• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.common.dtype as mstype
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23
24context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
25
26
27class RangeNet(nn.Cell):
28    def __init__(self, maxlen=50):
29        super(RangeNet, self).__init__()
30        self.range = P.Range(maxlen)
31
32    def construct(self, start, limit, delta):
33        return self.range(start, limit, delta)
34
35
36@pytest.mark.level0
37@pytest.mark.platform_x86_gpu_training
38@pytest.mark.env_onecard
39def test_range_precision_end_equals_last_element():
40    range_net = RangeNet(100)
41    ms_out = range_net(Tensor(1000.04, mstype.float32),
42                       Tensor(1001.04, mstype.float32),
43                       Tensor(0.01, mstype.float32)).asnumpy()
44    np_expected = np.arange(1000.04, 1001.04, 0.01, dtype=np.float32)
45    np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
46
47    range_net = RangeNet(1000)
48    ms_out = range_net(Tensor(100, mstype.float32),
49                       Tensor(101, mstype.float32),
50                       Tensor(0.001, mstype.float32)).asnumpy()
51    np_expected = np.arange(100, 101, 0.001, dtype=np.float32)
52    np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
53
54    range_net = RangeNet(799900)
55    ms_out = range_net(Tensor(1, mstype.float32),
56                       Tensor(8000, mstype.float32),
57                       Tensor(0.01, mstype.float32)).asnumpy()
58    np_expected = np.arange(1, 8000, 0.01, dtype=np.float32)
59    np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
60
61    range_net = RangeNet(53)
62    ms_out = range_net(Tensor(-12000, mstype.float32),
63                       Tensor(-12053, mstype.float32),
64                       Tensor(-1, mstype.float32)).asnumpy()
65    np_expected = np.arange(-12000, -12053, -1, dtype=np.float32)
66    np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
67
68@pytest.mark.level0
69@pytest.mark.platform_x86_gpu_training
70@pytest.mark.env_onecard
71def test_range_int():
72    range_net = RangeNet()
73    ms_out = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
74    np_expected = np.array([2, 3, 4])
75    np.testing.assert_array_equal(ms_out, np_expected)
76
77    range_net = RangeNet()
78    ms_out = range_net(Tensor(-24, mstype.int32), Tensor(1, mstype.int32), Tensor(4, mstype.int32)).asnumpy()
79    np_expected = np.array([-24, -20, -16, -12, -8, -4, 0])
80    np.testing.assert_array_equal(ms_out, np_expected)
81
82    range_net = RangeNet()
83    ms_out = range_net(Tensor(8, mstype.int32), Tensor(1, mstype.int32), Tensor(-1, mstype.int32)).asnumpy()
84    np_expected = np.array([8, 7, 6, 5, 4, 3, 2])
85    np.testing.assert_array_equal(ms_out, np_expected)
86
87    range_net = RangeNet()
88    ms_out = range_net(Tensor(3, mstype.int32), Tensor(-11, mstype.int32), Tensor(-5, mstype.int32)).asnumpy()
89    np_expected = np.array([3, -2, -7])
90    np.testing.assert_array_equal(ms_out, np_expected)
91
92@pytest.mark.level0
93@pytest.mark.platform_x86_gpu_training
94@pytest.mark.env_onecard
95def test_range_float():
96    range_net = RangeNet()
97    ms_out = range_net(Tensor(2.3, mstype.float32), Tensor(5.5, mstype.float32), Tensor(1.2, mstype.float32)).asnumpy()
98    np_expected = np.array([2.3, 3.5, 4.7])
99    np.testing.assert_array_almost_equal(ms_out, np_expected)
100
101    range_net = RangeNet()
102    ms_out = range_net(Tensor(-4, mstype.float32), Tensor(-1, mstype.float32), Tensor(1.5, mstype.float32)).asnumpy()
103    np_expected = np.array([-4.0, -2.5])
104    np.testing.assert_array_almost_equal(ms_out, np_expected)
105
106    range_net = RangeNet()
107    ms_out = range_net(Tensor(8.0, mstype.float32), Tensor(1.0, mstype.float32), Tensor(-1.0, mstype.float32)).asnumpy()
108    np_expected = np.array([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0])
109    np.testing.assert_array_almost_equal(ms_out, np_expected)
110
111    range_net = RangeNet()
112    ms_out = range_net(Tensor(1.5, mstype.float32), Tensor(-1, mstype.float32), Tensor(-18.9, mstype.float32)).asnumpy()
113    np_expected = np.array([1.5])
114    np.testing.assert_array_almost_equal(ms_out, np_expected)
115
116@pytest.mark.level0
117@pytest.mark.platform_x86_gpu_training
118@pytest.mark.env_onecard
119def test_range_invalid_max_output_length():
120    with pytest.raises(ValueError):
121        _ = P.Range(0)
122        _ = P.Range(-1)
123        _ = P.Range(None)
124        _ = P.Range('5')
125
126@pytest.mark.level0
127@pytest.mark.platform_x86_gpu_training
128@pytest.mark.env_onecard
129def test_range_invalid_input():
130    with pytest.raises(RuntimeError) as info:
131        range_net = RangeNet()
132        _ = range_net(Tensor(0, mstype.int32), Tensor(5, mstype.int32), Tensor(0, mstype.int32)).asnumpy()
133    assert "delta cannot be equal to zero" in str(info.value)
134
135    with pytest.raises(RuntimeError) as info:
136        range_net = RangeNet(2)
137        _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
138    assert "number of elements in the output exceeds maxlen" in str(info.value)
139
140    with pytest.raises(RuntimeError) as info:
141        range_net = RangeNet()
142        _ = range_net(Tensor(20, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
143    assert "delta cannot be positive when limit < start" in str(info.value)
144
145    with pytest.raises(RuntimeError) as info:
146        range_net = RangeNet()
147        _ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(-4, mstype.int32)).asnumpy()
148    assert "delta cannot be negative when limit > start" in str(info.value)
149