1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21import mindspore as ms 22from mindspore import Tensor 23from mindspore.ops import operations as P 24 25 26class L2LossNet(nn.Cell): 27 def __init__(self): 28 super(L2LossNet, self).__init__() 29 self.l2_loss = P.L2Loss() 30 31 def construct(self, x): 32 return self.l2_loss(x) 33 34@pytest.mark.level0 35@pytest.mark.platform_x86_gpu_training 36@pytest.mark.env_onecard 37def test_gather_pynative_fp32_22(): 38 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 39 error = 1e-4 40 x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32) 41 expect = np.array(15, np.float32) 42 output = P.L2Loss()(x) 43 diff = output.asnumpy() - expect 44 assert np.all(diff < error) 45 46@pytest.mark.level0 47@pytest.mark.platform_x86_gpu_training 48@pytest.mark.env_onecard 49def test_gather_pynative_fp16_22(): 50 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 51 error = 1e-4 52 x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16) 53 expect = np.array(15, np.float16) 54 output = P.L2Loss()(x) 55 diff = output.asnumpy() - expect 56 assert np.all(diff < error) 57 58@pytest.mark.level0 59@pytest.mark.platform_x86_gpu_training 60@pytest.mark.env_onecard 61def test_gather_pynative_fp32_14(): 62 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 63 error = 1e-4 64 x = Tensor(np.array([1., 2., 3., 4.]), ms.float32) 65 expect = np.array(15, np.float32) 66 output = P.L2Loss()(x) 67 diff = output.asnumpy() - expect 68 assert np.all(diff < error) 69 70@pytest.mark.level0 71@pytest.mark.platform_x86_gpu_training 72@pytest.mark.env_onecard 73def test_gather_pynative_fp16_14(): 74 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 75 error = 1e-4 76 x = Tensor(np.array([1., 2., 3., 4.]), ms.float16) 77 expect = np.array(15, np.float16) 78 output = P.L2Loss()(x) 79 diff = output.asnumpy() - expect 80 assert np.all(diff < error) 81 82def test_gather_graph_fp32_14(): 83 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 84 error = 1e-4 85 x = Tensor(np.array([1., 2., 3., 4.]), ms.float32) 86 expect = np.array(15, np.float32) 87 l2_loss = L2LossNet() 88 output = l2_loss(x) 89 diff = output.asnumpy() - expect 90 assert np.all(diff < error) 91 92def test_gather_graph_fp16_14(): 93 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 94 error = 1e-4 95 x = Tensor(np.array([1., 2., 3., 4.]), ms.float16) 96 expect = np.array(15, np.float16) 97 l2_loss = L2LossNet() 98 output = l2_loss(x) 99 diff = output.asnumpy() - expect 100 assert np.all(diff < error) 101