• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define _GNU_SOURCE
2 #include <stdlib.h>
3 #include <string.h>
4 #include <limits.h>
5 #include <stdint.h>
6 #include <errno.h>
7 #include <unistd.h>
8 #include <debug.h>
9 #include <sys/mman.h>
10 #include "libc.h"
11 #include "atomic.h"
12 #include "pthread_impl.h"
13 #include "malloc_impl.h"
14 
15 #if defined(__GNUC__) && defined(__PIC__)
16 #define inline inline __attribute__((always_inline))
17 #endif
18 
19 static struct {
20 	volatile uint64_t binmap;
21 	struct bin bins[64];
22 	volatile int free_lock[2];
23 } mal;
24 
25 int __malloc_replaced;
26 
27 /* Synchronization tools */
28 
lock(volatile int * lk)29 static inline void lock(volatile int *lk)
30 {
31 	if (libc.threads_minus_1)
32 		while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
33 }
34 
unlock(volatile int * lk)35 static inline void unlock(volatile int *lk)
36 {
37 	if (lk[0]) {
38 		a_store(lk, 0);
39 		if (lk[1]) __wake(lk, 1, 1);
40 	}
41 }
42 
lock_bin(int i)43 static inline void lock_bin(int i)
44 {
45 	lock(mal.bins[i].lock);
46 	if (!mal.bins[i].head)
47 		mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
48 }
49 
unlock_bin(int i)50 static inline void unlock_bin(int i)
51 {
52 	unlock(mal.bins[i].lock);
53 }
54 
first_set(uint64_t x)55 static int first_set(uint64_t x)
56 {
57 #if 1
58 	return a_ctz_64(x);
59 #else
60 	static const char debruijn64[64] = {
61 		0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
62 		62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
63 		63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
64 		51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
65 	};
66 	static const char debruijn32[32] = {
67 		0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
68 		31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
69 	};
70 	if (sizeof(long) < 8) {
71 		uint32_t y = x;
72 		if (!y) {
73 			y = x>>32;
74 			return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
75 		}
76 		return debruijn32[(y&-y)*0x076be629 >> 27];
77 	}
78 	return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
79 #endif
80 }
81 
82 static const unsigned char bin_tab[60] = {
83 	            32,33,34,35,36,36,37,37,38,38,39,39,
84 	40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
85 	44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
86 	46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
87 };
88 
bin_index(size_t x)89 static int bin_index(size_t x)
90 {
91 	x = x / SIZE_ALIGN - 1;
92 	if (x <= 32) return x;
93 	if (x < 512) return bin_tab[x/8-4];
94 	if (x > 0x1c00) return 63;
95 	return bin_tab[x/128-4] + 16;
96 }
97 
bin_index_up(size_t x)98 static int bin_index_up(size_t x)
99 {
100 	x = x / SIZE_ALIGN - 1;
101 	if (x <= 32) return x;
102 	x--;
103 	if (x < 512) return bin_tab[x/8-4] + 1;
104 	return bin_tab[x/128-4] + 17;
105 }
106 
107 #if 0
108 void __dump_heap(int x)
109 {
110 	struct chunk *c;
111 	int i;
112 	for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
113 		fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
114 			c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
115 			c->csize & 15,
116 			NEXT_CHUNK(c)->psize & 15);
117 	for (i=0; i<64; i++) {
118 		if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
119 			fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
120 			if (!(mal.binmap & 1ULL<<i))
121 				fprintf(stderr, "missing from binmap!\n");
122 		} else if (mal.binmap & 1ULL<<i)
123 			fprintf(stderr, "binmap wrongly contains %d!\n", i);
124 	}
125 }
126 #endif
127 
expand_heap(size_t n)128 static struct chunk *expand_heap(size_t n)
129 {
130 	static int heap_lock[2];
131 	static void *end;
132 	void *p;
133 	struct chunk *w;
134 
135 	/* The argument n already accounts for the caller's chunk
136 	 * overhead needs, but if the heap can't be extended in-place,
137 	 * we need room for an extra zero-sized sentinel chunk. */
138 	n += SIZE_ALIGN;
139 
140 	lock(heap_lock);
141 
142 	p = __expand_heap(&n);
143 	if (!p) {
144 		unlock(heap_lock);
145 		return 0;
146 	}
147 
148 	lock(g_mem_lock);
149 	/* If not just expanding existing space, we need to make a
150 	 * new sentinel chunk below the allocated space. */
151 	if (p != end) {
152 		/* Valid/safe because of the prologue increment. */
153 		n -= SIZE_ALIGN;
154 		p = (char *)p + SIZE_ALIGN;
155 		w = MEM_TO_CHUNK(p);
156 		w->psize = 0 | C_INUSE;
157 		insert_block_list(w);
158 	}
159 
160 	/* Record new heap end and fill in footer. */
161 	end = (char *)p + n;
162 	w = MEM_TO_CHUNK(end);
163 	w->psize = n | C_INUSE;
164 	w->csize = 0 | C_INUSE;
165 
166 	/* Fill in header, which may be new or may be replacing a
167 	 * zero-size sentinel header at the old end-of-heap. */
168 	w = MEM_TO_CHUNK(p);
169 	w->csize = n | C_INUSE;
170 	calculate_checksum(w, MEM_TO_CHUNK(end));
171 
172 	unlock(g_mem_lock);
173 	unlock(heap_lock);
174 
175 	return w;
176 }
177 
adjust_size(size_t * n)178 static int adjust_size(size_t *n)
179 {
180 	/* Result of pointer difference must fit in ptrdiff_t. */
181 	if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
182 		if (*n) {
183 			errno = ENOMEM;
184 			return -1;
185 		} else {
186 			*n = SIZE_ALIGN;
187 			return 0;
188 		}
189 	}
190 	*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
191 	return 0;
192 }
193 
unbin(struct chunk * c,int i)194 static void unbin(struct chunk *c, int i)
195 {
196 	if (c->prev == c->next)
197 		a_and_64(&mal.binmap, ~(1ULL<<i));
198 	c->prev->next = c->next;
199 	c->next->prev = c->prev;
200 	c->csize |= C_INUSE;
201 	NEXT_CHUNK(c)->psize |= C_INUSE;
202 }
203 
alloc_fwd(struct chunk * c)204 static int alloc_fwd(struct chunk *c)
205 {
206 	int i;
207 	size_t k;
208 	while (!((k=c->csize) & C_INUSE)) {
209 		i = bin_index(k);
210 		lock_bin(i);
211 		if (c->csize == k) {
212 			unbin(c, i);
213 			unlock_bin(i);
214 			return 1;
215 		}
216 		unlock_bin(i);
217 	}
218 	return 0;
219 }
220 
alloc_rev(struct chunk * c)221 static int alloc_rev(struct chunk *c)
222 {
223 	int i;
224 	size_t k;
225 	while (!((k=c->psize) & C_INUSE)) {
226 		i = bin_index(k);
227 		lock_bin(i);
228 		if (c->psize == k) {
229 			unbin(PREV_CHUNK(c), i);
230 			unlock_bin(i);
231 			return 1;
232 		}
233 		unlock_bin(i);
234 	}
235 	return 0;
236 }
237 
238 
239 /* pretrim - trims a chunk _prior_ to removing it from its bin.
240  * Must be called with i as the ideal bin for size n, j the bin
241  * for the _free_ chunk self, and bin j locked. */
pretrim(struct chunk * self,size_t n,int i,int j)242 static int pretrim(struct chunk *self, size_t n, int i, int j)
243 {
244 	size_t n1;
245 	struct chunk *next, *split;
246 
247 	/* We cannot pretrim if it would require re-binning. */
248 	if (j < 40) return 0;
249 	if (j < i+3) {
250 		if (j != 63) return 0;
251 		n1 = CHUNK_SIZE(self);
252 		if (n1-n <= MMAP_THRESHOLD) return 0;
253 	} else {
254 		n1 = CHUNK_SIZE(self);
255 	}
256 	if (bin_index(n1-n) != j) return 0;
257 
258 	next = NEXT_CHUNK(self);
259 	split = (void *)((char *)self + n);
260 	lock(g_mem_lock);
261 	split->prev = self->prev;
262 	split->next = self->next;
263 	split->prev->next = split;
264 	split->next->prev = split;
265 	split->psize = n | C_INUSE;
266 	split->csize = n1-n;
267 	next->psize = n1-n;
268 	calculate_checksum(split, next);
269 	self->csize = n | C_INUSE;
270 	calculate_checksum(self, NULL);
271 	unlock(g_mem_lock);
272 	return 1;
273 }
274 
trim(struct chunk * self,size_t n)275 static void trim(struct chunk *self, size_t n)
276 {
277 	size_t n1 = CHUNK_SIZE(self);
278 	struct chunk *next, *split;
279 
280 	if (n >= n1 - DONTCARE) return;
281 
282 	next = NEXT_CHUNK(self);
283 	split = (void *)((char *)self + n);
284 	lock(g_mem_lock);
285 	split->psize = n | C_INUSE;
286 	split->csize = n1-n | C_INUSE;
287 	next->psize = n1-n | C_INUSE;
288 	calculate_checksum(split, next);
289 	self->csize = n | C_INUSE;
290 	calculate_checksum(self, NULL);
291 	unlock(g_mem_lock);
292 
293 	__bin_chunk(split);
294 }
295 
malloc(size_t n)296 void *malloc(size_t n)
297 {
298 	struct chunk *c;
299 	int i, j;
300 
301 	if (adjust_size(&n) < 0) return 0;
302 
303 	if (n > MMAP_THRESHOLD) {
304 		size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
305 		if (g_enable_check) {
306 			/* Allocate two more pages for protection, loacted at the head and tail of user memory respectively */
307 			len += PAGE_SIZE << 1;
308 		}
309 		char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
310 			MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
311 		if (base == (void *)-1) return 0;
312 		if (g_enable_check) {
313 			if (mprotect(base, PAGE_SIZE, PROT_NONE) ||
314 				mprotect(base + len - PAGE_SIZE, PAGE_SIZE, PROT_NONE)) {
315 				printf("%s %d, mprotect failed, err: %s!\n", __func__, __LINE__, strerror(errno));
316 			}
317 			base += PAGE_SIZE;
318 		}
319 		c = (void *)(base + SIZE_ALIGN - OVERHEAD);
320 		c->csize = len - (SIZE_ALIGN - OVERHEAD);
321 		c->psize = SIZE_ALIGN - OVERHEAD;
322 		if (g_enable_check) {
323 			c->csize -= PAGE_SIZE << 1;
324 			insert_node(CHUNK_TO_MEM(c), CHUNK_SIZE(c));
325 		}
326 		return CHUNK_TO_MEM(c);
327 	}
328 
329 	i = bin_index_up(n);
330 	for (;;) {
331 		uint64_t mask = mal.binmap & -(1ULL<<i);
332 		if (!mask) {
333 			c = expand_heap(n);
334 			if (!c) return 0;
335 			if (alloc_rev(c)) {
336 				lock(g_mem_lock);
337 				struct chunk *x = c;
338 				c = PREV_CHUNK(c);
339 				NEXT_CHUNK(x)->psize = c->csize =
340 					x->csize + CHUNK_SIZE(c);
341 				calculate_checksum(c, NEXT_CHUNK(x));
342 				unlock(g_mem_lock);
343 			}
344 			break;
345 		}
346 		j = first_set(mask);
347 		lock_bin(j);
348 		c = mal.bins[j].head;
349 		if (c != BIN_TO_CHUNK(j)) {
350 			if (!pretrim(c, n, i, j)) unbin(c, j);
351 			unlock_bin(j);
352 			break;
353 		}
354 		unlock_bin(j);
355 	}
356 
357 	/* Now patch up in case we over-allocated */
358 	trim(c, n);
359 	if (g_enable_check) {
360 		insert_node(CHUNK_TO_MEM(c), CHUNK_SIZE(c));
361 	}
362 
363 	return CHUNK_TO_MEM(c);
364 }
365 
mal0_clear(char * p,size_t pagesz,size_t n)366 static size_t mal0_clear(char *p, size_t pagesz, size_t n)
367 {
368 #ifdef __GNUC__
369 	typedef uint64_t __attribute__((__may_alias__)) T;
370 #else
371 	typedef unsigned char T;
372 #endif
373 	char *pp = p + n;
374 	size_t i = (uintptr_t)pp & (pagesz - 1);
375 	for (;;) {
376 		pp = memset(pp - i, 0, i);
377 		if (pp - p < pagesz) return pp - p;
378 		for (i = pagesz; i; i -= 2*sizeof(T), pp -= 2*sizeof(T))
379 		        if (((T *)pp)[-1] | ((T *)pp)[-2])
380 				break;
381 	}
382 }
383 
calloc(size_t m,size_t n)384 void *calloc(size_t m, size_t n)
385 {
386 	if (n && m > (size_t)-1/n) {
387 		errno = ENOMEM;
388 		return 0;
389 	}
390 	n *= m;
391 	void *p = malloc(n);
392 	if (!p) return p;
393 	if (!__malloc_replaced) {
394 		if (IS_MMAPPED(MEM_TO_CHUNK(p)))
395 			return p;
396 		if (n >= PAGE_SIZE)
397 			n = mal0_clear(p, PAGE_SIZE, n);
398 	}
399 	return memset(p, 0, n);
400 }
401 
realloc(void * p,size_t n)402 void *realloc(void *p, size_t n)
403 {
404 	struct chunk *self, *next;
405 	size_t n0, n1;
406 	void *new;
407 
408 	if (!p) return malloc(n);
409 
410 	if (adjust_size(&n) < 0) return 0;
411 
412 	self = MEM_TO_CHUNK(p);
413 	n1 = n0 = CHUNK_SIZE(self);
414 
415 	if (IS_MMAPPED(self)) {
416 		size_t extra = self->psize;
417 		char *base = (char *)self - extra;
418 		size_t oldlen = n0 + extra;
419 		size_t newlen = n + extra;
420 		/* Crash on realloc of freed chunk */
421 		if (extra & 1) {
422 			if (g_enable_check) {
423 				get_free_trace(CHUNK_TO_MEM(self));
424 				a_crash();
425 			} else {
426 				a_crash();
427 			}
428 		}
429 		if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
430 			n0 = n;
431 			goto copy_free_ret;
432 		}
433 		newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
434 		if (oldlen == newlen) return p;
435 		if (g_enable_check) {
436 			goto copy_realloc;
437 		}
438 		base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
439 		if (base == (void *)-1)
440 			goto copy_realloc;
441 		self = (void *)(base + extra);
442 		self->csize = newlen - extra;
443 		return CHUNK_TO_MEM(self);
444 	}
445 
446 	next = NEXT_CHUNK(self);
447 
448 	/* Crash on corrupted footer (likely from buffer overflow) */
449 	if (next->psize != self->csize) a_crash();
450 
451 	/* Merge adjacent chunks if we need more space. This is not
452 	 * a waste of time even if we fail to get enough space, because our
453 	 * subsequent call to free would otherwise have to do the merge. */
454 	if (n > n1 && alloc_fwd(next)) {
455 		n1 += CHUNK_SIZE(next);
456 		next = NEXT_CHUNK(next);
457 	}
458 	/* FIXME: find what's wrong here and reenable it..? */
459 	if (0 && n > n1 && alloc_rev(self)) {
460 		self = PREV_CHUNK(self);
461 		n1 += CHUNK_SIZE(self);
462 	}
463 	lock(g_mem_lock);
464 	self->csize = n1 | C_INUSE;
465 	next->psize = n1 | C_INUSE;
466 	calculate_checksum(self, next);
467 	unlock(g_mem_lock);
468 
469 	/* If we got enough space, split off the excess and return */
470 	if (n <= n1) {
471 		//memmove(CHUNK_TO_MEM(self), p, n0-OVERHEAD);
472 		trim(self, n);
473 		if (g_enable_check) {
474 			int status = delete_node(p);
475 			if (status != 0) {
476 				get_free_trace(CHUNK_TO_MEM(self));
477 				a_crash();
478 			}
479 			insert_node(CHUNK_TO_MEM(self), CHUNK_SIZE(self));
480 		}
481 
482 		return CHUNK_TO_MEM(self);
483 	}
484 
485 copy_realloc:
486 	/* As a last resort, allocate a new chunk and copy to it. */
487 	new = malloc(n-OVERHEAD);
488 	if (!new) return 0;
489 	n0 = (n0 > n) ? n : n0;
490 copy_free_ret:
491 	memcpy(new, p, n0-OVERHEAD);
492 	free(CHUNK_TO_MEM(self));
493 	return new;
494 }
495 
__bin_chunk(struct chunk * self)496 void __bin_chunk(struct chunk *self)
497 {
498 	struct chunk *next = NEXT_CHUNK(self);
499 	size_t final_size, new_size, size;
500 	int reclaim=0;
501 	int i;
502 
503 	final_size = new_size = CHUNK_SIZE(self);
504 
505 	/* Crash on corrupted footer (likely from buffer overflow) */
506 	if (next->psize != self->csize) a_crash();
507 
508 	for (;;) {
509 		if (self->psize & next->csize & C_INUSE) {
510 			lock(g_mem_lock);
511 			self->csize = final_size | C_INUSE;
512 			next->psize = final_size | C_INUSE;
513 			calculate_checksum(self, next);
514 			unlock(g_mem_lock);
515 			i = bin_index(final_size);
516 			lock_bin(i);
517 			lock(mal.free_lock);
518 			if (self->psize & next->csize & C_INUSE)
519 				break;
520 			unlock(mal.free_lock);
521 			unlock_bin(i);
522 		}
523 
524 		if (alloc_rev(self)) {
525 			self = PREV_CHUNK(self);
526 			size = CHUNK_SIZE(self);
527 			final_size += size;
528 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
529 				reclaim = 1;
530 		}
531 
532 		if (alloc_fwd(next)) {
533 			size = CHUNK_SIZE(next);
534 			final_size += size;
535 			if (new_size+size > RECLAIM && (new_size+size^size) > size)
536 				reclaim = 1;
537 			next = NEXT_CHUNK(next);
538 		}
539 	}
540 
541 	if (!(mal.binmap & 1ULL<<i))
542 		a_or_64(&mal.binmap, 1ULL<<i);
543 
544 	lock(g_mem_lock);
545 	self->csize = final_size;
546 	next->psize = final_size;
547 	calculate_checksum(self, next);
548 	unlock(g_mem_lock);
549 	unlock(mal.free_lock);
550 
551 	self->next = BIN_TO_CHUNK(i);
552 	self->prev = mal.bins[i].tail;
553 	self->next->prev = self;
554 	self->prev->next = self;
555 
556 	/* Replace middle of large chunks with fresh zero pages */
557 	if (reclaim) {
558 		uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
559 		uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
560 #if 0
561 		__madvise((void *)a, b-a, MADV_DONTNEED);
562 #else
563 		__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
564 			MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
565 #endif
566 	}
567 
568 	unlock_bin(i);
569 }
570 
unmap_chunk(struct chunk * self)571 static void unmap_chunk(struct chunk *self)
572 {
573 	size_t extra = self->psize;
574 	char *base = (char *)self - extra;
575 	size_t len = CHUNK_SIZE(self) + extra;
576 	/* Crash on double free */
577 	if (extra & 1) {
578 		if (g_enable_check) {
579 			get_free_trace(CHUNK_TO_MEM(self));
580 			a_crash();
581 		} else {
582 			a_crash();
583 		}
584 	}
585 	if (g_enable_check) {
586 		base -= PAGE_SIZE;
587 		len += PAGE_SIZE << 1;
588 	}
589 	__munmap(base, len);
590 }
591 
free(void * p)592 void free(void *p)
593 {
594 	if (!p) return;
595 
596 	struct chunk *self = MEM_TO_CHUNK(p);
597 	if (g_enable_check) {
598 		if (!IS_MMAPPED(self)) {
599 			check_chunk_integrity(self);
600 		}
601 		int status = delete_node(p);
602 		if (status != 0) {
603 			get_free_trace(p);
604 			a_crash();
605 		}
606 	}
607 
608 	if (IS_MMAPPED(self))
609 		unmap_chunk(self);
610 	else {
611 		if (g_enable_check) {
612 			insert_free_tail(self);
613 			if (g_recycle_size >= RECYCLE_SIZE_MAX) {
614 				clean_recycle_list(false);
615 				return;
616 			}
617 			if (g_recycle_num < RECYCLE_MAX) {
618 				return;
619 			}
620 			self = get_free_head();
621 		}
622 		__bin_chunk(self);
623 	}
624 }
625 
__malloc_donate(char * start,char * end)626 void __malloc_donate(char *start, char *end)
627 {
628 	size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - BLOCK_HEAD);
629 	size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
630 
631 	/* Getting past this condition ensures that the padding for alignment
632 	 * and header overhead will not overflow and will leave a nonzero
633 	 * multiple of SIZE_ALIGN bytes between start and end. */
634 	if (end - start <= BLOCK_HEAD + align_start_up + align_end_down)
635 		return;
636 	start += align_start_up + BLOCK_HEAD;
637 	end   -= align_end_down;
638 
639 	lock(g_mem_lock);
640 	struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
641 	c->psize = n->csize = C_INUSE;
642 	c->csize = n->psize = C_INUSE | (end-start);
643 	calculate_checksum(c, n);
644 	insert_block_list(c);
645 	unlock(g_mem_lock);
646 	__bin_chunk(c);
647 }
648