• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test_dropout """
16import numpy as np
17import pytest
18
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore import context
22from mindspore import dtype as mstype
23from mindspore.ops.operations import _grad_ops as P
24
25
26context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
27
28
29class Net(nn.Cell):
30    def __init__(self, keep_prob=0.5):
31        super(Net, self).__init__()
32        self.dropout_grad = P.DropoutGrad(keep_prob)
33
34    def construct(self, output, mask):
35        return self.dropout_grad(output, mask)
36
37
38@pytest.mark.level0
39@pytest.mark.platform_x86_cpu
40@pytest.mark.env_onecard
41def test_dropout_grad_001():
42    in_tensor = Tensor(np.array([[[3., 1., 2.]], \
43                                 [[4., 1., 4.]]]), mstype.float32)
44    in_mask = Tensor(np.array([[[1., 0, 0]], [[1., 1., 0]]]), mstype.float32)
45    dropout_grad = Net()
46    output = dropout_grad(in_tensor, in_mask)
47    print("output:\n", output)
48
49    expect = np.array([[[6., 0., 0.]], [[8., 2., 0.]]]).astype(np.float32)
50    error = np.ones(shape=[2, 3]) * 1.0e-6
51
52    diff = np.abs(output.asnumpy() - expect)
53    assert np.all(np.abs(diff) < error)
54
55
56@pytest.mark.level0
57@pytest.mark.platform_x86_cpu
58@pytest.mark.env_onecard
59def test_dropout_grad_002():
60    in_tensor = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]), mstype.float16)
61    in_mask = Tensor(np.array([[[1., 0, 0]], [[1., 1., 0]]]), mstype.float16)
62    dropout_grad = Net()
63    output = dropout_grad(in_tensor, in_mask)
64    print("output:\n", output)
65
66    expect = np.array([[[6., 0., 0.]], [[8., 2., 0.]]]).astype(np.float16)
67    error = np.ones(shape=[2, 3]) * 1.0e-6
68
69    diff = np.abs(output.asnumpy() - expect)
70    assert np.all(np.abs(diff) < error)
71
72
73@pytest.mark.level0
74@pytest.mark.platform_x86_cpu
75@pytest.mark.env_onecard
76def test_dropout_grad_003():
77    in_tensor = Tensor(np.array([[[3., 1., 2.], [3., 1., 2.]], \
78                                 [[4., 1., 4.], [4., 1., 4.]]]), mstype.float16)
79    in_mask = Tensor(np.array([[[1., 0, 0], [1., 0, 0]], \
80                               [[1., 1., 0], [1., 1., 0]]]), mstype.float16)
81    dropout_grad = Net()
82    output = dropout_grad(in_tensor, in_mask)
83    print("output:\n", output)
84
85    expect = np.array([[[6., 0., 0.], [6., 0., 0.]], \
86                       [[8., 2., 0.], [8., 2., 0.]]]).astype(np.float16)
87    error = np.ones(shape=[2, 2, 3]) * 1.0e-6
88
89    diff = np.abs(output.asnumpy() - expect)
90    assert np.all(np.abs(diff) < error)
91
92
93@pytest.mark.level0
94@pytest.mark.platform_x86_cpu
95@pytest.mark.env_onecard
96def test_dropout_grad_004():
97    in_tensor = Tensor(np.array([[6.]]), mstype.float32)
98    in_mask = Tensor(np.array([[1.]]), mstype.float32)
99    dropout_grad = Net(1.)
100    output = dropout_grad(in_tensor, in_mask)
101    print("output:\n", output)
102
103    expect = np.array([[6.]]).astype(np.float32)
104    error = np.ones(shape=[1]) * 1.0e-6
105
106    diff = np.abs(output.asnumpy() - expect)
107    assert np.all(np.abs(diff) < error)
108
109
110@pytest.mark.skip(reason='0 in shape is not support')
111@pytest.mark.level0
112@pytest.mark.platform_x86_cpu
113@pytest.mark.env_onecard
114def test_dropout_grad_005():
115    in_tensor = Tensor(np.array([[]]), mstype.float32)
116    in_mask = Tensor(np.array([[]]), mstype.float32)
117    dropout_grad = Net(1.)
118    output = dropout_grad(in_tensor, in_mask)
119    print("output:\n", output)
120
121    expect = np.array([[]]).astype(np.float32)
122    error = np.ones(shape=[]) * 1.0e-6
123
124    diff = np.abs(output.asnumpy() - expect)
125    assert np.all(np.abs(diff) < error)
126
127
128@pytest.mark.level0
129@pytest.mark.platform_x86_cpu
130@pytest.mark.env_onecard
131def test_dropout_grad_006():
132    in_tensor = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]), mstype.float16)
133    in_mask = Tensor(np.array([[[1., 0, 0]], [[0., 0., 1.]]]), mstype.float16)
134    dropout_grad = Net(0.3333333333)
135    output = dropout_grad(in_tensor, in_mask)
136    print("output:\n", output)
137
138    expect = np.array([[[9., 0., 0.]], [[0., 0., 12.]]]).astype(np.float16)
139    error = np.ones(shape=[2, 3]) * 1.0e-6
140
141    diff = np.abs(output.asnumpy() - expect)
142    assert np.all(np.abs(diff) < error)
143