• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test BiasAdd """
16import numpy as np
17
18import mindspore.nn as nn
19from mindspore import Tensor, Parameter
20from mindspore.common.initializer import initializer
21from mindspore.ops import operations as P
22from ..ut_filter import non_graph_engine
23
24
25class Net(nn.Cell):
26    """Net definition"""
27
28    def __init__(self,
29                 output_channels,
30                 bias_init='zeros',
31                 ):
32        super(Net, self).__init__()
33        self.biasAdd = P.BiasAdd()
34
35        if isinstance(bias_init, Tensor):
36            if bias_init.ndim != 1 or bias_init.shape[0] != output_channels:
37                raise ValueError("bias_init shape error")
38
39        self.bias = Parameter(initializer(
40            bias_init, [output_channels]), name="bias")
41
42    def construct(self, input_x):
43        return self.biasAdd(input_x, self.bias)
44
45
46@non_graph_engine
47def test_compile():
48    bias_init = Tensor(np.ones([3]).astype(np.float32))
49    net = Net(3, bias_init=bias_init)
50    input_data = Tensor(np.ones([1, 3, 3, 3], np.float32))
51    # since simulator currently not support matMul
52    # enable it when staging function is ready
53    output = net(input_data)
54    print(output.asnumpy())
55