1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.common.api import ms_function 23from mindspore.common.parameter import Parameter 24from mindspore.ops import operations as P 25import mindspore as ms 26 27 28def create_tensor(capcity, shapes, dtypes): 29 buffer = [] 30 for i in range(len(shapes)): 31 buffer.append(Tensor(np.zeros(((capcity,)+shapes[i])), dtypes[i])) 32 return buffer 33 34 35class RLBuffer(nn.Cell): 36 def __init__(self, batch_size, capcity, shapes, types): 37 super(RLBuffer, self).__init__() 38 self.buffer = create_tensor(capcity, shapes, types) 39 self._capacity = capcity 40 self.count = Parameter(Tensor(0, ms.int32), name="count") 41 self.head = Parameter(Tensor(0, ms.int32), name="head") 42 self.buffer_append = P.BufferAppend(self._capacity, shapes, types) 43 self.buffer_get = P.BufferGetItem(self._capacity, shapes, types) 44 self.buffer_sample = P.BufferSample( 45 self._capacity, batch_size, shapes, types) 46 self.randperm = P.Randperm(max_length=capcity, pad=-1) 47 self.reshape = P.Reshape() 48 49 @ms_function 50 def append(self, exps): 51 return self.buffer_append(self.buffer, exps, self.count, self.head) 52 53 @ms_function 54 def get(self, index): 55 return self.buffer_get(self.buffer, self.count, self.head, index) 56 57 @ms_function 58 def sample(self): 59 return self.buffer_sample(self.buffer, self.count, self.head) 60 61 62s = Tensor(np.array([2, 2, 2, 2]), ms.float32) 63a = Tensor(np.array([0, 1]), ms.int32) 64r = Tensor(np.array([1]), ms.float32) 65s_ = Tensor(np.array([3, 3, 3, 3]), ms.float32) 66exp = [s, a, r, s_] 67exp1 = [s_, a, r, s] 68 69 70@ pytest.mark.level0 71@ pytest.mark.platform_x86_gpu_training 72@ pytest.mark.env_onecard 73def test_Buffer(): 74 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 75 buffer = RLBuffer(batch_size=32, capcity=100, shapes=[(4,), (2,), (1,), (4,)], types=[ 76 ms.float32, ms.int32, ms.float32, ms.float32]) 77 print("init buffer:\n", buffer.buffer) 78 for _ in range(0, 110): 79 buffer.append(exp) 80 buffer.append(exp1) 81 print("buffer append:\n", buffer.buffer) 82 b = buffer.get(-1) 83 print("buffer get:\n", b) 84 bs = buffer.sample() 85 print("buffer sample:\n", bs) 86