• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define _GNU_SOURCE
2 #include <stdlib.h>
3 #include <string.h>
4 #include <limits.h>
5 #include <stdint.h>
6 #include <errno.h>
7 #include <sys/mman.h>
8 #include "libc.h"
9 #include "atomic.h"
10 #include "pthread_impl.h"
11 #include "malloc_impl.h"
12 
13 #if defined(__GNUC__) && defined(__PIC__)
14 #define inline inline __attribute__((always_inline))
15 #endif
16 
17 static struct {
18 	volatile uint64_t binmap;
19 	struct bin bins[64];
20 	volatile int free_lock[2];
21 } mal;
22 
23 int __malloc_replaced;
24 
25 /* Synchronization tools */
26 
lock(volatile int * lk)27 static inline void lock(volatile int *lk)
28 {
29 	if (libc.threads_minus_1)
30 		while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
31 }
32 
unlock(volatile int * lk)33 static inline void unlock(volatile int *lk)
34 {
35 	if (lk[0]) {
36 		a_store(lk, 0);
37 		if (lk[1]) __wake(lk, 1, 1);
38 	}
39 }
40 
lock_bin(int i)41 static inline void lock_bin(int i)
42 {
43 	lock(mal.bins[i].lock);
44 	if (!mal.bins[i].head)
45 		mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
46 }
47 
unlock_bin(int i)48 static inline void unlock_bin(int i)
49 {
50 	unlock(mal.bins[i].lock);
51 }
52 
first_set(uint64_t x)53 static int first_set(uint64_t x)
54 {
55 #if 1
56 	return a_ctz_64(x);
57 #else
58 	static const char debruijn64[64] = {
59 		0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
60 		62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
61 		63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
62 		51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
63 	};
64 	static const char debruijn32[32] = {
65 		0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
66 		31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
67 	};
68 	if (sizeof(long) < 8) {
69 		uint32_t y = x;
70 		if (!y) {
71 			y = x>>32;
72 			return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
73 		}
74 		return debruijn32[(y&-y)*0x076be629 >> 27];
75 	}
76 	return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
77 #endif
78 }
79 
80 static const unsigned char bin_tab[60] = {
81 	            32,33,34,35,36,36,37,37,38,38,39,39,
82 	40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
83 	44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
84 	46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
85 };
86 
bin_index(size_t x)87 static int bin_index(size_t x)
88 {
89 	x = x / SIZE_ALIGN - 1;
90 	if (x <= 32) return x;
91 	if (x < 512) return bin_tab[x/8-4];
92 	if (x > 0x1c00) return 63;
93 	return bin_tab[x/128-4] + 16;
94 }
95 
bin_index_up(size_t x)96 static int bin_index_up(size_t x)
97 {
98 	x = x / SIZE_ALIGN - 1;
99 	if (x <= 32) return x;
100 	x--;
101 	if (x < 512) return bin_tab[x/8-4] + 1;
102 	return bin_tab[x/128-4] + 17;
103 }
104 
105 #if 0
106 void __dump_heap(int x)
107 {
108 	struct chunk *c;
109 	int i;
110 	for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
111 		fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
112 			c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
113 			c->csize & 15,
114 			NEXT_CHUNK(c)->psize & 15);
115 	for (i=0; i<64; i++) {
116 		if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
117 			fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
118 			if (!(mal.binmap & 1ULL<<i))
119 				fprintf(stderr, "missing from binmap!\n");
120 		} else if (mal.binmap & 1ULL<<i)
121 			fprintf(stderr, "binmap wrongly contains %d!\n", i);
122 	}
123 }
124 #endif
125 
expand_heap(size_t n)126 static struct chunk *expand_heap(size_t n)
127 {
128 	static int heap_lock[2];
129 	static void *end;
130 	void *p;
131 	struct chunk *w;
132 
133 	/* The argument n already accounts for the caller's chunk
134 	 * overhead needs, but if the heap can't be extended in-place,
135 	 * we need room for an extra zero-sized sentinel chunk. */
136 	n += SIZE_ALIGN;
137 
138 	lock(heap_lock);
139 
140 	p = __expand_heap(&n);
141 	if (!p) {
142 		unlock(heap_lock);
143 		return 0;
144 	}
145 
146 	/* If not just expanding existing space, we need to make a
147 	 * new sentinel chunk below the allocated space. */
148 	if (p != end) {
149 		/* Valid/safe because of the prologue increment. */
150 		n -= SIZE_ALIGN;
151 		p = (char *)p + SIZE_ALIGN;
152 		w = MEM_TO_CHUNK(p);
153 		w->psize = 0 | C_INUSE;
154 	}
155 
156 	/* Record new heap end and fill in footer. */
157 	end = (char *)p + n;
158 	w = MEM_TO_CHUNK(end);
159 	w->psize = n | C_INUSE;
160 	w->csize = 0 | C_INUSE;
161 
162 	/* Fill in header, which may be new or may be replacing a
163 	 * zero-size sentinel header at the old end-of-heap. */
164 	w = MEM_TO_CHUNK(p);
165 	w->csize = n | C_INUSE;
166 
167 	unlock(heap_lock);
168 
169 	return w;
170 }
171 
adjust_size(size_t * n)172 static int adjust_size(size_t *n)
173 {
174 	/* Result of pointer difference must fit in ptrdiff_t. */
175 	if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
176 		if (*n) {
177 			errno = ENOMEM;
178 			return -1;
179 		} else {
180 			*n = SIZE_ALIGN;
181 			return 0;
182 		}
183 	}
184 	*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
185 	return 0;
186 }
187 
unbin(struct chunk * c,int i)188 static void unbin(struct chunk *c, int i)
189 {
190 	if (c->prev == c->next)
191 		a_and_64(&mal.binmap, ~(1ULL<<i));
192 	c->prev->next = c->next;
193 	c->next->prev = c->prev;
194 	c->csize |= C_INUSE;
195 	NEXT_CHUNK(c)->psize |= C_INUSE;
196 }
197 
alloc_fwd(struct chunk * c)198 static int alloc_fwd(struct chunk *c)
199 {
200 	int i;
201 	size_t k;
202 	while (!((k=c->csize) & C_INUSE)) {
203 		i = bin_index(k);
204 		lock_bin(i);
205 		if (c->csize == k) {
206 			unbin(c, i);
207 			unlock_bin(i);
208 			return 1;
209 		}
210 		unlock_bin(i);
211 	}
212 	return 0;
213 }
214 
alloc_rev(struct chunk * c)215 static int alloc_rev(struct chunk *c)
216 {
217 	int i;
218 	size_t k;
219 	while (!((k=c->psize) & C_INUSE)) {
220 		i = bin_index(k);
221 		lock_bin(i);
222 		if (c->psize == k) {
223 			unbin(PREV_CHUNK(c), i);
224 			unlock_bin(i);
225 			return 1;
226 		}
227 		unlock_bin(i);
228 	}
229 	return 0;
230 }
231 
232 
233 /* pretrim - trims a chunk _prior_ to removing it from its bin.
234  * Must be called with i as the ideal bin for size n, j the bin
235  * for the _free_ chunk self, and bin j locked. */
pretrim(struct chunk * self,size_t n,int i,int j)236 static int pretrim(struct chunk *self, size_t n, int i, int j)
237 {
238 	size_t n1;
239 	struct chunk *next, *split;
240 
241 	/* We cannot pretrim if it would require re-binning. */
242 	if (j < 40) return 0;
243 	if (j < i+3) {
244 		if (j != 63) return 0;
245 		n1 = CHUNK_SIZE(self);
246 		if (n1-n <= MMAP_THRESHOLD) return 0;
247 	} else {
248 		n1 = CHUNK_SIZE(self);
249 	}
250 	if (bin_index(n1-n) != j) return 0;
251 
252 	next = NEXT_CHUNK(self);
253 	split = (void *)((char *)self + n);
254 
255 	split->prev = self->prev;
256 	split->next = self->next;
257 	split->prev->next = split;
258 	split->next->prev = split;
259 	split->psize = n | C_INUSE;
260 	split->csize = n1-n;
261 	next->psize = n1-n;
262 	self->csize = n | C_INUSE;
263 	return 1;
264 }
265 
trim(struct chunk * self,size_t n)266 static void trim(struct chunk *self, size_t n)
267 {
268 	size_t n1 = CHUNK_SIZE(self);
269 	struct chunk *next, *split;
270 
271 	if (n >= n1 - DONTCARE) return;
272 
273 	next = NEXT_CHUNK(self);
274 	split = (void *)((char *)self + n);
275 
276 	split->psize = n | C_INUSE;
277 	split->csize = n1-n | C_INUSE;
278 	next->psize = n1-n | C_INUSE;
279 	self->csize = n | C_INUSE;
280 
281 	__bin_chunk(split);
282 }
283 
malloc(size_t n)284 void *malloc(size_t n)
285 {
286 	struct chunk *c;
287 	int i, j;
288 
289 	if (adjust_size(&n) < 0) return 0;
290 
291 	if (n > MMAP_THRESHOLD) {
292 		size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
293 		char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
294 			MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
295 		if (base == (void *)-1) return 0;
296 		c = (void *)(base + SIZE_ALIGN - OVERHEAD);
297 		c->csize = len - (SIZE_ALIGN - OVERHEAD);
298 		c->psize = SIZE_ALIGN - OVERHEAD;
299 		return CHUNK_TO_MEM(c);
300 	}
301 
302 	i = bin_index_up(n);
303 	for (;;) {
304 		uint64_t mask = mal.binmap & -(1ULL<<i);
305 		if (!mask) {
306 			c = expand_heap(n);
307 			if (!c) return 0;
308 			if (alloc_rev(c)) {
309 				struct chunk *x = c;
310 				c = PREV_CHUNK(c);
311 				NEXT_CHUNK(x)->psize = c->csize =
312 					x->csize + CHUNK_SIZE(c);
313 			}
314 			break;
315 		}
316 		j = first_set(mask);
317 		lock_bin(j);
318 		c = mal.bins[j].head;
319 		if (c != BIN_TO_CHUNK(j)) {
320 			if (!pretrim(c, n, i, j)) unbin(c, j);
321 			unlock_bin(j);
322 			break;
323 		}
324 		unlock_bin(j);
325 	}
326 
327 	/* Now patch up in case we over-allocated */
328 	trim(c, n);
329 
330 	return CHUNK_TO_MEM(c);
331 }
332 
mal0_clear(char * p,size_t pagesz,size_t n)333 static size_t mal0_clear(char *p, size_t pagesz, size_t n)
334 {
335 #ifdef __GNUC__
336 	typedef uint64_t __attribute__((__may_alias__)) T;
337 #else
338 	typedef unsigned char T;
339 #endif
340 	char *pp = p + n;
341 	size_t i = (uintptr_t)pp & (pagesz - 1);
342 	for (;;) {
343 		pp = memset(pp - i, 0, i);
344 		if (pp - p < pagesz) return pp - p;
345 		for (i = pagesz; i; i -= 2*sizeof(T), pp -= 2*sizeof(T))
346 		        if (((T *)pp)[-1] | ((T *)pp)[-2])
347 				break;
348 	}
349 }
350 
calloc(size_t m,size_t n)351 void *calloc(size_t m, size_t n)
352 {
353 	if (n && m > (size_t)-1/n) {
354 		errno = ENOMEM;
355 		return 0;
356 	}
357 	n *= m;
358 	void *p = malloc(n);
359 	if (!p) return p;
360 	if (!__malloc_replaced) {
361 		if (IS_MMAPPED(MEM_TO_CHUNK(p)))
362 			return p;
363 		if (n >= PAGE_SIZE)
364 			n = mal0_clear(p, PAGE_SIZE, n);
365 	}
366 	return memset(p, 0, n);
367 }
368 
realloc(void * p,size_t n)369 void *realloc(void *p, size_t n)
370 {
371 	struct chunk *self, *next;
372 	size_t n0, n1;
373 	void *new;
374 
375 	if (!p) return malloc(n);
376 
377 	if (adjust_size(&n) < 0) return 0;
378 
379 	self = MEM_TO_CHUNK(p);
380 	n1 = n0 = CHUNK_SIZE(self);
381 
382 	if (IS_MMAPPED(self)) {
383 		size_t extra = self->psize;
384 		char *base = (char *)self - extra;
385 		size_t oldlen = n0 + extra;
386 		size_t newlen = n + extra;
387 		/* Crash on realloc of freed chunk */
388 		if (extra & 1) a_crash();
389 		if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
390 			n0 = n;
391 			goto copy_free_ret;
392 		}
393 		newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
394 		if (oldlen == newlen) return p;
395 		base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
396 		if (base == (void *)-1)
397 			goto copy_realloc;
398 		self = (void *)(base + extra);
399 		self->csize = newlen - extra;
400 		return CHUNK_TO_MEM(self);
401 	}
402 
403 	next = NEXT_CHUNK(self);
404 
405 	/* Crash on corrupted footer (likely from buffer overflow) */
406 	if (next->psize != self->csize) a_crash();
407 
408 	/* Merge adjacent chunks if we need more space. This is not
409 	 * a waste of time even if we fail to get enough space, because our
410 	 * subsequent call to free would otherwise have to do the merge. */
411 	if (n > n1 && alloc_fwd(next)) {
412 		n1 += CHUNK_SIZE(next);
413 		next = NEXT_CHUNK(next);
414 	}
415 	/* FIXME: find what's wrong here and reenable it..? */
416 	if (0 && n > n1 && alloc_rev(self)) {
417 		self = PREV_CHUNK(self);
418 		n1 += CHUNK_SIZE(self);
419 	}
420 	self->csize = n1 | C_INUSE;
421 	next->psize = n1 | C_INUSE;
422 
423 	/* If we got enough space, split off the excess and return */
424 	if (n <= n1) {
425 		//memmove(CHUNK_TO_MEM(self), p, n0-OVERHEAD);
426 		trim(self, n);
427 		return CHUNK_TO_MEM(self);
428 	}
429 
430 copy_realloc:
431 	/* As a last resort, allocate a new chunk and copy to it. */
432 	new = malloc(n-OVERHEAD);
433 	if (!new) return 0;
434 copy_free_ret:
435 	memcpy(new, p, n0-OVERHEAD);
436 	free(CHUNK_TO_MEM(self));
437 	return new;
438 }
439 
__bin_chunk(struct chunk * self)440 void __bin_chunk(struct chunk *self)
441 {
442 	struct chunk *next = NEXT_CHUNK(self);
443 	size_t final_size, new_size, size;
444 	int reclaim=0;
445 	int i;
446 
447 	final_size = new_size = CHUNK_SIZE(self);
448 
449 	/* Crash on corrupted footer (likely from buffer overflow) */
450 	if (next->psize != self->csize) a_crash();
451 
452 	for (;;) {
453 		if (self->psize & next->csize & C_INUSE) {
454 			self->csize = final_size | C_INUSE;
455 			next->psize = final_size | C_INUSE;
456 			i = bin_index(final_size);
457 			lock_bin(i);
458 			lock(mal.free_lock);
459 			if (self->psize & next->csize & C_INUSE)
460 				break;
461 			unlock(mal.free_lock);
462 			unlock_bin(i);
463 		}
464 
465 		if (alloc_rev(self)) {
466 			self = PREV_CHUNK(self);
467 			size = CHUNK_SIZE(self);
468 			final_size += size;
469 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
470 				reclaim = 1;
471 		}
472 
473 		if (alloc_fwd(next)) {
474 			size = CHUNK_SIZE(next);
475 			final_size += size;
476 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
477 				reclaim = 1;
478 			next = NEXT_CHUNK(next);
479 		}
480 	}
481 
482 	if (!(mal.binmap & 1ULL<<i))
483 		a_or_64(&mal.binmap, 1ULL<<i);
484 
485 	self->csize = final_size;
486 	next->psize = final_size;
487 	unlock(mal.free_lock);
488 
489 	self->next = BIN_TO_CHUNK(i);
490 	self->prev = mal.bins[i].tail;
491 	self->next->prev = self;
492 	self->prev->next = self;
493 
494 	/* Replace middle of large chunks with fresh zero pages */
495 	if (reclaim) {
496 		uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
497 		uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
498 #if 0
499 		__madvise((void *)a, b-a, MADV_DONTNEED);
500 #else
501 		__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
502 			MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
503 #endif
504 	}
505 
506 	unlock_bin(i);
507 }
508 
unmap_chunk(struct chunk * self)509 static void unmap_chunk(struct chunk *self)
510 {
511 	size_t extra = self->psize;
512 	char *base = (char *)self - extra;
513 	size_t len = CHUNK_SIZE(self) + extra;
514 	/* Crash on double free */
515 	if (extra & 1) a_crash();
516 	__munmap(base, len);
517 }
518 
free(void * p)519 void free(void *p)
520 {
521 	if (!p) return;
522 
523 	struct chunk *self = MEM_TO_CHUNK(p);
524 
525 	if (IS_MMAPPED(self))
526 		unmap_chunk(self);
527 	else
528 		__bin_chunk(self);
529 }
530 
__malloc_donate(char * start,char * end)531 void __malloc_donate(char *start, char *end)
532 {
533 	size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - OVERHEAD);
534 	size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
535 
536 	/* Getting past this condition ensures that the padding for alignment
537 	 * and header overhead will not overflow and will leave a nonzero
538 	 * multiple of SIZE_ALIGN bytes between start and end. */
539 	if (end - start <= OVERHEAD + align_start_up + align_end_down)
540 		return;
541 	start += align_start_up + OVERHEAD;
542 	end   -= align_end_down;
543 
544 	struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
545 	c->psize = n->csize = C_INUSE;
546 	c->csize = n->psize = C_INUSE | (end-start);
547 	__bin_chunk(c);
548 }
549