• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18from scipy import special
19
20import mindspore.context as context
21import mindspore.nn as nn
22from mindspore import Tensor
23from mindspore.ops import operations as P
24from mindspore import dtype
25
26context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
27
28class NetErf(nn.Cell):
29    def __init__(self):
30        super(NetErf, self).__init__()
31        self.erf = P.Erf()
32
33    def construct(self, x):
34        return self.erf(x)
35
36
37@pytest.mark.level0
38@pytest.mark.platform_x86_gpu_training
39@pytest.mark.env_onecard
40def test_erf_fp32():
41    erf = NetErf()
42    x = np.random.rand(3, 8).astype(np.float32)
43    output = erf(Tensor(x, dtype=dtype.float32))
44    expect = special.erf(x)
45    tol = 1e-6
46    assert (np.abs(output.asnumpy() - expect) < tol).all()
47
48@pytest.mark.level0
49@pytest.mark.platform_x86_gpu_training
50@pytest.mark.env_onecard
51def test_erf_fp16():
52    erf = NetErf()
53    x = np.random.rand(3, 8).astype(np.float16)
54    output = erf(Tensor(x, dtype=dtype.float16))
55    expect = special.erf(x)
56    tol = 1e-3
57    assert (np.abs(output.asnumpy() - expect) < tol).all()
58