4269](https://gitee.com/mindspore/mindspore/pulls/4269)) 2622 - Init parameter data by default([!3967](https://gitee.com/mindspore/mindspore/pulls/3967)) 2623 - change IndexedSlices to RowTensor([!4031](https://gitee.com/mindspore/mindspore/pulls/4031)) 2624 - Must set or change parallel mode before any Initializer created([!4801](https://gitee.com/mindspore/mindspore/pulls/4801)) 2625- Executor and performance optimization 2626 - MindSpore graph compilation process performance improved by 20%. 2627 - Decoupling C++ and Python modules to achieve separate compilation of core modules. 2628- Data processing, augmentation, and save format 2629 - Support automatic data augmentation 2630 - Support GNN distributed cache in single node 2631 - Support ConcatDataset using distributed sampler 2632 2633#### Other Hardware Support 2634 2635- GPU platform 2636 - New model supported: VGG16, ResNet101, DeepFM. 2637 - Support some distributed operators in ResNet50 and Wide&Deep. 2638 - Support automatic parallel for Wide&Deep. 2639 - Support function funcs[i](*inputs) (such as switch-case). 2640 - Support distributed training with parameter server. 2641 - Support GPU operator profiling. 2642 - Performance optimization of the distributed training with allreduce. 2643 - Performance optimization of the mixed precision training. 2644 - Performance optimization of the pynative mode. 2645 - Performance optimization of the convolution operator, batch normalization operator. 2646- CPU platform 2647 - Support MobileNetV2 Re-Training: Re-train the network with different class number. 2648 2649### MindSpore Lite 2650 2651- Converter 2652 - Support third-party models, including TFLite/Caffe/ONNX. 2653 - Add 93 TFLite op. 2654 - Add 24 Caffe op. 2655 - Add 62 ONNX op. 2656 - Add 11 optimized passes, include fusion/const fold. 2657 - Support aware-training and Post-training quantization. 2658- CPU 2659 - Add 100+ops,support fp32, int8/uint8, FP16 ops 2660 - Support fast convolution algorithms: Sliding Window, Img2col + Gemm, Strassen, Winograd 2661 - Support assembly/neon instruction. 2662 - Support CPU fp16 and sdot on ARM v8.2+. 2663- GPU 2664 - Add 20+ ops for OpenCL. 2665 - Support image2D/buffer format. 2666 - Optimize online initialization time. 2667 - add optimized convolution1X1/3X3/depthwise/convolution_transposed for OpenCL. 2668- Tool & example 2669 - Add benchmark and TimeProfile tools. 2670 - Add image classification Android Demo. 2671 2672## Bugfixes 2673 2674- Models 2675 - normalize the readme file([!5410](https://gitee.com/mindspore/mindspore/pulls/5410)) 2676 - fix a sink_size bug for transformer([!5393](https://gitee.com/mindspore/mindspore/pulls/5393)) 2677 - fix bool type optional for resnet50([!5363](https://gitee.com/mindspore/mindspore/pulls/5363)) 2678- Python API 2679 - improve interface '__bool__' for tensor([!4000](https://gitee.com/mindspore/mindspore/pulls/4000)) 2680 - fix GPU-ResizeNearestNeighbor([!3760](https://gitee.com/mindspore/mindspore/pulls/3760)) 2681 - fix topK multi dimension grad func([!3711](https://gitee.com/mindspore/mindspore/pulls/3711)) 2682 - fix scatterop error msg([!3699](https://gitee.com/mindspore/mindspore/pulls/3699)) 2683 - fix bug of cast dtype when using mix_presion in pynative mode([!3730](https://gitee.com/mindspore/mindspore/pulls/3730)) 2684- Executor 2685 - fix etsnet train error when UnsegmentSum's first input shape is (1,) ([!4573](https://gitee.com/mindspore/mindspore/pulls/4573)) 2686 - fix bug of result error in while control flow because of unsupporting for value reference ([!4103](https://gitee.com/mindspore/mindspore/pulls/4103)) 2687 - fix bug of the output tensor does not carry device data type ([!3774](https://gitee.com/mindspore/mindspore/pulls/3774)) 2688 - fix bug of avoiding multi attr value are eliminated in pynative mode ([!4225](https://gitee.com/mindspore/mindspore/pulls/4225)) 2689 - fix bug of AssignAdd unable to work normally in multi-cases ([!5171](https://gitee.com/mindspore/mindspore/pulls/5171)) 2690- GPU platform 2691 - improve the environment variable checking for nvcc compiler path ([!5140](https://gitee.com/mindspore/mindspore/pulls/5140)) 2692 - fix bug of error in cast operator conversion from fp16 to fp32 ([!4147](https://gitee.com/mindspore/mindspore/pulls/4147)) 2693 - fix bug of the array out of bound in case of make_tuple operator ([!5219](https://gitee.com/mindspore/mindspore/pulls/5219)) 2694- Data processing and Pro 2695 - fix GeneratorDataset time out([!3624](https://gitee.com/mindspore/mindspore/pulls/3624)) 2696 - fix concat operator get_dataset_size error([!4701](https://gitee.com/mindspore/mindspore/pulls/4701)) 2697 - fixing python validator for Repeat Op([!4366](https://gitee.com/mindspore/mindspore/pulls/4366)) 2698- Third party 2699 - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655). 2700 - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790). 2701 2702## Contributors 2703 2704Thanks goes to these wonderful people: 2705 2706Adel, Alexey, andy, andy_wangrui, anthonyaje, anzhengqi, askmiao, avakh, baihuawei, bingyaweng, BowenK, buxue, caifubi, CaoJian, caozhou, Cathy, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chenzupeng, chujinjin, cjh9368, Corleone, cristoval, danish, dengyutao, eric, Eric, ervinzhang, etone-chan, fangzehua, fary86, fuzhiye, gengdongjie, genglishuai, Giancarlo, gongdaguo, gukecai, guohongzilong, GuoMengHao, hangq, hanhaocheng, hanhuifeng2020, hanjun996, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, hongxing, huangdongrun, huanghui, huangxinjing, islam_amin, Jesse, jianghui58, jiangzhiwen, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, kai00, kingfo, kpy, kswang, laiyongqiang, leilei_snow, leopz, Li, liangzelang, lianliguang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, lingyunli63, linqingke, lirongzhen1, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuzhongkai, Lixia, lixian, liyong, lizhenyu, looop5, luoyang, lvchangquan, lvliang, lvwenyuan, lyvette, mahdi, Mahdi, mamba_ni, maning202007, Margaret_wangrui, mayang, meixiaowei, meng_chunyang, ms_yan, nhussain, panbingao, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, pengyongrong, Pengyongrong, qianlong, qujianwei, root, shenwei41, shibeiji, simson, songhonglei413, Su, sunsuodong, suteng, tao_yunhao, TFbunny, tinazhang, tom__chen, tony_liu2, tronzhang, VectorSL, wandongdong, wangdongxu, wanghua, wangmin, wangshaocong, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuweikang, wuxuejian, wuyongkang, xiefangqi, xuanyue, Xun, xutianchun, xuyongfei, yanghaitao, yangjie159, YangLuo, yangruoqi713, yangyongjie, yangzhenzhang, yankai, yao_yf, yelihua, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zhangxuetong, zhaizhiqiang, Zhang, zhangxinfeng3, zhangxuetong, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaoting, zhaozhenlong, zhengjun10, zhongligeng, zhoufeng, zhousiyi, zhouyaqiang, zhouyuanshen, Zichun, Zirui, zjun, zongha, ZPaC, lijiaqi, liangchenghui, wangminggui 2707 2708Contributions of any kind are welcome! 2709 2710# MindSpore 0.6.0-beta Release Notes 2711 2712## Major Features and Improvements 2713 2714### Ascend 910 Training and Inference Framework 2715 2716- New models 2717 - There are official, research and community under modelzoo. 2718 - Official is maintained with the newest APIs by MindSpore team, MaskRCNN are added. 2719 - Research is uploaded by researchers for official review, and APIs may not be updated in time. 2720 - Community reprints the relevant links of partner research results. 2721 - Hub added on the same level as modelzoo, synchronous storage of materials needed for official hub web pages which will be launched soon. 2722 - Support pre-trained models, few lines of code can be used to download and load pre-trained models, supporting inference or transfer learning. 2723- Frontend and user interface 2724 - Supports user side operator compilation and graph execution error rendering. 2725 - Uniform definition dynamic learning rate behavior in optimizers. 2726 - Support IndexSlice in sparse expression. 2727 - Support use parent construct method during construct. 2728 - Support asynchronous execution save checkpoint file. 2729 - Support implicit type conversion in pynative mode. 2730 - User interfaces change log 2731 - unform learning rate behavior in optimizers([!2755](https://gitee.com/mindspore/mindspore/pulls/2755)) 2732 - rename operator of sparse optimizer([!3217](https://gitee.com/mindspore/mindspore/pulls/3217)) 2733 - move profiler module from mindinsight to mindspore([!3075](https://gitee.com/mindspore/mindspore/pulls/3075)) 2734 - VOCDataset output change to multi-columns([!3093](https://gitee.com/mindspore/mindspore/pulls/3093)) 2735 - GetDatasize feature([!3212](https://gitee.com/mindspore/mindspore/pulls/3212)) 2736 - dataset: modify config api([!2936](https://gitee.com/mindspore/mindspore/pulls/2936)) 2737- Executor and performance optimization 2738 - Decouple C++ and python, so make the architecture more extensible. 2739 - Parameter Server for distributed deep learning supported. 2740 - Serving:a flexible service deployment framework for deep learning models. 2741 - Memory reuse is enhanced, and the batch size of Bert large model is increased from 96 to 160 on a single server. 2742- Data processing, augmentation, and save format 2743 - Support MindRecord save operator after date processing 2744 - Support automatic fusion operator, such as decode/resize/crop 2745 - Support CSV dataset loading 2746 2747### Other Hardware Support 2748 2749- GPU platform 2750 - New model supported: ResNext50, WarpCTC and GoogLeNet. 2751 - Support hyperparametric search and data enhanced automl on GPU. 2752 - Support Resnet50 automatic parallel in GPU backend. 2753 2754## Bugfixes 2755 2756- Models 2757 - Improved the performance and accuracy on ResNet50([!3456](https://gitee.com/mindspore/mindspore/pulls/3456)) 2758 - Fixed the performance test case of bert([!3486](https://gitee.com/mindspore/mindspore/pulls/3486)) 2759- Python API 2760 - Fix assign used in while loop([!2720](https://gitee.com/mindspore/mindspore/pulls/2720)) 2761 - Revert optimize the graph output of all nop node.([!2857](https://gitee.com/mindspore/mindspore/pulls/2857)) 2762 - Print tensor as numpy.([!2859](https://gitee.com/mindspore/mindspore/pulls/2859)) 2763 - Support weight decay for sparse optimizer([!2668](https://gitee.com/mindspore/mindspore/pulls/2668)) 2764 - Fix BatchToSpaceND([!2741](https://gitee.com/mindspore/mindspore/pulls/2741)) 2765 - Fixing type check mistakes of InplaceAdd and Inplace Sub ops([!2744](https://gitee.com/mindspore/mindspore/pulls/2744])) 2766 - Change order param only equal to group param([!2748](https://gitee.com/mindspore/mindspore/pulls/2748)) 2767- Executor 2768 - The performance of graph with control flow is optimized([!2931](https://gitee.com/mindspore/mindspore/pulls/2931)) 2769 - Fix bug of wrong number of tuple layers([!3390](https://gitee.com/mindspore/mindspore/pulls/3390)) 2770 - Fix cpu multi graph memory exception([!3631](https://gitee.com/mindspore/mindspore/pulls/3631)) 2771 - Enable data sync when calling operator without defining a cell([!3081](https://gitee.com/mindspore/mindspore/pulls/3081)) 2772 - Fix argmaxwith value error in pynative mode on GPU([!3082](https://gitee.com/mindspore/mindspore/pulls/3082)) 2773 - Fix precision error with fp16 input on pynative mode([!3196](https://gitee.com/mindspore/mindspore/pulls/3196)) 2774- Data processing 2775 - Fix bug of RandomColor and RandomSharpness default parameter checking ([!2833](https://gitee.com/mindspore/mindspore/pulls/2833)) 2776 - Fix process hung when training and eval ([!3469](https://gitee.com/mindspore/mindspore/pulls/3469)) 2777- Third party 2778 - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655). 2779 - Libjpeg-turbo : Update libjpeg-turbo to 2.0.4 to handle [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790). 2780 2781## Contributors 2782 2783Thanks goes to these wonderful people: 2784 2785Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu 2786 2787Contributions of any kind are welcome! 2788 2789# MindSpore 0.5.2-beta Release Notes 2790 2791## Major Features and Improvements 2792 2793### Ascend 910 Training and Inference Framework 2794 2795- New models 2796 - DenseNet121: a convolution based neural network for the task of image classification on ImageNet 2012 dataset. 2797 2798## Bugfixes 2799 2800- Models 2801 - VGG16,Alexnet,GoogleNet,optimize network for better performance. ([!5539](https://gitee.com/mindspore/mindspore/pulls/5539)) 2802 - YOLOV3, fix yolov3_darknet53 dataset bug. ([!5658](https://gitee.com/mindspore/mindspore/pulls/5658)) 2803 2804## Contributors 2805 2806Thanks goes to these wonderful people: 2807 2808Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu 2809 2810Contributions of any kind are welcome! 2811 2812# MindSpore 0.5.0-beta Release Notes 2813 2814## Major Features and Improvements 2815 2816### Ascend 910 Training and Inference Framework 2817 2818- New models 2819 - ResNext50: a simple, highly modularized network architecture using aggregated resdiual transformations for image classification on ImageNet 2012 dataset. 2820 - MASS: a pre-training method for sequence to sequence based language generation tasks on Text Summarization and Conversational Response Generation using News Crawls 2007-2017 dataset, Gigaword corpus and Cornell movie dialog corpus. 2821 - Transformer: a neural network architecture for language understanding on WMT 2014 English-German dataset. 2822 - GCN:Graph Convolutional Networks for the task of classification of nodes in a graph on Cora and Citeseer datasets. 2823 - GAT:an attention-based graph neural network for node classification on Cora and CiteSeer dataset. 2824- Frontend and user interface 2825 - Support tensor value and assignment of mixed tensor index in graph mode. 2826 - Support tensor comparison, len operator, constexpr syntax, value and assignment of tensor index in pynative mode. 2827 - Support converting MindSpore IR to pb format for infer model. 2828 - Support print operator to write data directly on the hard disk. 2829 - Add the double recursive programming solution for very high speed parallel strategy search in automatic parallel. 2830 - User interfaces change log 2831 - Allow the learning rate of AdamWeightDecayDynamicLR and Lamb to be 0([!1826](https://gitee.com/mindspore/mindspore/pulls/1826)) 2832 - Restricting the entire network input parameter is Tensor([!1967](https://gitee.com/mindspore/mindspore/pulls/1967)) 2833 - Turn shape and dtype into attributes instead of interfaces([!1919](https://gitee.com/mindspore/mindspore/pulls/1919)) 2834 - Delete multitypefungraph([!2116](https://gitee.com/mindspore/mindspore/pulls/2116)) 2835 - Refactor the callback module in an encapsulated way, use _CallbackManager instead of_build_callbacks([!2236](https://gitee.com/mindspore/mindspore/pulls/2236)) 2836 - Delete EmbeddingLookup([!2163](https://gitee.com/mindspore/mindspore/pulls/2163)) 2837 - Checkpoint add model_type([!2517](https://gitee.com/mindspore/mindspore/pulls/2517)) 2838- Executor and performance optimization 2839 - Heterogeneous execution on CPU and Ascend devices supported, and is verified in Wide&Deep model. 2840 - Quantitative training of MobileNetV2, Lenet and Resnet50 on Ascend-910 are supported. 2841 - Support new fusion architecture, which can do fusion optimization across graphs and kernels to improve execution speed. 2842- Data processing, augmentation, and save format 2843 - Support data processing pipeline performance profiling. 2844 - Support public dataset loading, such as CLUE and Coco. 2845 - Support more text processing, such as more tokenizers and vocab data. 2846 - Support MindRecord padded data. 2847 2848### Other Hardware Support 2849 2850- GPU platform 2851 - New model supported: Bert / Wide&Deep. 2852 - Support setting max device memory. 2853- CPU platform 2854 - New model supported: LSTM. 2855 2856## Bugfixes 2857 2858- Models 2859 - Bert, Move Bert from `example` to `model_zoo`, optimize network for better performance. ([!1902](https://gitee.com/mindspore/mindspore/pulls/1902)) 2860 - VGG16, Move VGG16 from `example` to `model_zoo`, optimize network for better accuracy. ([!2645](https://gitee.com/mindspore/mindspore/pulls/2645)) 2861 - Alexnet, modify parameter setting to improve accuracy ([!1364](https://gitee.com/mindspore/mindspore/pulls/2370)) 2862 - Wide&Deep, Move Wide&Deep from `example` to `model_zoo`, optimize network for better performance. ([!2221](https://gitee.com/mindspore/mindspore/pulls/2221)) 2863- Python API 2864 - Fix bug in auto cast([!1766](https://gitee.com/mindspore/mindspore/pulls/1766)) 2865 - Fix bug of register_backward_hook([!2148](https://gitee.com/mindspore/mindspore/pulls/2148)) 2866 - Fix bug of tuple args in pynative mode([!1878](https://gitee.com/mindspore/mindspore/pulls/1878)) 2867 - Fix bug of checking numbers of arguments and graph parameters([!1701](https://gitee.com/mindspore/mindspore/pulls/1701)) 2868- Executor 2869 - Fix bug of loading input data repeatedly in pynative mode([!1966](https://gitee.com/mindspore/mindspore/pulls/1966)) 2870 - Fix bug of list cannot be used as input in pynative mode([!1765](https://gitee.com/mindspore/mindspore/pulls/1765)) 2871 - Fix bug of kernel select ([!2103](https://gitee.com/mindspore/mindspore/pulls/2103)) 2872 - Fix bug of pattern matching for batchnorm fusion in the case of auto mix precision.([!1851](https://gitee.com/mindspore/mindspore/pulls/1851)) 2873 - Fix bug of generate hccl's kernel info.([!2393](https://gitee.com/mindspore/mindspore/pulls/2393)) 2874- GPU platform 2875 - Fix bug of summary feature invalid([!2173](https://gitee.com/mindspore/mindspore/pulls/2173)) 2876- Data processing 2877 - Fix bug of Cifar dataset reading([!2096](https://gitee.com/mindspore/mindspore/pulls/2096)) 2878 - Fix bug of C++ behavior in RandomCropAndResize([!2026](https://gitee.com/mindspore/mindspore/pulls/2026)) 2879 - Fix the bug of mindrecord shuffle([!2420](https://gitee.com/mindspore/mindspore/pulls/2420)) 2880- Third party 2881 - Sqlite : Update sqlite to 3.32.2 to handle [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656), [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871), [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655), [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327), [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630), [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358), [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631), [CVE-2020-13632](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13632), [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434), [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435), and [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655). 2882 2883## Contributors 2884 2885Thanks goes to these wonderful people: 2886 2887Alexey Shevlyakov, avakh, baihuawei, BowenK, buxue, caifubi, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, Danish Farid, dayschan, dengwentao, dinghao, etone-chan, fangzehua, fary86, geekun, Giancarlo Colmenares, gong chen, gukecai, guohongzilong, hangangqiang, heleiwang, hesham, He Wei, hexia, hongxing, huangdongrun, huanghui, islam_amin, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, Jonathan Yan, jonyguo, Junhan Hu, Kang, kingfo, kouzhenzhong, kpy, kswang, laiyongqiang, leopz, liangzelang, lichenever, lihongkang, Li Hongzhang, lilei, limingqi107, lirongzhen1, liubuyu, liuchongming74, liuwenhao4, liuxiao, Lixia Chen, liyanliu, liyong, lizhenyu, lvliang, Mahdi, Margaret_wangrui, meixiaowei, ms_yan, nhussain, ougongchang, panfengfeng, panyifeng, peilinwang, Peilin Wang, pkuliuliu, qianlong, rick_sanchez, shibeiji, Shida He, shijianning, simson, sunsuodong, suteng, Tinazhang, Tron Zhang, unknown, VectorSL, wandongdong, wangcong, wangdongxu, wangdongxu6, wanghua, wangnan39, Wei Luning, wenchunjiang, wenkai, wilfChen, WilliamLian, wukesong, Xian Weizhao, Xiaoda Zhang, xiefangqi, xulei2020, xunxue, xutianchun, Yang, yanghaitao, yanghaitao1, yanghaoran, yangjie, yangjie159, YangLuo, Yanjun Peng, yankai, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yuchaojie, yujianfeng, zhangzhongpeng, zhangdengcheng, Zhang Qinghua, zhangyinxia, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang, wangdongxu 2888 2889Contributions of any kind are welcome! 2890 2891# MindSpore 0.3.1-alpha Release Notes 2892 2893## Major Features and Improvements 2894 2895### Ascend 910 Training and Inference Framework 2896 2897- Frontend and User Interface 2898 - Independent model init interface. 2899- Data processing, augmentation, and save format 2900 - Support sample padding for minddataset. 2901 2902## Bugfixes 2903 2904- Python API 2905 - Fix bugs in the lars optimizer([!1894](https://gitee.com/mindspore/mindspore/pulls/1894)) 2906- Data processing 2907 - Fix accuracy problem of RandomCropDecodeResize ([!2340](https://gitee.com/mindspore/mindspore/pulls/2340)) 2908 2909# Release 0.3.0-alpha 2910 2911## Major Features and Improvements 2912 2913### Ascend 910 Training and Inference Framework 2914 2915- New models 2916 - DeepFM: a factorization-machine based neural network for CTR prediction on Criteo dataset. 2917 - DeepLabV3: significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2007 semantic image segmentation benchmark. 2918 - Faster-RCNN: towards real-time object detection with region proposal networks on COCO 2017 dataset. 2919 - SSD: a single stage object detection methods on COCO 2017 dataset. 2920 - GoogLeNet: a deep convolutional neural network architecture codenamed Inception V1 for classification and detection on CIFAR-10 dataset. 2921 - Wide&Deep: jointly trained wide linear models and deep neural networks for recommender systems on Criteo dataset. 2922- Frontend and User Interface 2923 - Complete numpy advanced indexing method. Supports value and assignment through tensor index. 2924 - Some optimizers support separating parameter groups. Different parameter groups can set different `learning_rate` and `weight_decay`. 2925 - Support setting submodule's logging level independently, e.g. you can set logging level of module `A` to warning and set logging level of module `B` to info. 2926 - Support weights to be compiled according to shape to solve the problem of large memory overhead. 2927 - Add some operators implement and grammar support in pynative mode. To be consistent with graph mode. 2928 - User interfaces change log 2929 - Learning rate and weight decay making group params([!637](https://gitee.com/mindspore/mindspore/pulls/637)) 2930 - Support weights to be compiled according to shape([!1015](https://gitee.com/mindspore/mindspore/pulls/1015)) 2931 - delete some context param([!1100](https://gitee.com/mindspore/mindspore/pulls/1100)) 2932 - ImageSummary/ScalarSummary/TensorSummary/HistogramSummary([!1329](https://gitee.com/mindspore/mindspore/pulls/1329))([!1425](https://gitee.com/mindspore/mindspore/pulls/1425)) 2933- Executor and Performance Optimization 2934 - Support doing evaluation while in training process, so that the accuracy of training can be easily obtained. 2935 - Enable second-order optimization for resnet50, which can achieve 75.9% accuracy in 45 epochs (Resnet50 @ImageNet). 2936 - Optimize pynative implementation and improve it's execution performance. 2937 - Optimize summary record implementation and improve its performance. 2938- Data processing, augmentation, and save format 2939 - Support simple text processing, such as tokenizer/buildvocab/lookup. 2940 - Support padding batch. 2941 - Support split or concat dataset. 2942 - Support MindDataset reading from file list. 2943 2944### Other Hardware Support 2945 2946- GPU platform 2947 - New models supported: MobileNetV2, MobileNetV3. 2948 - Support mixed precision training. 2949 - Support device memory swapping. 2950 2951## Bugfixes 2952 2953- Python API 2954 - An exception to the broadcast input data type check([!712](https://gitee.com/mindspore/mindspore/pulls/712)) 2955 - Fix issues assignsub return value 0([!1036](https://gitee.com/mindspore/mindspore/pulls/1036)) 2956 - Fix issue Conv2dBackpropInput bprop should return 3 instead of 2 items([!1001](https://gitee.com/mindspore/mindspore/pulls/1001)) 2957 - Fix sens shape error of TrainOneStepWithLossScaleCell([!1050](https://gitee.com/mindspore/mindspore/pulls/1050)) 2958 - Fix BatchNormGrad operator([!1344](https://gitee.com/mindspore/mindspore/pulls/1344)) 2959- Executor 2960 - Fix dropout,topK and addn errors in PyNative mode ([!1285](https://gitee.com/mindspore/mindspore/pulls/1285), [!1138](https://gitee.com/mindspore/mindspore/pulls/1138), [!1033](https://gitee.com/mindspore/mindspore/pulls/1033)). 2961 - Fix memory leaks after execution in PyNatvie mode ([!1201](https://gitee.com/mindspore/mindspore/pulls/1201)). 2962 - Fix HCCL failure in some special scenes ([!1204](https://gitee.com/mindspore/mindspore/pulls/1204), [!1252](https://gitee.com/mindspore/mindspore/pulls/1252)). 2963 - Fix SSD network when Select failed, can't find kernel info([!1449](https://gitee.com/mindspore/mindspore/pulls/1449)). 2964 - Fix Topk operator selection strategy bug between aicore and aicpu([!1367](https://gitee.com/mindspore/mindspore/pulls/1367)). 2965 - Fix input memory size of 'assign' op unequal in control sink mode when assigning a data from one child graph to another child graph([!802](https://gitee.com/mindspore/mindspore/pulls/802)). 2966 - Fix allreduce ir inconsistency([!989](https://gitee.com/mindspore/mindspore/pulls/989)). 2967- GPU platform 2968 - Fix summary for gradient collection ([!1364](https://gitee.com/mindspore/mindspore/pulls/1364)) 2969 - Fix the slice operator ([!1489](https://gitee.com/mindspore/mindspore/pulls/1489)) 2970- Data processing 2971 - Fix memory problems of GeneratorDataset of sub-process ([!907](https://gitee.com/mindspore/mindspore/pulls/907)) 2972 - Fix getting data timeout when training the cifar10 dataset under the lenet([!1391](https://gitee.com/mindspore/mindspore/pulls/1391)) 2973 2974## Contributors 2975 2976Thanks goes to these wonderful people: 2977 2978Alexey Shevlyakov, Amir Lashkari, anthony, baihuawei, biffex, buxue, caifubi, candanzg, caojian05, Cathy Wong, changzherui, chenfei, chengxianbin, chenhaozhe, chenzomi, chujinjin, cristoval, dengwentao, eric, etone-chan, fary86, gaojing, gengdongjie, gongchen, guohongzilong, guozhijian, heleiwang, hesham, He Wei, Hoai Linh Tran, hongxing, huangdongrun, huanghui, Jamie Nisbet, Jesse Lee, jiangjinsheng, jiangzhiwen, jinyaohui, jjfeing, jonwe, jonyguo, Junhan Hu, Kang, kingfo, kswang, laiyongqiang, leopz, lichenever, lihongkang, limingqi107, liubuyu, liuliyan2, liuwenhao4, liuxiao, liuxiao, liyong, lizhenyu, lvliang, Margaret_wangrui, meixiaowei, ms_yan, Nat Sutyanyong, ougongchang, panfengfeng, panyifeng, Peilin Wang, peixu_ren, qianlong, rick_sanchez, seatea, sheng, shijianning, simson, sunsuodong, Tinazhang, VectorSL, wandongdong, wangcong, wanghua, wangnan39, Wei Luning, wenchunjiang, wilfChen, WilliamLian, wsc, wukesong, wuxuejian, Xiaoda Zhang, xiefangqi, xulei2020, Yang, yangjie159, yangruoqi713, yangyongjie, yangzhenzhang, Yanjun Peng, yanzhenxiang2020, yao_yf, Yi Huaijie, yoonlee666, yujianfeng, YuJianfeng, yvetteliu, zhangdengcheng, Zhang Qinghua, zhangz0911gm, zhaojichen, zhaoting, zhaozhenlong, zhoufeng, zhouneng, zhousiyi, zhouyuanshen, Zirui Wu, Ziyan, zjun, ZPaC, lihongzhang 2979 2980Contributions of any kind are welcome! 2981 2982# MindSpore 0.2.0-alpha Release Notes 2983 2984## Major Features and Improvements 2985 2986### Ascend 910 Training and Inference Framework 2987 2988- New models 2989 - MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2990 - ResNet101: Deep Residual Learning for Image Recognition. 2991 2992- Frontend and User Interface 2993 - Support for all python comparison operators. 2994 - Support for math operators **,//,%. Support for other python operators like and/or/not/is/is not/ in/ not in. 2995 - Support for the gradients of function with variable arguments. 2996 - Support for tensor indexing assignment for certain indexing type. 2997 - Support for dynamic learning rate. 2998 - User interfaces change log 2999 - DepthwiseConv2dNative, DepthwiseConv2dNativeBackpropFilter, DepthwiseConv2dNativeBackpropInput([!424](https://gitee.com/mindspore/mindspore/pulls/424)) 3000 - ReLU6, ReLU6Grad([!224](https://gitee.com/mindspore/mindspore/pulls/224)) 3001 - GeneratorDataset([!183](https://gitee.com/mindspore/mindspore/pulls/183)) 3002 - VOCDataset([!477](https://gitee.com/mindspore/mindspore/pulls/477)) 3003 - MindDataset, PKSampler([!514](https://gitee.com/mindspore/mindspore/pulls/514)) 3004 - map([!506](https://gitee.com/mindspore/mindspore/pulls/506)) 3005 - Conv([!226](https://gitee.com/mindspore/mindspore/pulls/226)) 3006 - Adam([!253](https://gitee.com/mindspore/mindspore/pulls/253)) 3007 - _set_fusion_strategy_by_idx,_set_fusion_strategy_by_size([!189](https://gitee.com/mindspore/mindspore/pulls/189)) 3008 - CheckpointConfig([!122](https://gitee.com/mindspore/mindspore/pulls/122)) 3009 - Constant([!54](https://gitee.com/mindspore/mindspore/pulls/54)) 3010- Executor and Performance Optimization 3011 - Support parallel execution of data prefetching and forward/backward computing. 3012 - Support parallel execution of gradient aggregation and forward/backward computing in distributed training scenarios. 3013 - Support operator fusion optimization. 3014 - Optimize compilation process and improve the performance. 3015- Data processing, augmentation, and save format 3016 - Support multi-process of GeneratorDataset/PyFunc for high performance 3017 - Support variable batchsize 3018 - Support new Dataset operators, such as filter,skip,take,TextLineDataset 3019 3020### Other Hardware Support 3021 3022- GPU platform 3023 - Use dynamic memory pool by default on GPU. 3024 - Support parallel execution of computation and communication. 3025 - Support continuous address allocation by memory pool. 3026- CPU platform 3027 - Support for windows 10 OS. 3028 3029## Bugfixes 3030 3031- Models 3032 - Fix mixed precision bug for VGG16 model ([!629](https://gitee.com/mindspore/mindspore/pulls/629)). 3033- Python API 3034 - Fix ControlDepend operator bugs on CPU and GPU ([!396](https://gitee.com/mindspore/mindspore/pulls/396)). 3035 - Fix ArgMinWithValue operator bugs ([!338](https://gitee.com/mindspore/mindspore/pulls/338)). 3036 - Fix Dense operator bugs on PyNative mode ([!276](https://gitee.com/mindspore/mindspore/pulls/276)). 3037 - Fix MatMul operator bugs on PyNative mode ([!288](https://gitee.com/mindspore/mindspore/pulls/288)). 3038- Executor 3039 - Fix operator selection bugs and make it general ([!300](https://gitee.com/mindspore/mindspore/pulls/300)). 3040 - Fix memory reuse bug for GetNext op ([!291](https://gitee.com/mindspore/mindspore/pulls/291)). 3041- GPU platform 3042 - Fix memory allocation in multi-graph scenarios ([!444](https://gitee.com/mindspore/mindspore/pulls/444)). 3043 - Fix bias_add_grad under fp16 precision ([!598](https://gitee.com/mindspore/mindspore/pulls/598)). 3044 - Fix support for fp16 kernels on nvidia 1080Ti([!571](https://gitee.com/mindspore/mindspore/pulls/571)). 3045 - Fix parsing of tuple type parameters ([!316](https://gitee.com/mindspore/mindspore/pulls/316)). 3046- Data processing 3047 - Fix TypeErrors about can't pickle mindspore._c_dataengine.DEPipeline objects([!434](https://gitee.com/mindspore/mindspore/pulls/434)). 3048 - Add TFRecord file verification([!406](https://gitee.com/mindspore/mindspore/pulls/406)). 3049 3050## Contributors 3051 3052Thanks goes to these wonderful people: 3053 3054Alexey_Shevlyakov, Cathy, Chong, Hoai, Jonathan, Junhan, JunhanHu, Peilin, SanjayChan, StrawNoBerry, VectorSL, Wei, WeibiaoYu, Xiaoda, Yanjun, YuJianfeng, ZPaC, Zhang, ZhangQinghua, ZiruiWu, amongo, anthonyaje, anzhengqi, biffex, caifubi, candanzg, caojian05, casgj, cathwong, ch-l, chang, changzherui, chenfei, chengang, chenhaozhe, chenjianping, chentingting, chenzomi, chujinjin, dengwentao, dinghao, fanglei, fary86, flywind, gaojing, geekun, gengdongjie, ghzl, gong, gongchen, gukecai, guohongzilong, guozhijian, gziyan, h.farahat, hesham, huangdongrun, huanghui, jiangzhiwen, jinyaohui, jjfeing, jojobugfree, jonathan_yan, jonyguo, jzw, kingfo, kisnwang, laiyongqiang, leonwanghui, lianliguang, lichen, lichenever, limingqi107, liubuyu, liuxiao, liyong, liyong126, lizhenyu, lupengcheng, lvliang, maoweiyong, ms_yan, mxm, ougongchang, panfengfeng, panyifeng, pengyanjun, penn, qianlong, seatea, simson, suteng, thlinh, vlne-v1, wangchengke, wanghua, wangnan39, wangqiuliang, wenchunjiang, wenkai, wukesong, xiefangqi, xulei, yanghaitao, yanghaoran, yangjie159, yangzhenzhang, yankai10, yanzhenxiang2020, yao_yf, yoonlee666, zhangbuxue, zhangz0911gm, zhangzheng, zhaojichen, zhaoting, zhaozhenlong, zhongligeng, zhoufeng, zhousiyi, zjun, zyli2020, yuhuijun, limingqi107, lizhenyu, chenweifeng. 3055 3056Contributions of any kind are welcome! 3057 3058# MindSpore 0.1.0-alpha Release Notes 3059 3060## Main Features 3061 3062### Ascend 910 Training and Inference Framework 3063 3064- Recommended OS: Ubuntu 16.04 (or later) or EulerOS 2.5 or EulerOS 2.8 3065- Python version: 3.7.5 3066- Preset models 3067 - ResNet-50: residual structure-based convolutional neural network (CNN) for image classification, which is widely used. 3068 - AlexNet: classic CNN for image classification, achieving historical results in ImageNet LSVRC-2012. 3069 - LeNet: classic CNN for image classification, which was proposed by Yann LeCun. 3070 - VGG16: classic CNN for image classification, which was proposed by Oxford Visual Geometry Group. 3071 - YoloV3: real-time object detection network. 3072 - NEZHA: BERT-based Chinese pre-training network produced by Huawei Noah's Ark Laboratory. 3073- Execution modes 3074 - Graph mode: provides graph optimization methods such as memory overcommitment, IR fusion, and buffer fusion to achieve optimal execution performance. 3075 - PyNative mode: single-step execution mode, facilitating process debugging. 3076- Debugging capability and methods 3077 - Save CheckPoints and Summary data during training. 3078 - Support asynchronous printing. 3079 - Dump the computing data. 3080 - Support profiling analysis of the execution process performance. 3081- Distributed execution 3082 - Support AllReduce, AllGather, and BroadCast collective communication. 3083 - AllReduce data parallel: Each device obtains different training data, which accelerates the overall training process. 3084 - Collective communication-based layerwise parallel: Models are divided and allocated to different devices to solve the problem of insufficient memory for large model processing and improve the training speed. 3085 - Automatic parallel mode: The better data and model parallel mode can be predicted based on the cost model. It is recommended that this mode be used on ResNet series networks. 3086- Automatic differentiation 3087 - Implement automatic differentiation based on Source to Source. 3088 - Support distributed scenarios and automatic insertion of reverse communication operators. 3089- Data processing, augmentation, and save format 3090 - Load common datasets such as ImageNet, MNIST, CIFAR-10, and CIFAR-100. 3091 - Support common data loading pipeline operations, such as shuffle, repeat, batch, map, and sampler. 3092 - Provide basic operator libraries to cover common CV scenarios. 3093 - Support users to customize Python data augmentation operators through the Pyfunc mechanism. 3094 - Support the access of user-defined datasets through the GeneratorDataset mechanism. 3095 - Provide the MindSpore data format, data aggregation and storage, random access example, data partition, efficient parallel read, user-defined index, and dataset search. 3096 - Convert user datasets to the MindSpore data format. 3097 - After data processing and augmentation, provide training applications in feed and graph modes. 3098- FP32/16 mixed precision computation, supporting automatic and manual configuration 3099- Provide common operators such as nn, math, and array, which can be customized. 3100 3101### Inference Deployment 3102 3103- Deploy models in MindSpore format on the Ascend 310 platform for inference. 3104- Save models in ONNX format. 3105- Support saving models in LITE format and running models based on the lightweight inference framework. 3106 - Recommended OS: Android 4.3 or later 3107 - Supported network type: LeNet 3108 - Provide the generalization operators generated by TVM and operators generated after specific networks are tuned. 3109 3110### Other Hardware Support 3111 3112- GPU platform training 3113 - Recommended OS: Ubuntu 16.04 3114 - CUDA version: 9.2 or 10.1 3115 - CuDNN version: 7.6 or later 3116 - Python version: 3.7.5 3117 - NCCL version: 2.4.8-1 3118 - OpenMPI version: 3.1.5 3119 - Supported models: AlexNet, LeNet, and LSTM 3120 - Supported datasets: MNIST and CIFAR-10 3121 - Support data parallel. 3122- CPU platform training 3123 - Recommended OS: Ubuntu 16.04 3124 - Python version: 3.7.5 3125 - Supported model: LeNet 3126 - Supported dataset: MNIST 3127 - Provide only the stand-alone operation version. 3128 3129## Peripherals and Tools 3130 3131- [MindSpore Official Website](https://www.mindspore.cn/) 3132- [MindInsight Visualization Debugging and Optimization](https://gitee.com/mindspore/mindinsight) 3133- [MindArmour Model Security Hardening Package](https://gitee.com/mindspore/mindarmour) 3134- [GraphEngine Computational Graph Engine](https://gitee.com/mindspore/graphengine) 3135