• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19import mindspore.common.dtype as mstype
20from mindspore import Tensor
21from mindspore.ops import operations as P
22
23context.set_context(mode=context.GRAPH_MODE,
24                    device_target="Ascend")
25
26
27class Net(nn.Cell):
28    def __init__(self, pad_num):
29        super(Net, self).__init__()
30        self.unique_with_pad = P.UniqueWithPad()
31        self.pad_num = pad_num
32
33    def construct(self, x):
34        return self.unique_with_pad(x, self.pad_num)
35
36
37def test_unique_with_pad():
38    x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2]), mstype.int32)
39    pad_num = 8
40    unique_with_pad = Net(pad_num)
41    out = unique_with_pad(x)
42    expect_val = ([1, 5, 4, 3, 2, 8, 8, 8, 8, 8], [0, 0, 1, 1, 2, 2, 3, 3, 4, 4])
43    assert(out[0].asnumpy() == expect_val[0]).all()
44    assert(out[1].asnumpy() == expect_val[1]).all()
45