1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import numpy as np 16 17import mindspore as ms 18import mindspore.nn as nn 19from mindspore import Tensor 20from mindspore import context 21from mindspore.common.api import _cell_graph_executor 22from mindspore.ops import composite as C 23from mindspore.ops import operations as P 24from tests.ut.python.ops.test_math_ops import VirtualLoss 25 26 27grad_all = C.GradOperation(get_all=True) 28 29 30class NetWithLoss(nn.Cell): 31 def __init__(self, network): 32 super(NetWithLoss, self).__init__() 33 self.loss = VirtualLoss() 34 self.network = network 35 36 def construct(self, x, y, b): 37 predict = self.network(x, y, b) 38 return self.loss(predict) 39 40 41class GradWrap(nn.Cell): 42 def __init__(self, network): 43 super(GradWrap, self).__init__() 44 self.network = network 45 46 def construct(self, x, y, b): 47 return grad_all(self.network)(x, y, b) 48 49 50# model_parallel test 51def test_batch_parallel_dropout(): 52 class Net(nn.Cell): 53 def __init__(self): 54 super().__init__() 55 self.matmul1 = P.MatMul() 56 self.dropout = nn.Dropout() 57 self.matmul2 = P.MatMul() 58 59 def construct(self, x, y, b): 60 out = self.matmul1(x, y) 61 out = self.dropout(out) 62 out = self.matmul2(out, b) 63 return out 64 65 context.set_auto_parallel_context(device_num=8, global_rank=0) 66 net = GradWrap(NetWithLoss(Net())) 67 context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") 68 net.set_auto_parallel() 69 70 x = Tensor(np.ones([128, 32]), dtype=ms.float32) 71 y = Tensor(np.ones([32, 64]), dtype=ms.float32) 72 b = Tensor(np.ones([64, 64]), dtype=ms.float32) 73 net.set_train() 74 _cell_graph_executor.compile(net, x, y, b) 75