• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.common.dtype as mstype
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.ops import operations as P
22
23context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend")
24
25
26class Net(nn.Cell):
27    def __init__(self):
28        super(Net, self).__init__()
29        self.softmax = P.Softmax(axis=1)
30        self.add = P.Add()
31        self.cast = P.Cast()
32        self.relu = P.ReLU()
33        self.reduce_mean = P.ReduceMean()
34
35    def construct(self, x, y):
36        x = self.cast(x, mstype.float16)
37        y = self.cast(y, mstype.float16)
38        x = self.add(x, y)
39        x = self.relu(x)
40        x = self.reduce_mean(x)
41        return x
42
43
44def test_net():
45    x = np.random.randn(32, 10).astype(np.float32)
46    relu = Net()
47    output = relu(Tensor(x), Tensor(x))
48    print(output.asnumpy())
49