1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.nn as nn 20from mindspore import Tensor 21from mindspore import context 22from mindspore.ops import operations as P 23 24context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 25 26 27class NetSinh(nn.Cell): 28 def __init__(self): 29 super(NetSinh, self).__init__() 30 self.sinh = P.Sinh() 31 32 def construct(self, x): 33 return self.sinh(x) 34 35 36@pytest.mark.level0 37@pytest.mark.platform_x86_cpu 38@pytest.mark.env_onecard 39def test_sinh(): 40 np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32') 41 input_x = Tensor(np_array) 42 net = NetSinh() 43 output = net(input_x) 44 print(output) 45 expect = np.sinh(np_array) 46 assert np.allclose(output.asnumpy(), expect) 47