• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.ops import PrimitiveWithInfer, prim_attr_register
22from mindspore._checkparam import Validator as validator
23from mindspore.common import dtype as mstype
24
25context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
26
27
28class Shift(PrimitiveWithInfer):
29    """
30        Shift op frontend implementation
31    """
32
33    @prim_attr_register
34    def __init__(self, periods=1, axis=-1):
35        """Initialize Sort"""
36        self.periods = validator.check_value_type("periods", periods, [int], self.name)
37        self.axis = validator.check_value_type("axis", axis, [int], self.name)
38        self.init_prim_io_names(inputs=['x', 'fill_value'], outputs=['output'])
39
40    def __infer__(self, x, fill_value):
41        out_shapes = x['shape']
42        return {
43            'shape': tuple(out_shapes),
44            'dtype': x['dtype'],
45            'value': None
46        }
47
48    def infer_dtype(self, x_dtype, fill_value_type):
49        validator.check_scalar_or_tensor_types_same({"x_dtype": x_dtype, "fill_value": fill_value_type},
50                                                    [mstype.float32, mstype.float64, mstype.int32, mstype.int64,
51                                                     mstype.bool_],
52                                                    self.name, True)
53        return x_dtype
54
55
56class ShiftNet(nn.Cell):
57    def __init__(self, periods=1, axis=-1):
58        super(ShiftNet, self).__init__()
59        self.shift = Shift(periods, axis)
60
61    def construct(self, x, fill_value):
62        return self.shift(x, fill_value)
63
64
65def numpy_shift(array: np.ndarray, periods: int, axis: int, fill_value=np.nan) -> np.ndarray:
66    """
67    numpy implementation for validation
68    """
69    assert axis in range(-array.ndim, array.ndim)
70
71    copy_src_indices = [slice(None)] * array.ndim
72    copy_dst_indices = [slice(None)] * array.ndim
73    fill_indices = [slice(None)] * array.ndim
74
75    if periods > 0:
76        fill_indices[axis] = slice(None, periods)
77        copy_src_indices[axis] = slice(None, -periods)
78        copy_dst_indices[axis] = slice(periods, None)
79    elif periods < 0:
80        fill_indices[axis] = slice(periods, None)
81        copy_src_indices[axis] = slice(-periods, None)
82        copy_dst_indices[axis] = slice(None, periods)
83    else:
84        return array.copy()
85
86    result = np.empty_like(array)
87    result[tuple(fill_indices)] = fill_value
88    result[tuple(copy_dst_indices)] = array[tuple(copy_src_indices)]
89
90    return result
91
92
93def compare(arr: np.ndarray, periods: int, axis: int, fill_value=np.nan):
94    numpy_result = numpy_shift(arr, periods=periods, axis=axis, fill_value=fill_value)
95    shift = ShiftNet(periods=periods, axis=axis)
96    mindspore_result = shift(Tensor(arr), fill_value=fill_value).asnumpy()
97
98    print('numpy:\n')
99    print(numpy_result)
100    print('mindspore:\n')
101    print(mindspore_result)
102    assert np.allclose(numpy_result, mindspore_result, equal_nan=True)
103
104
105@pytest.mark.level0
106@pytest.mark.platform_x86_cpu
107@pytest.mark.env_onecard
108@pytest.mark.parametrize('dtype, fill_value',
109                         [(np.float32, 0.0), (np.float32, 5.3), (np.float32, -5.5), (np.float32, np.nan),
110                          (np.float64, 0.0), (np.float64, 5.3), (np.float64, -5.5), (np.float64, np.nan),
111                          (np.int32, 0), (np.int32, 1), (np.int32, 5), (np.int32, -4),
112                          (np.int64, 0), (np.int64, 1), (np.int64, 5), (np.int64, -4),
113                          (np.bool_, True), (np.bool_, False)])
114@pytest.mark.parametrize('axis', [0, 1, 2, 3])
115def test_no_shift(fill_value, dtype, axis):
116    arr = np.random.random((40, 60, 50, 30)).astype(dtype)
117    compare(arr, axis=axis, periods=0, fill_value=fill_value)
118
119
120@pytest.mark.level0
121@pytest.mark.platform_x86_cpu
122@pytest.mark.env_onecard
123@pytest.mark.parametrize('dtype, fill_value',
124                         [(np.float32, 0.0), (np.float32, 5.3), (np.float32, -5.5), (np.float32, np.nan),
125                          (np.float64, 0.0), (np.float64, 5.3), (np.float64, -5.5), (np.float64, np.nan),
126                          (np.int32, 0), (np.int32, 1), (np.int32, 5), (np.int32, -4),
127                          (np.int64, 0), (np.int64, 1), (np.int64, 5), (np.int64, -4),
128                          (np.bool_, True), (np.bool_, False)])
129@pytest.mark.parametrize('periods', [-35, 28, 90])
130def test_fancy_1d(fill_value, dtype, periods):
131    arr = np.random.random((1, 1, 50, 1)).astype(dtype)
132    compare(arr, axis=2, periods=periods, fill_value=fill_value)
133
134    arr = np.random.random((70, 1, 1, 1)).astype(dtype)
135    compare(arr, axis=0, periods=periods, fill_value=fill_value)
136
137    arr = np.random.random((1, 1, 1, 80)).astype(dtype)
138    compare(arr, axis=3, periods=periods, fill_value=fill_value)
139
140
141@pytest.mark.level0
142@pytest.mark.platform_x86_cpu
143@pytest.mark.env_onecard
144@pytest.mark.parametrize('dtype, fill_value',
145                         [(np.float32, 0.0), (np.float32, 5.3), (np.float32, -5.5), (np.float32, np.nan),
146                          (np.float64, 0.0), (np.float64, 5.3), (np.float64, -5.5), (np.float64, np.nan),
147                          (np.int32, 0), (np.int32, 1), (np.int32, 5), (np.int32, -4),
148                          (np.int64, 0), (np.int64, 1), (np.int64, 5), (np.int64, -4),
149                          (np.bool_, True), (np.bool_, False)])
150@pytest.mark.parametrize('axis', [0, 1])
151@pytest.mark.parametrize('periods', [-24, 27, -35, 28, 100])
152def test_2d(fill_value, dtype, axis, periods):
153    arr = np.random.random((30, 40)).astype(dtype)
154    compare(arr, axis=axis, periods=periods, fill_value=fill_value)
155
156
157@pytest.mark.level0
158@pytest.mark.platform_x86_cpu
159@pytest.mark.env_onecard
160@pytest.mark.parametrize('dtype, fill_value',
161                         [(np.float32, 0.0), (np.float32, 5.3), (np.float32, -5.5), (np.float32, np.nan),
162                          (np.float64, 0.0), (np.float64, 5.3), (np.float64, -5.5), (np.float64, np.nan),
163                          (np.int32, 0), (np.int32, 1), (np.int32, 5), (np.int32, -4),
164                          (np.int64, 0), (np.int64, 1), (np.int64, 5), (np.int64, -4),
165                          (np.bool_, True), (np.bool_, False)])
166@pytest.mark.parametrize('axis', [0, 1, 2, 3])
167@pytest.mark.parametrize('periods', [-30, 30, -45, 55])
168def test_4d(fill_value, dtype, axis, periods):
169    arr = np.random.random((30, 40, 50, 60)).astype(dtype)
170    compare(arr, axis=axis, periods=periods, fill_value=fill_value)
171