1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import numpy as np 16import pytest 17import mindspore.nn as nn 18from mindspore import Tensor, Parameter, context 19from mindspore.nn import TrainOneStepCell 20from mindspore.nn.optim import FTRL, LazyAdam 21from mindspore.ops import operations as P 22 23context.set_context(enable_sparse=True, 24 mode=context.PYNATIVE_MODE, 25 device_target="Ascend") 26 27class NetWithSparseGatherV2(nn.Cell): 28 def __init__(self): 29 super(NetWithSparseGatherV2, self).__init__() 30 self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") 31 self.weight2 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight2") 32 self.axis = 1 33 self.gather = P.SparseGatherV2() 34 35 def construct(self, indices, label): 36 return self.gather(self.weight1, indices, self.axis) + self.weight2 37 38@pytest.mark.level1 39@pytest.mark.platform_arm_ascend_training 40@pytest.mark.platform_x86_ascend_training 41@pytest.mark.env_onecard 42def test_pynative_ftrl_net(): 43 indices = Tensor(np.array([0, 0, 1]).astype(np.int32)) 44 label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) 45 net = NetWithSparseGatherV2() 46 47 optimizer = FTRL(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) 48 optimizer.target = 'Ascend' 49 train_network = TrainOneStepCell(net, optimizer) 50 output = train_network(indices, label) 51 np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]])) 52 np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]], 53 [[0.68213105, 0.68213105]], 54 [[1.0, 1.0]]])) 55 np.allclose(net.weight2.asnumpy(), np.array([[[0.6821311, 0.6821311]], 56 [[0.6821311, 0.6821311]], 57 [[0.6821311, 0.6821311]]])) 58 59@pytest.mark.level1 60@pytest.mark.platform_arm_ascend_training 61@pytest.mark.platform_x86_ascend_training 62@pytest.mark.env_onecard 63def test_pynative_lazy_adam_net(): 64 indices = Tensor(np.array([0, 0, 1]).astype(np.int32)) 65 label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) 66 net = NetWithSparseGatherV2() 67 68 optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) 69 optimizer.target = 'Ascend' 70 train_network = TrainOneStepCell(net, optimizer) 71 output = train_network(indices, label) 72 np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]])) 73 np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]])) 74 np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]])) 75