• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/softmax.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestSoftMax : public UT::Common {
28  public:
TestSoftMax()29   TestSoftMax() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestSoftMax,test_ops_softmax1)34 TEST_F(TestSoftMax, test_ops_softmax1) {
35   auto softmax = std::make_shared<Softmax>();
36   std::vector<std::int64_t> init_data = {-1};
37   softmax->Init(-1);
38   EXPECT_EQ(softmax->get_axis(), init_data);
39   softmax->set_axis(init_data);
40   EXPECT_EQ(softmax->get_axis(), init_data);
41   auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{1, 2, 3, 4, 5});
42   MS_EXCEPTION_IF_NULL(input1);
43   auto abstract = softmax->Infer({input1->ToAbstract()});
44   MS_EXCEPTION_IF_NULL(abstract);
45   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
46   auto shape_ptr = abstract->BuildShape();
47   MS_EXCEPTION_IF_NULL(shape_ptr);
48   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
49   auto shape = shape_ptr->cast<abstract::ShapePtr>();
50   MS_EXCEPTION_IF_NULL(shape);
51   auto shape_vec = shape->shape();
52   auto type = abstract->BuildType();
53   MS_EXCEPTION_IF_NULL(type);
54   EXPECT_EQ(type->isa<TensorType>(), true);
55   auto tensor_type = type->cast<TensorTypePtr>();
56   MS_EXCEPTION_IF_NULL(tensor_type);
57   auto data_type = tensor_type->element();
58   MS_EXCEPTION_IF_NULL(data_type);
59   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
60   EXPECT_EQ(shape_vec.size(), 5);
61   EXPECT_EQ(shape_vec[0], 1);
62 }
63 
TEST_F(TestSoftMax,test_ops_softmax2)64 TEST_F(TestSoftMax, test_ops_softmax2) {
65   auto softmax = std::make_shared<Softmax>();
66   std::vector<std::int64_t> init_data = {-1};
67   softmax->Init(-1);
68   EXPECT_EQ(softmax->get_axis(), init_data);
69   softmax->set_axis(init_data);
70   EXPECT_EQ(softmax->get_axis(), init_data);
71   auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1, 2, 3, 4, 5});
72   MS_EXCEPTION_IF_NULL(input1);
73   auto abstract = softmax->Infer({input1->ToAbstract()});
74   MS_EXCEPTION_IF_NULL(abstract);
75   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
76   auto shape_ptr = abstract->BuildShape();
77   MS_EXCEPTION_IF_NULL(shape_ptr);
78   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
79   auto shape = shape_ptr->cast<abstract::ShapePtr>();
80   MS_EXCEPTION_IF_NULL(shape);
81   auto shape_vec = shape->shape();
82   auto type = abstract->BuildType();
83   MS_EXCEPTION_IF_NULL(type);
84   EXPECT_EQ(type->isa<TensorType>(), true);
85   auto tensor_type = type->cast<TensorTypePtr>();
86   MS_EXCEPTION_IF_NULL(tensor_type);
87   auto data_type = tensor_type->element();
88   MS_EXCEPTION_IF_NULL(data_type);
89   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
90   EXPECT_EQ(shape_vec.size(), 5);
91   EXPECT_EQ(shape_vec[0], 1);
92 }
93 
TEST_F(TestSoftMax,test_ops_softmax3)94 TEST_F(TestSoftMax, test_ops_softmax3) {
95   auto softmax = std::make_shared<Softmax>();
96   std::vector<std::int64_t> init_data = {-1};
97   softmax->Init(-1);
98   EXPECT_EQ(softmax->get_axis(), init_data);
99   softmax->set_axis(init_data);
100   EXPECT_EQ(softmax->get_axis(), init_data);
101   auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat64, std::vector<int64_t>{1, 2, 3, 4, 5});
102   MS_EXCEPTION_IF_NULL(input1);
103   auto abstract = softmax->Infer({input1->ToAbstract()});
104   MS_EXCEPTION_IF_NULL(abstract);
105   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
106   auto shape_ptr = abstract->BuildShape();
107   MS_EXCEPTION_IF_NULL(shape_ptr);
108   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
109   auto shape = shape_ptr->cast<abstract::ShapePtr>();
110   MS_EXCEPTION_IF_NULL(shape);
111   auto shape_vec = shape->shape();
112   auto type = abstract->BuildType();
113   MS_EXCEPTION_IF_NULL(type);
114   EXPECT_EQ(type->isa<TensorType>(), true);
115   auto tensor_type = type->cast<TensorTypePtr>();
116   MS_EXCEPTION_IF_NULL(tensor_type);
117   auto data_type = tensor_type->element();
118   MS_EXCEPTION_IF_NULL(data_type);
119   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat64);
120   EXPECT_EQ(shape_vec.size(), 5);
121   EXPECT_EQ(shape_vec[0], 1);
122 }
123 }  // namespace ops
124 }  // namespace mindspore
125