• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import os
17import numpy as np
18
19from mindspore.communication.management import init
20from mindspore.communication.management import release
21from mindspore.communication.management import get_rank
22from mindspore.communication.management import get_group_size
23from mindspore.nn import Cell
24from mindspore.nn import ReLU
25from mindspore.nn import Dense
26from mindspore.nn import Flatten
27from mindspore.nn import Momentum
28import mindspore.ops.operations as P
29from mindspore.train.serialization import load_param_into_net
30from mindspore.train.callback import CheckpointConfig
31from mindspore.train.callback import ModelCheckpoint
32from mindspore.train.serialization import load_checkpoint
33
34from mindspore.nn import SoftmaxCrossEntropyWithLogits
35from mindspore.train import Model
36from mindspore.parallel import set_algo_parameters
37from mindspore import Tensor
38from mindspore.common.parameter import Parameter
39from mindspore import context
40from mindspore.context import ParallelMode
41
42context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
43
44def _count_unequal_element(data_expected, data_me, rtol, atol):
45    assert data_expected.shape == data_me.shape
46    total_count = len(data_expected.flatten())
47    error = np.abs(data_expected - data_me)
48    greater = np.greater(error, atol + np.abs(data_me) * rtol)
49    loss_count = np.count_nonzero(greater)
50    assert (loss_count / total_count) < rtol, \
51        "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
52            format(data_expected[greater], data_me[greater], error[greater])
53
54
55def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
56    if np.any(np.isnan(data_expected)):
57        assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
58    elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
59        _count_unequal_element(data_expected, data_me, rtol, atol)
60    else:
61        assert True
62
63def clean_all_ckpt_files(folder_path):
64    if os.path.exists(folder_path):
65        for file_name in os.listdir(folder_path):
66            if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
67                os.remove(os.path.join(folder_path, file_name))
68
69
70def find_newest_ckpt_file(folder_path):
71    ckpt_files = map(lambda f: os.path.join(folder_path, f),
72                     filter(lambda f: f.endswith('.ckpt'),
73                            os.listdir(folder_path)))
74    return max(ckpt_files, key=os.path.getctime)
75
76
77class FakeDataInitMode:
78    RandomInit = 0
79    OnesInit = 1
80    UniqueInit = 2
81    ZerosInit = 3
82
83
84class FakeData:
85    def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
86                 num_classes=10, random_offset=0, use_parallel=False,
87                 fakedata_mode=FakeDataInitMode.RandomInit):
88        self.size = size
89        self.rank_batch_size = batch_size
90        self.total_batch_size = self.rank_batch_size
91        self.random_offset = random_offset
92        self.image_size = image_size
93        self.num_classes = num_classes
94        self.rank_size = 1
95        self.rank_id = 0
96        self.batch_index = 0
97        self.image_data_type = np.float32
98        self.label_data_type = np.float32
99        self.is_onehot = True
100        self.fakedata_mode = fakedata_mode
101
102        if use_parallel is True:
103            init(backend_name='hccl')
104            self.rank_size = get_group_size()
105            self.rank_id = get_rank()
106
107        self.total_batch_size = self.rank_batch_size * self.rank_size
108
109        assert (self.size % self.total_batch_size) == 0
110
111        self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
112
113    def get_dataset_size(self):
114        return int(self.size / self.total_batch_size)
115
116    def get_repeat_count(self):
117        return 1
118
119    def set_image_data_type(self, data_type):
120        self.image_data_type = data_type
121
122    def set_label_data_type(self, data_type):
123        self.label_data_type = data_type
124
125    def set_label_onehot(self, is_onehot=True):
126        self.is_onehot = is_onehot
127
128    def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
129        _ = num_epochs
130        return self
131
132    def __getitem__(self, batch_index):
133        if batch_index * self.total_batch_size >= len(self):
134            raise IndexError("{} index out of range".format(self.__class__.__name__))
135        rng_state = np.random.get_state()
136        np.random.seed(batch_index + self.random_offset)
137        if self.fakedata_mode == FakeDataInitMode.OnesInit:
138            img = np.ones(self.total_batch_data_size)
139        elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
140            img = np.zeros(self.total_batch_data_size)
141        elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
142            total_size = 1
143            for i in self.total_batch_data_size:
144                total_size = total_size * i
145            img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
146        else:
147            img = np.random.randn(*self.total_batch_data_size)
148        target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
149        np.random.set_state(rng_state)
150        img = img[self.rank_id]
151        target = target[self.rank_id]
152        img_ret = img.astype(self.image_data_type)
153        target_ret = target.astype(self.label_data_type)
154        if self.is_onehot:
155            target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
156            target_onehot[np.arange(self.rank_batch_size), target] = 1
157            target_ret = target_onehot.astype(self.label_data_type)
158        return Tensor(img_ret), Tensor(target_ret)
159
160    def __len__(self):
161        return self.size
162
163    def __iter__(self):
164        self.batch_index = 0
165        return self
166
167    def reset(self):
168        self.batch_index = 0
169
170    def __next__(self):
171        if self.batch_index * self.total_batch_size < len(self):
172            data = self[self.batch_index]
173            self.batch_index += 1
174            return data
175        raise StopIteration
176
177
178class OptimizerSemiAutoAndAutoParallel6Net(Cell):
179    def __init__(self, strategy_dict=None):
180        super().__init__()
181        shared_np = np.full((16, 1, 32, 32), 0.5, dtype=np.float32)
182        self.shared_weight = Parameter(Tensor(shared_np), name='shared_weight')
183        self.fc1 = Dense(in_channels=1024,
184                         out_channels=116,
185                         weight_init='ones',
186                         bias_init='ones',
187                         has_bias=True)
188        self.relu = ReLU()
189        self.sigmoid = P.Sigmoid()
190        self.add1 = P.Add()
191        self.add2 = P.Add()
192        self.mul1 = P.Mul().add_prim_attr('primitive_target', 'CPU')
193        self.mul2 = P.Mul()
194        self.mul3 = P.Mul()
195        self.flatten = Flatten()
196
197        mul2_weight_np = np.full((16, 116), 1, dtype=np.float32)
198        self.mul2_weight = Parameter(Tensor(mul2_weight_np), name='mul2_weight')
199
200        mul3_weight_np = np.full((16, 116), 1, dtype=np.float32)
201        self.mul3_weight = Parameter(Tensor(mul3_weight_np), name='mul3_weight')
202
203        if strategy_dict is not None:
204            self.add1.shard(strategy_dict['add1'])
205            self.mul1.shard(strategy_dict['mul1'])
206            self.fc1.matmul.shard(strategy_dict['fc1_matmul'])
207            self.fc1.bias_add.shard(strategy_dict['fc1_bias_add'])
208            self.mul2.shard(strategy_dict['mul2'])
209            self.mul3.shard(strategy_dict['mul3'])
210
211    def construct(self, inputs):
212        relu = self.relu(inputs)
213        sigmoid = self.sigmoid(inputs)
214        add1 = self.add1(relu, self.shared_weight)
215        mul = self.mul1(sigmoid, self.shared_weight)
216        add2 = self.add2(add1, mul)
217        flatten = self.flatten(add2)
218        dense = self.fc1(flatten)
219        mul2 = self.mul2(dense, self.mul2_weight)
220        out = self.mul3(mul2, self.mul3_weight)
221        return out
222
223
224class OptimizerSemiAutoAndAutoParallelFactory:
225    def __init__(self, net, strategy_dict=None):
226        self.parallel_ckpt = None
227        self.optimizer_parallel_ckpt = None
228        self.net = net
229        self.strategy_dict = strategy_dict
230        self.global_rank_id = None
231        self._set_parallel_env()
232        self._init_parallel()
233
234    def __enter__(self):
235        return self
236
237    def __exit__(self, exc_type, exc_val, exc_tb):
238        return
239
240    def __del__(self):
241        self._release_parallel()
242
243    def _set_parallel_env(self):
244        if 'RANK_ID' in os.environ:
245            self.global_rank_id = int(os.environ['RANK_ID'])
246
247    def _init_parallel(self):
248        self._init_parallel_flag = False
249        init(backend_name='hccl')
250        self._init_parallel_flag = True
251
252    def _release_parallel(self):
253        if self._init_parallel_flag:
254            release()
255
256    def _model_train_and_save_ckpt(self, net, dataset, epoch):
257        self.opt = Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
258        self.loss_fn = SoftmaxCrossEntropyWithLogits(reduction='mean')
259        self.model = Model(network=net,
260                           loss_fn=self.loss_fn,
261                           optimizer=self.opt)
262        ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
263        ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
264        ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
265                                        config=ckpt_config)
266        clean_all_ckpt_files(ckpt_path)
267        self.model.train(epoch=epoch,
268                         train_dataset=dataset,
269                         callbacks=[ckpt_callback],
270                         dataset_sink_mode=False)
271        newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
272        return load_checkpoint(newest_ckpt_file)
273
274    def mindspore_auto_parallel_impl(self,
275                                     dataset,
276                                     epoch,
277                                     device_num):
278        set_algo_parameters(fully_use_devices=False)
279        context.reset_auto_parallel_context()
280        context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
281                                          device_num=device_num)
282        parallel_mode_net = self.net(self.strategy_dict)
283        self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
284                                                             dataset=dataset, epoch=epoch)
285        context.reset_auto_parallel_context()
286
287    def mindspore_optimizer_auto_parallel_impl(self,
288                                               dataset,
289                                               epoch,
290                                               device_num):
291        set_algo_parameters(fully_use_devices=False)
292        context.reset_auto_parallel_context()
293        context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
294                                          device_num=device_num,
295                                          enable_parallel_optimizer=True)
296        parallel_mode_net = self.net(self.strategy_dict)
297        self.optimizer_parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
298                                                                       dataset=dataset, epoch=epoch)
299        context.reset_auto_parallel_context()
300
301    def checkpoint_cmp(self, inputs_np):
302        optimizer_parallel_net = self.net(self.strategy_dict)
303        load_param_into_net(optimizer_parallel_net, self.optimizer_parallel_ckpt)
304        optimizer_parallel_out = optimizer_parallel_net(Tensor(inputs_np))
305
306        parallel_net = self.net(self.strategy_dict)
307        load_param_into_net(parallel_net, self.parallel_ckpt)
308        parallel_out = parallel_net(Tensor(inputs_np))
309        allclose_nparray(optimizer_parallel_out.asnumpy(), parallel_out.asnumpy(), 0.001, 0.001)
310
311def test_optimizer_parallel_auto_4p_6_parameter_same_strategy_1_1_2_1_momentum():
312    inputs_np = np.random.randn(16, 1, 32, 32).astype(np.float32)
313    ds1 = FakeData(size=32,
314                   batch_size=4,
315                   image_size=(1, 32, 32),
316                   use_parallel=True,
317                   num_classes=116)
318
319    ds2 = FakeData(size=32,
320                   batch_size=4,
321                   image_size=(1, 32, 32),
322                   use_parallel=True,
323                   num_classes=116)
324    strategy_dict = {'add1': ((1, 1, 2, 1), (1, 1, 2, 1)),
325                     'mul1': ((1, 1, 2, 1), (1, 1, 2, 1)),
326                     'fc1_matmul': ((1, 2), (1, 2)),
327                     'fc1_bias_add': ((1, 2), (2,)),
328                     'mul2': ((1, 2), (1, 2)),
329                     'mul3': ((1, 2), (1, 2))}
330    fact = OptimizerSemiAutoAndAutoParallelFactory(net=OptimizerSemiAutoAndAutoParallel6Net,
331                                                   strategy_dict=strategy_dict)
332    fact.mindspore_auto_parallel_impl(dataset=ds1, epoch=2, device_num=4)
333    fact.mindspore_optimizer_auto_parallel_impl(dataset=ds2, epoch=2, device_num=4)
334    fact.checkpoint_cmp(inputs_np=inputs_np)
335