• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore as ms
19from mindspore import context, Tensor, Parameter
20from mindspore.common.api import _cell_graph_executor
21from mindspore.common.initializer import initializer
22from mindspore.nn import Cell, TrainOneStepCell, Momentum
23from mindspore.ops import operations as P
24
25
26class Net(Cell):
27    def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
28        super().__init__()
29        self.begin_norm_axis = 2
30        self.begin_params_axis = 1
31        self.mul = P.Mul().shard(strategy1)
32        self.layer_norm = P.LayerNorm(self.begin_norm_axis, self.begin_params_axis).shard(strategy2)
33        self.mul2 = P.Mul().shard(strategy3)
34        self.mul_weight = Parameter(mul_weight, "w1")
35        self.normalized_shape = [64, 32, 16]
36        self.gamma = Parameter(initializer('ones', self.normalized_shape), name="gamma")
37        self.beta = Parameter(initializer('zeros', self.normalized_shape), name="beta")
38
39    def construct(self, x, b):
40        out = self.mul(x, self.mul_weight)
41        out, _, _ = self.layer_norm(out, self.gamma, self.beta)
42        out = self.mul2(out, b)
43        return out
44
45
46_x = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
47_w = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
48_b = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
49
50
51def compile_net(net):
52    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
53    train_net = TrainOneStepCell(net, optimizer)
54    train_net.set_auto_parallel()
55    train_net.set_train()
56    _cell_graph_executor.compile(train_net, _x, _b)
57    context.reset_auto_parallel_context()
58
59
60def test_layer_norm_data_parallel():
61    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
62    strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1))
63    strategy2 = ((16, 1, 1, 1), (1, 1, 1), (1, 1, 1))
64    strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
65    net = Net(_w, strategy1, strategy2, strategy3)
66    compile_net(net)
67
68
69def test_layer_norm_model_parallel():
70    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
71    strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1))
72    strategy2 = ((1, 16, 1, 1), (16, 1, 1), (16, 1, 1))
73    strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1))
74    net = Net(_w, strategy1, strategy2, strategy3)
75    compile_net(net)
76
77
78def test_layer_norm_hybrid_parallel():
79    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
80    strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
81    strategy2 = ((2, 8, 1, 1), (8, 1, 1), (8, 1, 1))
82    strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
83    net = Net(_w, strategy1, strategy2, strategy3)
84    compile_net(net)
85
86
87def test_layer_norm_auto_parallel():
88    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
89    net = Net(_w)
90    compile_net(net)
91
92
93def test_layer_norm_repeat_calc():
94    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
95    strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
96    strategy2 = ((2, 2, 1, 1), (2, 1, 1), (2, 1, 1))
97    strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
98    net = Net(_w, strategy1, strategy2, strategy3)
99    compile_net(net)
100
101
102def test_layer_norm_wrong_strategy():
103    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
104    strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
105    strategy2 = ((1, 2, 1, 2), (2, 1, 2), (2, 1, 2))
106    strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
107    net = Net(_w, strategy1, strategy2, strategy3)
108    with pytest.raises(RuntimeError):
109        compile_net(net)
110