1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import os 16import random 17import argparse 18import numpy as np 19from resnet import resnet50 20 21import mindspore.common.dtype as mstype 22import mindspore.ops.functional as F 23from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor 24from mindspore.train.serialization import load_checkpoint, load_param_into_net 25import mindspore.dataset as ds 26import mindspore.dataset.transforms.c_transforms as C 27import mindspore.dataset.vision.c_transforms as vision 28import mindspore.nn as nn 29from mindspore import Tensor 30from mindspore import context 31from mindspore.communication.management import init 32from mindspore.nn.optim.momentum import Momentum 33from mindspore.ops import operations as P 34from mindspore.train.model import Model 35from mindspore.context import ParallelMode 36 37random.seed(1) 38np.random.seed(1) 39ds.config.set_seed(1) 40 41parser = argparse.ArgumentParser(description='Image classification') 42parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') 43parser.add_argument('--device_num', type=int, default=1, help='Device num.') 44parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') 45parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') 46parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.') 47parser.add_argument('--batch_size', type=int, default=32, help='Batch size.') 48parser.add_argument('--num_classes', type=int, default=10, help='Num classes.') 49parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') 50parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path') 51args_opt = parser.parse_args() 52 53device_id = int(os.getenv('DEVICE_ID')) 54 55data_home = args_opt.dataset_path 56 57context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") 58context.set_context(device_id=device_id) 59 60 61def create_dataset(repeat_num=1, training=True): 62 data_dir = data_home + "/cifar-10-batches-bin" 63 if not training: 64 data_dir = data_home + "/cifar-10-verify-bin" 65 data_set = ds.Cifar10Dataset(data_dir, num_samples=32) 66 67 if args_opt.run_distribute: 68 rank_id = int(os.getenv('RANK_ID')) 69 rank_size = int(os.getenv('RANK_SIZE')) 70 data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, num_samples=32) 71 72 resize_height = 224 73 resize_width = 224 74 rescale = 1.0 / 255.0 75 shift = 0.0 76 77 # define map operations 78 random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT 79 random_horizontal_op = vision.RandomHorizontalFlip() 80 resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR 81 rescale_op = vision.Rescale(rescale, shift) 82 normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) 83 changeswap_op = vision.HWC2CHW() 84 type_cast_op = C.TypeCast(mstype.int32) 85 86 c_trans = [] 87 if training: 88 c_trans = [random_crop_op, random_horizontal_op] 89 c_trans += [resize_op, rescale_op, normalize_op, 90 changeswap_op] 91 92 # apply map operations on images 93 data_set = data_set.map(operations=type_cast_op, input_columns="label") 94 data_set = data_set.map(operations=c_trans, input_columns="image") 95 96 # apply repeat operations 97 data_set = data_set.repeat(repeat_num) 98 99 # apply shuffle operations 100 data_set = data_set.shuffle(buffer_size=10) 101 102 # apply batch operations 103 data_set = data_set.batch(batch_size=args_opt.batch_size, drop_remainder=True) 104 105 return data_set 106 107 108class CrossEntropyLoss(nn.Cell): 109 def __init__(self): 110 super(CrossEntropyLoss, self).__init__() 111 self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() 112 self.mean = P.ReduceMean() 113 self.one_hot = P.OneHot() 114 self.one = Tensor(1.0, mstype.float32) 115 self.zero = Tensor(0.0, mstype.float32) 116 117 def construct(self, logits, label): 118 label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero) 119 loss_func = self.cross_entropy(logits, label)[0] 120 loss_func = self.mean(loss_func, (-1,)) 121 return loss_func 122 123 124if __name__ == '__main__': 125 if not args_opt.do_eval and args_opt.run_distribute: 126 context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, 127 all_reduce_fusion_config=[140]) 128 init() 129 130 context.set_context(mode=context.GRAPH_MODE) 131 epoch_size = args_opt.epoch_size 132 net = resnet50(args_opt.batch_size, args_opt.num_classes) 133 loss = CrossEntropyLoss() 134 opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9) 135 136 model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) 137 138 if args_opt.do_train: 139 dataset = create_dataset(1) 140 batch_num = dataset.get_dataset_size() 141 config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10) 142 ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck) 143 time_cb = TimeMonitor(data_size=batch_num) 144 loss_cb = LossMonitor() 145 model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb, time_cb]) 146 147 if args_opt.do_eval: 148 if args_opt.checkpoint_path: 149 param_dict = load_checkpoint(args_opt.checkpoint_path) 150 load_param_into_net(net, param_dict) 151 net.set_train(False) 152 eval_dataset = create_dataset(1, training=False) 153 res = model.eval(eval_dataset) 154 print("result: ", res) 155