1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15"""test eval""" 16import numpy as np 17 18import mindspore as ms 19import mindspore.nn as nn 20from mindspore import Tensor 21from mindspore import context 22from mindspore.common.api import _cell_graph_executor 23from ..ut_filter import non_graph_engine 24 25 26class Net(nn.Cell): 27 """Net definition""" 28 29 def __init__(self, 30 cin, 31 cout, 32 kernel_size, 33 stride=1, 34 pad_mode='pad', 35 padding=0, 36 dilation=1, 37 group=1, 38 has_bias=False, 39 weight_init='normal', 40 bias_init='zeros'): 41 super(Net, self).__init__() 42 Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01) 43 self.conv = nn.Conv2d(cin, 44 cout, 45 kernel_size, 46 stride, 47 pad_mode, 48 padding, 49 dilation, 50 group, 51 has_bias, 52 weight_init, 53 bias_init) 54 55 def construct(self, input_x): 56 return self.conv(input_x) 57 58 59@non_graph_engine 60def test_compile_train_eval(): 61 """test_compile_train_eval""" 62 net = Net(3, 1, (3, 3), bias_init='zeros') 63 train_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) 64 context.set_context(mode=context.GRAPH_MODE) 65 66 ms_executor = _cell_graph_executor 67 68 ms_executor.init_dataset("train", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), 'dataset') 69 70 ms_executor.compile(net, train_input_data, phase='train') 71 ms_executor(net, train_input_data, phase='train') 72 73 ms_executor.init_dataset("eval", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), phase='eval_dataset') 74 75 valid_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) 76 ms_executor.compile(net, valid_input_data, phase='eval') 77 ms_executor(net, valid_input_data, phase='eval') 78