1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" test_net_infer """ 16import numpy as np 17 18import mindspore.nn as nn 19from mindspore import Tensor, context 20from mindspore.common.parameter import Parameter 21from mindspore.common.initializer import initializer 22import mindspore.ops.operations as op 23 24def test_net_infer(): 25 """ test_net_infer """ 26 class Net(nn.Cell): 27 """ Net definition """ 28 29 def __init__(self): 30 super(Net, self).__init__() 31 self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') 32 self.bn = nn.BatchNorm2d(64) 33 self.fc = nn.Dense(64, 10) 34 self.relu = nn.ReLU() 35 self.flatten = nn.Flatten() 36 37 def construct(self, x): 38 x = self.conv(x) 39 x = self.relu(x) 40 x = self.flatten(x) 41 out = self.fc(x) 42 return out 43 Tensor(np.random.randint(0, 255, [1, 3, 224, 224])) 44 Net() 45 46 47def test_assign_in_while(): 48 context.set_context(device_target="Ascend") 49 context.set_context(mode=context.GRAPH_MODE) 50 class Net(nn.Cell): 51 def __init__(self, input_shape): 52 super().__init__() 53 self.assign = op.Assign() 54 self.inputdata = Parameter(initializer(1, input_shape), name="global_step") 55 56 def construct(self, x, y, z): 57 out = z 58 while x < y: 59 inputdata = self.inputdata 60 x = x + 1 61 out = self.assign(inputdata, z) 62 return out 63 64 x = Tensor(np.array(1).astype(np.int32)) 65 y = Tensor(np.array(3).astype(np.int32)) 66 input_shape = (1024, 512) 67 z = Tensor(np.random.randn(*input_shape).astype(np.float32)) 68 net = Net(input_shape) 69 net(x, y, z) 70 71 72def test_dup_context(): 73 """ different func_with_fv in net1 and net2 should produce 2 different FuncGraphAbstractClosure and 74 Evaluator. 75 """ 76 context.set_context(mode=context.GRAPH_MODE) 77 78 class Net(nn.Cell): 79 def __init__(self): 80 super().__init__() 81 82 def construct(self, x): 83 def identity(f): 84 return f 85 86 def func_with_fv(): 87 return x 88 89 def net1(): 90 local_func = identity(func_with_fv) 91 out = local_func() + 20.0 92 return out 93 94 def net2(): 95 local_func = identity(func_with_fv) 96 out = local_func() + 15.0 97 return out 98 99 return net1() + net2() 100 101 Net()(Tensor(np.array(5.0).astype(np.float32))) 102 103 104def test_maybe_poly_func(): 105 """ different func_with_fv in net1 and net2 may produce poly node. """ 106 context.set_context(mode=context.GRAPH_MODE) 107 108 class Net(nn.Cell): 109 def __init__(self): 110 super().__init__() 111 112 def construct(self, x, y, z): 113 def identity(f, inp): 114 return f(inp) 115 116 def func_with_fv(yy): 117 return (x, yy) 118 119 def make_call(): 120 out1 = identity(func_with_fv, y) 121 out2 = identity(func_with_fv, z) 122 return (out1, out2) 123 124 return make_call() 125 126 y_input = Tensor(np.array([1, 2]).astype(np.int32)) 127 z_input = Tensor(np.array([[2, 2], [3, 3]]).astype(np.int32)) 128 Net()(Tensor(np.array(1).astype(np.int32)), y_input, z_input) 129