• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""
16Testing unique op in DE
17"""
18import numpy as np
19
20import mindspore.dataset as ds
21import mindspore.dataset.transforms.c_transforms as ops
22
23
24def compare(array, res, idx, cnt):
25    data = ds.NumpySlicesDataset([array], column_names="x")
26    data = data.batch(2)
27    data = data.map(operations=ops.Unique(), input_columns=["x"], output_columns=["x", "y", "z"],
28                    column_order=["x", "y", "z"])
29    for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
30        np.testing.assert_array_equal(res, d["x"])
31        np.testing.assert_array_equal(idx, d["y"])
32        np.testing.assert_array_equal(cnt, d["z"])
33
34def test_duplicate_basics():
35    compare([0, 1, 2, 1, 2, 3], np.array([0, 1, 2, 3]),
36            np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1]))
37    compare([0.0, 1.0, 2.0, 1.0, 2.0, 3.0], np.array([0.0, 1.0, 2.0, 3.0]),
38            np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1]))
39    compare([1, 1, 1, 1, 1, 1], np.array([1]),
40            np.array([0, 0, 0, 0, 0, 0]), np.array([6]))
41
42
43if __name__ == "__main__":
44    test_duplicate_basics()
45