• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /*
13  * See comments in atan.c.
14  * Converted to long double by David Schultz <das@FreeBSD.ORG>.
15  */
16 
17 #include "libm.h"
18 
19 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
atanl(long double x)20 long double atanl(long double x)
21 {
22 	return atan(x);
23 }
24 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
25 
26 #if LDBL_MANT_DIG == 64
27 #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
28 
29 static const long double atanhi[] = {
30 	 4.63647609000806116202e-01L,
31 	 7.85398163397448309628e-01L,
32 	 9.82793723247329067960e-01L,
33 	 1.57079632679489661926e+00L,
34 };
35 
36 static const long double atanlo[] = {
37 	 1.18469937025062860669e-20L,
38 	-1.25413940316708300586e-20L,
39 	 2.55232234165405176172e-20L,
40 	-2.50827880633416601173e-20L,
41 };
42 
43 static const long double aT[] = {
44 	 3.33333333333333333017e-01L,
45 	-1.99999999999999632011e-01L,
46 	 1.42857142857046531280e-01L,
47 	-1.11111111100562372733e-01L,
48 	 9.09090902935647302252e-02L,
49 	-7.69230552476207730353e-02L,
50 	 6.66661718042406260546e-02L,
51 	-5.88158892835030888692e-02L,
52 	 5.25499891539726639379e-02L,
53 	-4.70119845393155721494e-02L,
54 	 4.03539201366454414072e-02L,
55 	-2.91303858419364158725e-02L,
56 	 1.24822046299269234080e-02L,
57 };
58 
T_even(long double x)59 static long double T_even(long double x)
60 {
61 	return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
62 		x * (aT[8] + x * (aT[10] + x * aT[12])))));
63 }
64 
T_odd(long double x)65 static long double T_odd(long double x)
66 {
67 	return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
68 		x * (aT[9] + x * aT[11]))));
69 }
70 #elif LDBL_MANT_DIG == 113
71 #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
72 
73 static const long double atanhi[] = {
74 	 4.63647609000806116214256231461214397e-01L,
75 	 7.85398163397448309615660845819875699e-01L,
76 	 9.82793723247329067985710611014666038e-01L,
77 	 1.57079632679489661923132169163975140e+00L,
78 };
79 
80 static const long double atanlo[] = {
81 	 4.89509642257333492668618435220297706e-36L,
82 	 2.16795253253094525619926100651083806e-35L,
83 	-2.31288434538183565909319952098066272e-35L,
84 	 4.33590506506189051239852201302167613e-35L,
85 };
86 
87 static const long double aT[] = {
88 	 3.33333333333333333333333333333333125e-01L,
89 	-1.99999999999999999999999999999180430e-01L,
90 	 1.42857142857142857142857142125269827e-01L,
91 	-1.11111111111111111111110834490810169e-01L,
92 	 9.09090909090909090908522355708623681e-02L,
93 	-7.69230769230769230696553844935357021e-02L,
94 	 6.66666666666666660390096773046256096e-02L,
95 	-5.88235294117646671706582985209643694e-02L,
96 	 5.26315789473666478515847092020327506e-02L,
97 	-4.76190476189855517021024424991436144e-02L,
98 	 4.34782608678695085948531993458097026e-02L,
99 	-3.99999999632663469330634215991142368e-02L,
100 	 3.70370363987423702891250829918659723e-02L,
101 	-3.44827496515048090726669907612335954e-02L,
102 	 3.22579620681420149871973710852268528e-02L,
103 	-3.03020767654269261041647570626778067e-02L,
104 	 2.85641979882534783223403715930946138e-02L,
105 	-2.69824879726738568189929461383741323e-02L,
106 	 2.54194698498808542954187110873675769e-02L,
107 	-2.35083879708189059926183138130183215e-02L,
108 	 2.04832358998165364349957325067131428e-02L,
109 	-1.54489555488544397858507248612362957e-02L,
110 	 8.64492360989278761493037861575248038e-03L,
111 	-2.58521121597609872727919154569765469e-03L,
112 };
113 
T_even(long double x)114 static long double T_even(long double x)
115 {
116 	return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
117 		x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
118 		x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
119 }
120 
T_odd(long double x)121 static long double T_odd(long double x)
122 {
123 	return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
124 		x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
125 		x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
126 }
127 #endif
128 
atanl(long double x)129 long double atanl(long double x)
130 {
131 	union ldshape u = {x};
132 	long double w, s1, s2, z;
133 	int id;
134 	unsigned e = u.i.se & 0x7fff;
135 	unsigned sign = u.i.se >> 15;
136 	unsigned expman;
137 
138 	if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
139 		if (isnan(x))
140 			return x;
141 		return sign ? -atanhi[3] : atanhi[3];
142 	}
143 	/* Extract the exponent and the first few bits of the mantissa. */
144 	expman = EXPMAN(u);
145 	if (expman < ((0x3fff - 2) << 8) + 0xc0) {  /* |x| < 0.4375 */
146 		if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {   /* if |x| is small, atanl(x)~=x */
147 			/* raise underflow if subnormal */
148 			if (e == 0)
149 				FORCE_EVAL((float)x);
150 			return x;
151 		}
152 		id = -1;
153 	} else {
154 		x = fabsl(x);
155 		if (expman < (0x3fff << 8) + 0x30) {  /* |x| < 1.1875 */
156 			if (expman < ((0x3fff - 1) << 8) + 0x60) { /*  7/16 <= |x| < 11/16 */
157 				id = 0;
158 				x = (2.0*x-1.0)/(2.0+x);
159 			} else {                                 /* 11/16 <= |x| < 19/16 */
160 				id = 1;
161 				x = (x-1.0)/(x+1.0);
162 			}
163 		} else {
164 			if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
165 				id = 2;
166 				x = (x-1.5)/(1.0+1.5*x);
167 			} else {                                 /* 2.4375 <= |x| */
168 				id = 3;
169 				x = -1.0/x;
170 			}
171 		}
172 	}
173 	/* end of argument reduction */
174 	z = x*x;
175 	w = z*z;
176 	/* break sum aT[i]z**(i+1) into odd and even poly */
177 	s1 = z*T_even(w);
178 	s2 = w*T_odd(w);
179 	if (id < 0)
180 		return x - x*(s1+s2);
181 	z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
182 	return sign ? -z : z;
183 }
184 #endif
185