• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/conv2d.h"
20 #include "ir/dtype/type.h"
21 #include "abstract/dshape.h"
22 #include "utils/tensor_construct_utils.h"
23 namespace mindspore {
24 namespace ops {
25 class TestConv2d : public UT::Common {
26  public:
TestConv2d()27   TestConv2d() {}
SetUp()28   void SetUp() {}
TearDown()29   void TearDown() {}
30 };
31 
TEST_F(TestConv2d,test_ops_conv2d)32 TEST_F(TestConv2d, test_ops_conv2d) {
33   auto conv_2d = std::make_shared<Conv2D>();
34   conv_2d->Init(64, {7, 7});
35   std::vector<int64_t> kernel_size = conv_2d->get_kernel_size();
36   for (auto item : kernel_size) {
37     EXPECT_EQ(item, 7);
38   }
39   std::vector<int64_t> stride = conv_2d->get_stride();
40   for (auto item : stride) {
41     EXPECT_EQ(item, 1);
42   }
43   std::vector<int64_t> dilation = conv_2d->get_dilation();
44   for (auto item : dilation) {
45     EXPECT_EQ(item, 1);
46   }
47   EXPECT_EQ(conv_2d->get_pad_mode(), VALID);
48   std::vector<int64_t> pad = conv_2d->get_pad();
49   for (auto item : pad) {
50     EXPECT_EQ(item, 0);
51   }
52   EXPECT_EQ(conv_2d->get_mode(), 1);
53   EXPECT_EQ(conv_2d->get_group(), 1);
54   EXPECT_EQ(conv_2d->get_out_channel(), 64);
55   EXPECT_EQ(conv_2d->get_format(), NCHW);
56   auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{32, 3, 224, 224});
57   auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{64, 3, 7, 7});
58   MS_EXCEPTION_IF_NULL(tensor_x);
59   MS_EXCEPTION_IF_NULL(tensor_w);
60   auto conv_abstract = conv_2d->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
61   MS_EXCEPTION_IF_NULL(conv_abstract);
62   EXPECT_EQ(conv_abstract->isa<abstract::AbstractTensor>(), true);
63   auto shape_ptr = conv_abstract->BuildShape();
64   MS_EXCEPTION_IF_NULL(shape_ptr);
65   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
66   auto conv_shape = shape_ptr->cast<abstract::ShapePtr>();
67   MS_EXCEPTION_IF_NULL(conv_shape);
68   auto shape_vec = conv_shape->shape();
69   auto type = conv_abstract->BuildType();
70   MS_EXCEPTION_IF_NULL(type);
71   EXPECT_EQ(type->isa<TensorType>(), true);
72   auto tensor_type = type->cast<TensorTypePtr>();
73   MS_EXCEPTION_IF_NULL(tensor_type);
74   auto elem_type = tensor_type->element();
75   EXPECT_EQ(elem_type->type_id(), kNumberTypeFloat32);
76   EXPECT_EQ(shape_vec.size(), 4);
77   EXPECT_EQ(shape_vec[0], 32);
78   EXPECT_EQ(shape_vec[1], 64);
79   EXPECT_EQ(shape_vec[2], 218);
80   EXPECT_EQ(shape_vec[3], 218);
81 }
82 
83 }  // namespace ops
84 }  // namespace mindspore
85