• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test momentum """
16import numpy as np
17
18import mindspore.nn as nn
19from mindspore import Tensor, Parameter
20from mindspore.common.api import _cell_graph_executor
21from mindspore.nn import TrainOneStepCell, WithLossCell
22from mindspore.nn.optim import Momentum
23from mindspore.ops import operations as P
24
25
26class Net(nn.Cell):
27    """ Net definition """
28
29    def __init__(self):
30        super(Net, self).__init__()
31        self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
32        self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
33        self.matmul = P.MatMul()
34        self.biasAdd = P.BiasAdd()
35
36    def construct(self, x):
37        x = self.biasAdd(self.matmul(x, self.weight), self.bias)
38        return x
39
40
41def test_momentum_compile():
42    """ test_momentum_compile """
43    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
44    label = Tensor(np.zeros([1, 10]).astype(np.float32))
45    net = Net()
46    net.set_train()
47
48    loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
49    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
50
51    net_with_loss = WithLossCell(net, loss)
52    train_network = TrainOneStepCell(net_with_loss, optimizer)
53    _cell_graph_executor.compile(train_network, inputs, label)
54