1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // file: rbbiscan.cpp
5 //
6 // Copyright (C) 2002-2016, International Business Machines Corporation and others.
7 // All Rights Reserved.
8 //
9 // This file contains the Rule Based Break Iterator Rule Builder functions for
10 // scanning the rules and assembling a parse tree. This is the first phase
11 // of compiling the rules.
12 //
13 // The overall of the rules is managed by class RBBIRuleBuilder, which will
14 // create and use an instance of this class as part of the process.
15 //
16
17 #include "unicode/utypes.h"
18
19 #if !UCONFIG_NO_BREAK_ITERATION
20
21 #include "unicode/unistr.h"
22 #include "unicode/uniset.h"
23 #include "unicode/uchar.h"
24 #include "unicode/uchriter.h"
25 #include "unicode/parsepos.h"
26 #include "unicode/parseerr.h"
27 #include "cmemory.h"
28 #include "cstring.h"
29
30 #include "rbbirpt.h" // Contains state table for the rbbi rules parser.
31 // generated by a Perl script.
32 #include "rbbirb.h"
33 #include "rbbinode.h"
34 #include "rbbiscan.h"
35 #include "rbbitblb.h"
36
37 #include "uassert.h"
38
39 //------------------------------------------------------------------------------
40 //
41 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
42 // (Initialized with hex values for portability to EBCDIC based machines.
43 // Really ugly, but there's no good way to avoid it.)
44 //
45 // The sets are referred to by name in the rbbirpt.txt, which is the
46 // source form of the state transition table for the RBBI rule parser.
47 //
48 //------------------------------------------------------------------------------
49 static const UChar gRuleSet_rule_char_pattern[] = {
50 // Characters that may appear as literals in patterns without escaping or quoting.
51 // [ ^ [ \ p { Z } \ u 0 0 2 0
52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
53 // - \ u 0 0 7 f ] - [ \ p
54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
55 // { L } ] - [ \ p { N } ] ]
56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
57
58 static const UChar gRuleSet_name_char_pattern[] = {
59 // [ _ \ p { L } \ p { N } ]
60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
61
62 static const UChar gRuleSet_digit_char_pattern[] = {
63 // [ 0 - 9 ]
64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
65
66 static const UChar gRuleSet_name_start_char_pattern[] = {
67 // [ _ \ p { L } ]
68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
69
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
71
72
73 U_CDECL_BEGIN
RBBISetTable_deleter(void * p)74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
75 icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p;
76 delete px->key;
77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
78 // Don't delete the value nodes here.
79 uprv_free(px);
80 }
81 U_CDECL_END
82
83 U_NAMESPACE_BEGIN
84
85 //------------------------------------------------------------------------------
86 //
87 // Constructor.
88 //
89 //------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder * rb)90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
91 {
92 fRB = rb;
93 fScanIndex = 0;
94 fNextIndex = 0;
95 fQuoteMode = FALSE;
96 fLineNum = 1;
97 fCharNum = 0;
98 fLastChar = 0;
99
100 fStateTable = NULL;
101 fStack[0] = 0;
102 fStackPtr = 0;
103 fNodeStack[0] = NULL;
104 fNodeStackPtr = 0;
105
106 fReverseRule = FALSE;
107 fLookAheadRule = FALSE;
108 fNoChainInRule = FALSE;
109
110 fSymbolTable = NULL;
111 fSetTable = NULL;
112 fRuleNum = 0;
113 fOptionStart = 0;
114
115 // Do not check status until after all critical fields are sufficiently initialized
116 // that the destructor can run cleanly.
117 if (U_FAILURE(*rb->fStatus)) {
118 return;
119 }
120
121 //
122 // Set up the constant Unicode Sets.
123 // Note: These could be made static, lazily initialized, and shared among
124 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
125 // and the time to build these few sets should be small compared to a
126 // full break iterator build.
127 fRuleSets[kRuleSet_rule_char-128]
128 = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus);
129 // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:]
130 fRuleSets[kRuleSet_white_space-128].
131 add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029);
132 fRuleSets[kRuleSet_name_char-128]
133 = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus);
134 fRuleSets[kRuleSet_name_start_char-128]
135 = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus);
136 fRuleSets[kRuleSet_digit_char-128]
137 = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus);
138 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
139 // This case happens if ICU's data is missing. UnicodeSet tries to look up property
140 // names from the init string, can't find them, and claims an illegal argument.
141 // Change the error so that the actual problem will be clearer to users.
142 *rb->fStatus = U_BRK_INIT_ERROR;
143 }
144 if (U_FAILURE(*rb->fStatus)) {
145 return;
146 }
147
148 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
149 if (fSymbolTable == NULL) {
150 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
151 return;
152 }
153 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
154 if (U_FAILURE(*rb->fStatus)) {
155 return;
156 }
157 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
158 }
159
160
161
162 //------------------------------------------------------------------------------
163 //
164 // Destructor
165 //
166 //------------------------------------------------------------------------------
~RBBIRuleScanner()167 RBBIRuleScanner::~RBBIRuleScanner() {
168 delete fSymbolTable;
169 if (fSetTable != NULL) {
170 uhash_close(fSetTable);
171 fSetTable = NULL;
172
173 }
174
175
176 // Node Stack.
177 // Normally has one entry, which is the entire parse tree for the rules.
178 // If errors occurred, there may be additional subtrees left on the stack.
179 while (fNodeStackPtr > 0) {
180 delete fNodeStack[fNodeStackPtr];
181 fNodeStackPtr--;
182 }
183
184 }
185
186 //------------------------------------------------------------------------------
187 //
188 // doParseAction Do some action during rule parsing.
189 // Called by the parse state machine.
190 // Actions build the parse tree and Unicode Sets,
191 // and maintain the parse stack for nested expressions.
192 //
193 // TODO: unify EParseAction and RBBI_RuleParseAction enum types.
194 // They represent exactly the same thing. They're separate
195 // only to work around enum forward declaration restrictions
196 // in some compilers, while at the same time avoiding multiple
197 // definitions problems. I'm sure that there's a better way.
198 //
199 //------------------------------------------------------------------------------
doParseActions(int32_t action)200 UBool RBBIRuleScanner::doParseActions(int32_t action)
201 {
202 RBBINode *n = NULL;
203
204 UBool returnVal = TRUE;
205
206 switch (action) {
207
208 case doExprStart:
209 pushNewNode(RBBINode::opStart);
210 fRuleNum++;
211 break;
212
213
214 case doNoChain:
215 // Scanned a '^' while on the rule start state.
216 fNoChainInRule = TRUE;
217 break;
218
219
220 case doExprOrOperator:
221 {
222 fixOpStack(RBBINode::precOpCat);
223 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
224 RBBINode *orNode = pushNewNode(RBBINode::opOr);
225 if (U_FAILURE(*fRB->fStatus)) {
226 break;
227 }
228 orNode->fLeftChild = operandNode;
229 operandNode->fParent = orNode;
230 }
231 break;
232
233 case doExprCatOperator:
234 // concatenation operator.
235 // For the implicit concatenation of adjacent terms in an expression that are
236 // not separated by any other operator. Action is invoked between the
237 // actions for the two terms.
238 {
239 fixOpStack(RBBINode::precOpCat);
240 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
241 RBBINode *catNode = pushNewNode(RBBINode::opCat);
242 if (U_FAILURE(*fRB->fStatus)) {
243 break;
244 }
245 catNode->fLeftChild = operandNode;
246 operandNode->fParent = catNode;
247 }
248 break;
249
250 case doLParen:
251 // Open Paren.
252 // The openParen node is a dummy operation type with a low precedence,
253 // which has the affect of ensuring that any real binary op that
254 // follows within the parens binds more tightly to the operands than
255 // stuff outside of the parens.
256 pushNewNode(RBBINode::opLParen);
257 break;
258
259 case doExprRParen:
260 fixOpStack(RBBINode::precLParen);
261 break;
262
263 case doNOP:
264 break;
265
266 case doStartAssign:
267 // We've just scanned "$variable = "
268 // The top of the node stack has the $variable ref node.
269
270 // Save the start position of the RHS text in the StartExpression node
271 // that precedes the $variableReference node on the stack.
272 // This will eventually be used when saving the full $variable replacement
273 // text as a string.
274 n = fNodeStack[fNodeStackPtr-1];
275 n->fFirstPos = fNextIndex; // move past the '='
276
277 // Push a new start-of-expression node; needed to keep parse of the
278 // RHS expression happy.
279 pushNewNode(RBBINode::opStart);
280 break;
281
282
283
284
285 case doEndAssign:
286 {
287 // We have reached the end of an assignment statement.
288 // Current scan char is the ';' that terminates the assignment.
289
290 // Terminate expression, leaves expression parse tree rooted in TOS node.
291 fixOpStack(RBBINode::precStart);
292
293 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
294 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
295 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
296
297 // Save original text of right side of assignment, excluding the terminating ';'
298 // in the root of the node for the right-hand-side expression.
299 RHSExprNode->fFirstPos = startExprNode->fFirstPos;
300 RHSExprNode->fLastPos = fScanIndex;
301 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
302
303 // Expression parse tree becomes l. child of the $variable reference node.
304 varRefNode->fLeftChild = RHSExprNode;
305 RHSExprNode->fParent = varRefNode;
306
307 // Make a symbol table entry for the $variableRef node.
308 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
309 if (U_FAILURE(*fRB->fStatus)) {
310 // This is a round-about way to get the parse position set
311 // so that duplicate symbols error messages include a line number.
312 UErrorCode t = *fRB->fStatus;
313 *fRB->fStatus = U_ZERO_ERROR;
314 error(t);
315 }
316
317 // Clean up the stack.
318 delete startExprNode;
319 fNodeStackPtr-=3;
320 break;
321 }
322
323 case doEndOfRule:
324 {
325 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
326 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
327 break;
328 }
329 #ifdef RBBI_DEBUG
330 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
331 #endif
332 U_ASSERT(fNodeStackPtr == 1);
333 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
334
335 // If this rule includes a look-ahead '/', add a endMark node to the
336 // expression tree.
337 if (fLookAheadRule) {
338 RBBINode *endNode = pushNewNode(RBBINode::endMark);
339 RBBINode *catNode = pushNewNode(RBBINode::opCat);
340 if (U_FAILURE(*fRB->fStatus)) {
341 break;
342 }
343 fNodeStackPtr -= 2;
344 catNode->fLeftChild = thisRule;
345 catNode->fRightChild = endNode;
346 fNodeStack[fNodeStackPtr] = catNode;
347 endNode->fVal = fRuleNum;
348 endNode->fLookAheadEnd = TRUE;
349 thisRule = catNode;
350
351 // TODO: Disable chaining out of look-ahead (hard break) rules.
352 // The break on rule match is forced, so there is no point in building up
353 // the state table to chain into another rule for a longer match.
354 }
355
356 // Mark this node as being the root of a rule.
357 thisRule->fRuleRoot = TRUE;
358
359 // Flag if chaining into this rule is wanted.
360 //
361 if (fRB->fChainRules && // If rule chaining is enabled globally via !!chain
362 !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule
363 thisRule->fChainIn = TRUE;
364 }
365
366
367 // All rule expressions are ORed together.
368 // The ';' that terminates an expression really just functions as a '|' with
369 // a low operator prededence.
370 //
371 // Each of the four sets of rules are collected separately.
372 // (forward, reverse, safe_forward, safe_reverse)
373 // OR this rule into the appropriate group of them.
374 //
375 RBBINode **destRules = (fReverseRule? &fRB->fSafeRevTree : fRB->fDefaultTree);
376
377 if (*destRules != NULL) {
378 // This is not the first rule encountered.
379 // OR previous stuff (from *destRules)
380 // with the current rule expression (on the Node Stack)
381 // with the resulting OR expression going to *destRules
382 //
383 thisRule = fNodeStack[fNodeStackPtr];
384 RBBINode *prevRules = *destRules;
385 RBBINode *orNode = pushNewNode(RBBINode::opOr);
386 if (U_FAILURE(*fRB->fStatus)) {
387 break;
388 }
389 orNode->fLeftChild = prevRules;
390 prevRules->fParent = orNode;
391 orNode->fRightChild = thisRule;
392 thisRule->fParent = orNode;
393 *destRules = orNode;
394 }
395 else
396 {
397 // This is the first rule encountered (for this direction).
398 // Just move its parse tree from the stack to *destRules.
399 *destRules = fNodeStack[fNodeStackPtr];
400 }
401 fReverseRule = FALSE; // in preparation for the next rule.
402 fLookAheadRule = FALSE;
403 fNoChainInRule = FALSE;
404 fNodeStackPtr = 0;
405 }
406 break;
407
408
409 case doRuleError:
410 error(U_BRK_RULE_SYNTAX);
411 returnVal = FALSE;
412 break;
413
414
415 case doVariableNameExpectedErr:
416 error(U_BRK_RULE_SYNTAX);
417 break;
418
419
420 //
421 // Unary operands + ? *
422 // These all appear after the operand to which they apply.
423 // When we hit one, the operand (may be a whole sub expression)
424 // will be on the top of the stack.
425 // Unary Operator becomes TOS, with the old TOS as its one child.
426 case doUnaryOpPlus:
427 {
428 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
429 RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
430 if (U_FAILURE(*fRB->fStatus)) {
431 break;
432 }
433 plusNode->fLeftChild = operandNode;
434 operandNode->fParent = plusNode;
435 }
436 break;
437
438 case doUnaryOpQuestion:
439 {
440 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
441 RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
442 if (U_FAILURE(*fRB->fStatus)) {
443 break;
444 }
445 qNode->fLeftChild = operandNode;
446 operandNode->fParent = qNode;
447 }
448 break;
449
450 case doUnaryOpStar:
451 {
452 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
453 RBBINode *starNode = pushNewNode(RBBINode::opStar);
454 if (U_FAILURE(*fRB->fStatus)) {
455 break;
456 }
457 starNode->fLeftChild = operandNode;
458 operandNode->fParent = starNode;
459 }
460 break;
461
462 case doRuleChar:
463 // A "Rule Character" is any single character that is a literal part
464 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
465 // These are pretty uncommon in break rules; the terms are more commonly
466 // sets. To keep things uniform, treat these characters like as
467 // sets that just happen to contain only one character.
468 {
469 n = pushNewNode(RBBINode::setRef);
470 if (U_FAILURE(*fRB->fStatus)) {
471 break;
472 }
473 findSetFor(UnicodeString(fC.fChar), n);
474 n->fFirstPos = fScanIndex;
475 n->fLastPos = fNextIndex;
476 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
477 break;
478 }
479
480 case doDotAny:
481 // scanned a ".", meaning match any single character.
482 {
483 n = pushNewNode(RBBINode::setRef);
484 if (U_FAILURE(*fRB->fStatus)) {
485 break;
486 }
487 findSetFor(UnicodeString(TRUE, kAny, 3), n);
488 n->fFirstPos = fScanIndex;
489 n->fLastPos = fNextIndex;
490 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
491 break;
492 }
493
494 case doSlash:
495 // Scanned a '/', which identifies a look-ahead break position in a rule.
496 n = pushNewNode(RBBINode::lookAhead);
497 if (U_FAILURE(*fRB->fStatus)) {
498 break;
499 }
500 n->fVal = fRuleNum;
501 n->fFirstPos = fScanIndex;
502 n->fLastPos = fNextIndex;
503 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
504 fLookAheadRule = TRUE;
505 break;
506
507
508 case doStartTagValue:
509 // Scanned a '{', the opening delimiter for a tag value within a rule.
510 n = pushNewNode(RBBINode::tag);
511 if (U_FAILURE(*fRB->fStatus)) {
512 break;
513 }
514 n->fVal = 0;
515 n->fFirstPos = fScanIndex;
516 n->fLastPos = fNextIndex;
517 break;
518
519 case doTagDigit:
520 // Just scanned a decimal digit that's part of a tag value
521 {
522 n = fNodeStack[fNodeStackPtr];
523 uint32_t v = u_charDigitValue(fC.fChar);
524 U_ASSERT(v < 10);
525 n->fVal = n->fVal*10 + v;
526 break;
527 }
528
529 case doTagValue:
530 n = fNodeStack[fNodeStackPtr];
531 n->fLastPos = fNextIndex;
532 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
533 break;
534
535 case doTagExpectedError:
536 error(U_BRK_MALFORMED_RULE_TAG);
537 returnVal = FALSE;
538 break;
539
540 case doOptionStart:
541 // Scanning a !!option. At the start of string.
542 fOptionStart = fScanIndex;
543 break;
544
545 case doOptionEnd:
546 {
547 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
548 if (opt == UNICODE_STRING("chain", 5)) {
549 fRB->fChainRules = TRUE;
550 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
551 fRB->fLBCMNoChain = TRUE;
552 } else if (opt == UNICODE_STRING("forward", 7)) {
553 fRB->fDefaultTree = &fRB->fForwardTree;
554 } else if (opt == UNICODE_STRING("reverse", 7)) {
555 fRB->fDefaultTree = &fRB->fReverseTree;
556 } else if (opt == UNICODE_STRING("safe_forward", 12)) {
557 fRB->fDefaultTree = &fRB->fSafeFwdTree;
558 } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
559 fRB->fDefaultTree = &fRB->fSafeRevTree;
560 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
561 fRB->fLookAheadHardBreak = TRUE;
562 } else if (opt == UNICODE_STRING("quoted_literals_only", 20)) {
563 fRuleSets[kRuleSet_rule_char-128].clear();
564 } else if (opt == UNICODE_STRING("unquoted_literals", 17)) {
565 fRuleSets[kRuleSet_rule_char-128].applyPattern(UnicodeString(gRuleSet_rule_char_pattern), *fRB->fStatus);
566 } else {
567 error(U_BRK_UNRECOGNIZED_OPTION);
568 }
569 }
570 break;
571
572 case doReverseDir:
573 fReverseRule = TRUE;
574 break;
575
576 case doStartVariableName:
577 n = pushNewNode(RBBINode::varRef);
578 if (U_FAILURE(*fRB->fStatus)) {
579 break;
580 }
581 n->fFirstPos = fScanIndex;
582 break;
583
584 case doEndVariableName:
585 n = fNodeStack[fNodeStackPtr];
586 if (n==NULL || n->fType != RBBINode::varRef) {
587 error(U_BRK_INTERNAL_ERROR);
588 break;
589 }
590 n->fLastPos = fScanIndex;
591 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
592 // Look the newly scanned name up in the symbol table
593 // If there's an entry, set the l. child of the var ref to the replacement expression.
594 // (We also pass through here when scanning assignments, but no harm is done, other
595 // than a slight wasted effort that seems hard to avoid. Lookup will be null)
596 n->fLeftChild = fSymbolTable->lookupNode(n->fText);
597 break;
598
599 case doCheckVarDef:
600 n = fNodeStack[fNodeStackPtr];
601 if (n->fLeftChild == NULL) {
602 error(U_BRK_UNDEFINED_VARIABLE);
603 returnVal = FALSE;
604 }
605 break;
606
607 case doExprFinished:
608 break;
609
610 case doRuleErrorAssignExpr:
611 error(U_BRK_ASSIGN_ERROR);
612 returnVal = FALSE;
613 break;
614
615 case doExit:
616 returnVal = FALSE;
617 break;
618
619 case doScanUnicodeSet:
620 scanSet();
621 break;
622
623 default:
624 error(U_BRK_INTERNAL_ERROR);
625 returnVal = FALSE;
626 break;
627 }
628 return returnVal && U_SUCCESS(*fRB->fStatus);
629 }
630
631
632
633
634 //------------------------------------------------------------------------------
635 //
636 // Error Report a rule parse error.
637 // Only report it if no previous error has been recorded.
638 //
639 //------------------------------------------------------------------------------
error(UErrorCode e)640 void RBBIRuleScanner::error(UErrorCode e) {
641 if (U_SUCCESS(*fRB->fStatus)) {
642 *fRB->fStatus = e;
643 if (fRB->fParseError) {
644 fRB->fParseError->line = fLineNum;
645 fRB->fParseError->offset = fCharNum;
646 fRB->fParseError->preContext[0] = 0;
647 fRB->fParseError->postContext[0] = 0;
648 }
649 }
650 }
651
652
653
654
655 //------------------------------------------------------------------------------
656 //
657 // fixOpStack The parse stack holds partially assembled chunks of the parse tree.
658 // An entry on the stack may be as small as a single setRef node,
659 // or as large as the parse tree
660 // for an entire expression (this will be the one item left on the stack
661 // when the parsing of an RBBI rule completes.
662 //
663 // This function is called when a binary operator is encountered.
664 // It looks back up the stack for operators that are not yet associated
665 // with a right operand, and if the precedence of the stacked operator >=
666 // the precedence of the current operator, binds the operand left,
667 // to the previously encountered operator.
668 //
669 //------------------------------------------------------------------------------
fixOpStack(RBBINode::OpPrecedence p)670 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
671 RBBINode *n;
672 // printNodeStack("entering fixOpStack()");
673 for (;;) {
674 n = fNodeStack[fNodeStackPtr-1]; // an operator node
675 if (n->fPrecedence == 0) {
676 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
677 error(U_BRK_INTERNAL_ERROR);
678 return;
679 }
680
681 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
682 // The most recent operand goes with the current operator,
683 // not with the previously stacked one.
684 break;
685 }
686 // Stack operator is a binary op ( '|' or concatenation)
687 // TOS operand becomes right child of this operator.
688 // Resulting subexpression becomes the TOS operand.
689 n->fRightChild = fNodeStack[fNodeStackPtr];
690 fNodeStack[fNodeStackPtr]->fParent = n;
691 fNodeStackPtr--;
692 // printNodeStack("looping in fixOpStack() ");
693 }
694
695 if (p <= RBBINode::precLParen) {
696 // Scan is at a right paren or end of expression.
697 // The scanned item must match the stack, or else there was an error.
698 // Discard the left paren (or start expr) node from the stack,
699 // leaving the completed (sub)expression as TOS.
700 if (n->fPrecedence != p) {
701 // Right paren encountered matched start of expression node, or
702 // end of expression matched with a left paren node.
703 error(U_BRK_MISMATCHED_PAREN);
704 }
705 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
706 fNodeStackPtr--;
707 // Delete the now-discarded LParen or Start node.
708 delete n;
709 }
710 // printNodeStack("leaving fixOpStack()");
711 }
712
713
714
715
716 //------------------------------------------------------------------------------
717 //
718 // findSetFor given a UnicodeString,
719 // - find the corresponding Unicode Set (uset node)
720 // (create one if necessary)
721 // - Set fLeftChild of the caller's node (should be a setRef node)
722 // to the uset node
723 // Maintain a hash table of uset nodes, so the same one is always used
724 // for the same string.
725 // If a "to adopt" set is provided and we haven't seen this key before,
726 // add the provided set to the hash table.
727 // If the string is one (32 bit) char in length, the set contains
728 // just one element which is the char in question.
729 // If the string is "any", return a set containing all chars.
730 //
731 //------------------------------------------------------------------------------
findSetFor(const UnicodeString & s,RBBINode * node,UnicodeSet * setToAdopt)732 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
733
734 RBBISetTableEl *el;
735
736 // First check whether we've already cached a set for this string.
737 // If so, just use the cached set in the new node.
738 // delete any set provided by the caller, since we own it.
739 el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
740 if (el != NULL) {
741 delete setToAdopt;
742 node->fLeftChild = el->val;
743 U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
744 return;
745 }
746
747 // Haven't seen this set before.
748 // If the caller didn't provide us with a prebuilt set,
749 // create a new UnicodeSet now.
750 if (setToAdopt == NULL) {
751 if (s.compare(kAny, -1) == 0) {
752 setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
753 } else {
754 UChar32 c;
755 c = s.char32At(0);
756 setToAdopt = new UnicodeSet(c, c);
757 }
758 }
759
760 //
761 // Make a new uset node to refer to this UnicodeSet
762 // This new uset node becomes the child of the caller's setReference node.
763 //
764 RBBINode *usetNode = new RBBINode(RBBINode::uset);
765 if (usetNode == NULL) {
766 error(U_MEMORY_ALLOCATION_ERROR);
767 return;
768 }
769 usetNode->fInputSet = setToAdopt;
770 usetNode->fParent = node;
771 node->fLeftChild = usetNode;
772 usetNode->fText = s;
773
774
775 //
776 // Add the new uset node to the list of all uset nodes.
777 //
778 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
779
780
781 //
782 // Add the new set to the set hash table.
783 //
784 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
785 UnicodeString *tkey = new UnicodeString(s);
786 if (tkey == NULL || el == NULL || setToAdopt == NULL) {
787 // Delete to avoid memory leak
788 delete tkey;
789 tkey = NULL;
790 uprv_free(el);
791 el = NULL;
792 delete setToAdopt;
793 setToAdopt = NULL;
794
795 error(U_MEMORY_ALLOCATION_ERROR);
796 return;
797 }
798 el->key = tkey;
799 el->val = usetNode;
800 uhash_put(fSetTable, el->key, el, fRB->fStatus);
801
802 return;
803 }
804
805
806
807 //
808 // Assorted Unicode character constants.
809 // Numeric because there is no portable way to enter them as literals.
810 // (Think EBCDIC).
811 //
812 static const UChar chCR = 0x0d; // New lines, for terminating comments.
813 static const UChar chLF = 0x0a;
814 static const UChar chNEL = 0x85; // NEL newline variant
815 static const UChar chLS = 0x2028; // Unicode Line Separator
816 static const UChar chApos = 0x27; // single quote, for quoted chars.
817 static const UChar chPound = 0x23; // '#', introduces a comment.
818 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
819 static const UChar chLParen = 0x28;
820 static const UChar chRParen = 0x29;
821
822
823 //------------------------------------------------------------------------------
824 //
825 // stripRules Return a rules string without extra spaces.
826 // (Comments are removed separately, during rule parsing.)
827 //
828 //------------------------------------------------------------------------------
stripRules(const UnicodeString & rules)829 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
830 UnicodeString strippedRules;
831 int32_t rulesLength = rules.length();
832
833 for (int32_t idx=0; idx<rulesLength; idx = rules.moveIndex32(idx, 1)) {
834 UChar32 cp = rules.char32At(idx);
835 bool whiteSpace = u_hasBinaryProperty(cp, UCHAR_PATTERN_WHITE_SPACE);
836 if (whiteSpace) {
837 continue;
838 }
839 strippedRules.append(cp);
840 }
841 return strippedRules;
842 }
843
844
845 //------------------------------------------------------------------------------
846 //
847 // nextCharLL Low Level Next Char from rule input source.
848 // Get a char from the input character iterator,
849 // keep track of input position for error reporting.
850 //
851 //------------------------------------------------------------------------------
nextCharLL()852 UChar32 RBBIRuleScanner::nextCharLL() {
853 UChar32 ch;
854
855 if (fNextIndex >= fRB->fRules.length()) {
856 return (UChar32)-1;
857 }
858 ch = fRB->fRules.char32At(fNextIndex);
859 if (U_IS_SURROGATE(ch)) {
860 error(U_ILLEGAL_CHAR_FOUND);
861 return U_SENTINEL;
862 }
863 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
864
865 if (ch == chCR ||
866 ch == chNEL ||
867 ch == chLS ||
868 (ch == chLF && fLastChar != chCR)) {
869 // Character is starting a new line. Bump up the line number, and
870 // reset the column to 0.
871 fLineNum++;
872 fCharNum=0;
873 if (fQuoteMode) {
874 error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
875 fQuoteMode = FALSE;
876 }
877 }
878 else {
879 // Character is not starting a new line. Except in the case of a
880 // LF following a CR, increment the column position.
881 if (ch != chLF) {
882 fCharNum++;
883 }
884 }
885 fLastChar = ch;
886 return ch;
887 }
888
889
890 //------------------------------------------------------------------------------
891 //
892 // nextChar for rules scanning. At this level, we handle stripping
893 // out comments and processing backslash character escapes.
894 // The rest of the rules grammar is handled at the next level up.
895 //
896 //------------------------------------------------------------------------------
nextChar(RBBIRuleChar & c)897 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
898
899 // Unicode Character constants needed for the processing done by nextChar(),
900 // in hex because literals wont work on EBCDIC machines.
901
902 fScanIndex = fNextIndex;
903 c.fChar = nextCharLL();
904 c.fEscaped = FALSE;
905
906 //
907 // check for '' sequence.
908 // These are recognized in all contexts, whether in quoted text or not.
909 //
910 if (c.fChar == chApos) {
911 if (fRB->fRules.char32At(fNextIndex) == chApos) {
912 c.fChar = nextCharLL(); // get nextChar officially so character counts
913 c.fEscaped = TRUE; // stay correct.
914 }
915 else
916 {
917 // Single quote, by itself.
918 // Toggle quoting mode.
919 // Return either '(' or ')', because quotes cause a grouping of the quoted text.
920 fQuoteMode = !fQuoteMode;
921 if (fQuoteMode == TRUE) {
922 c.fChar = chLParen;
923 } else {
924 c.fChar = chRParen;
925 }
926 c.fEscaped = FALSE; // The paren that we return is not escaped.
927 return;
928 }
929 }
930
931 if (fQuoteMode) {
932 c.fEscaped = TRUE;
933 }
934 else
935 {
936 // We are not in a 'quoted region' of the source.
937 //
938 if (c.fChar == chPound) {
939 // Start of a comment. Consume the rest of it.
940 // The new-line char that terminates the comment is always returned.
941 // It will be treated as white-space, and serves to break up anything
942 // that might otherwise incorrectly clump together with a comment in
943 // the middle (a variable name, for example.)
944 int32_t commentStart = fScanIndex;
945 for (;;) {
946 c.fChar = nextCharLL();
947 if (c.fChar == (UChar32)-1 || // EOF
948 c.fChar == chCR ||
949 c.fChar == chLF ||
950 c.fChar == chNEL ||
951 c.fChar == chLS) {break;}
952 }
953 for (int32_t i=commentStart; i<fNextIndex-1; ++i) {
954 fRB->fStrippedRules.setCharAt(i, u' ');
955 }
956 }
957 if (c.fChar == (UChar32)-1) {
958 return;
959 }
960
961 //
962 // check for backslash escaped characters.
963 // Use UnicodeString::unescapeAt() to handle them.
964 //
965 if (c.fChar == chBackSlash) {
966 c.fEscaped = TRUE;
967 int32_t startX = fNextIndex;
968 c.fChar = fRB->fRules.unescapeAt(fNextIndex);
969 if (fNextIndex == startX) {
970 error(U_BRK_HEX_DIGITS_EXPECTED);
971 }
972 fCharNum += fNextIndex-startX;
973 }
974 }
975 // putc(c.fChar, stdout);
976 }
977
978 //------------------------------------------------------------------------------
979 //
980 // Parse RBBI rules. The state machine for rules parsing is here.
981 // The state tables are hand-written in the file rbbirpt.txt,
982 // and converted to the form used here by a perl
983 // script rbbicst.pl
984 //
985 //------------------------------------------------------------------------------
parse()986 void RBBIRuleScanner::parse() {
987 uint16_t state;
988 const RBBIRuleTableEl *tableEl;
989
990 if (U_FAILURE(*fRB->fStatus)) {
991 return;
992 }
993
994 state = 1;
995 nextChar(fC);
996 //
997 // Main loop for the rule parsing state machine.
998 // Runs once per state transition.
999 // Each time through optionally performs, depending on the state table,
1000 // - an advance to the the next input char
1001 // - an action to be performed.
1002 // - pushing or popping a state to/from the local state return stack.
1003 //
1004 for (;;) {
1005 // Bail out if anything has gone wrong.
1006 // RBBI rule file parsing stops on the first error encountered.
1007 if (U_FAILURE(*fRB->fStatus)) {
1008 break;
1009 }
1010
1011 // Quit if state == 0. This is the normal way to exit the state machine.
1012 //
1013 if (state == 0) {
1014 break;
1015 }
1016
1017 // Find the state table element that matches the input char from the rule, or the
1018 // class of the input character. Start with the first table row for this
1019 // state, then linearly scan forward until we find a row that matches the
1020 // character. The last row for each state always matches all characters, so
1021 // the search will stop there, if not before.
1022 //
1023 tableEl = &gRuleParseStateTable[state];
1024 #ifdef RBBI_DEBUG
1025 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
1026 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
1027 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
1028 }
1029 #endif
1030
1031 for (;;) {
1032 #ifdef RBBI_DEBUG
1033 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);}
1034 #endif
1035 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
1036 // Table row specified an individual character, not a set, and
1037 // the input character is not escaped, and
1038 // the input character matched it.
1039 break;
1040 }
1041 if (tableEl->fCharClass == 255) {
1042 // Table row specified default, match anything character class.
1043 break;
1044 }
1045 if (tableEl->fCharClass == 254 && fC.fEscaped) {
1046 // Table row specified "escaped" and the char was escaped.
1047 break;
1048 }
1049 if (tableEl->fCharClass == 253 && fC.fEscaped &&
1050 (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
1051 // Table row specified "escaped P" and the char is either 'p' or 'P'.
1052 break;
1053 }
1054 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
1055 // Table row specified eof and we hit eof on the input.
1056 break;
1057 }
1058
1059 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
1060 fC.fEscaped == FALSE && // char is not escaped &&
1061 fC.fChar != (UChar32)-1) { // char is not EOF
1062 U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets));
1063 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
1064 // Table row specified a character class, or set of characters,
1065 // and the current char matches it.
1066 break;
1067 }
1068 }
1069
1070 // No match on this row, advance to the next row for this state,
1071 tableEl++;
1072 }
1073 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
1074
1075 //
1076 // We've found the row of the state table that matches the current input
1077 // character from the rules string.
1078 // Perform any action specified by this row in the state table.
1079 if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
1080 // Break out of the state machine loop if the
1081 // the action signalled some kind of error, or
1082 // the action was to exit, occurs on normal end-of-rules-input.
1083 break;
1084 }
1085
1086 if (tableEl->fPushState != 0) {
1087 fStackPtr++;
1088 if (fStackPtr >= kStackSize) {
1089 error(U_BRK_INTERNAL_ERROR);
1090 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
1091 fStackPtr--;
1092 }
1093 fStack[fStackPtr] = tableEl->fPushState;
1094 }
1095
1096 if (tableEl->fNextChar) {
1097 nextChar(fC);
1098 }
1099
1100 // Get the next state from the table entry, or from the
1101 // state stack if the next state was specified as "pop".
1102 if (tableEl->fNextState != 255) {
1103 state = tableEl->fNextState;
1104 } else {
1105 state = fStack[fStackPtr];
1106 fStackPtr--;
1107 if (fStackPtr < 0) {
1108 error(U_BRK_INTERNAL_ERROR);
1109 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
1110 fStackPtr++;
1111 }
1112 }
1113
1114 }
1115
1116 if (U_FAILURE(*fRB->fStatus)) {
1117 return;
1118 }
1119
1120 // If there are no forward rules set an error.
1121 //
1122 if (fRB->fForwardTree == NULL) {
1123 error(U_BRK_RULE_SYNTAX);
1124 return;
1125 }
1126
1127 //
1128 // Parsing of the input RBBI rules is complete.
1129 // We now have a parse tree for the rule expressions
1130 // and a list of all UnicodeSets that are referenced.
1131 //
1132 #ifdef RBBI_DEBUG
1133 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
1134 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) {
1135 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
1136 RBBINode::printTree(fRB->fForwardTree, TRUE);
1137 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
1138 RBBINode::printTree(fRB->fReverseTree, TRUE);
1139 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
1140 RBBINode::printTree(fRB->fSafeFwdTree, TRUE);
1141 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
1142 RBBINode::printTree(fRB->fSafeRevTree, TRUE);
1143 }
1144 #endif
1145 }
1146
1147
1148 //------------------------------------------------------------------------------
1149 //
1150 // printNodeStack for debugging...
1151 //
1152 //------------------------------------------------------------------------------
1153 #ifdef RBBI_DEBUG
printNodeStack(const char * title)1154 void RBBIRuleScanner::printNodeStack(const char *title) {
1155 int i;
1156 RBBIDebugPrintf("%s. Dumping node stack...\n", title);
1157 for (i=fNodeStackPtr; i>0; i--) {RBBINode::printTree(fNodeStack[i], TRUE);}
1158 }
1159 #endif
1160
1161
1162
1163
1164 //------------------------------------------------------------------------------
1165 //
1166 // pushNewNode create a new RBBINode of the specified type and push it
1167 // onto the stack of nodes.
1168 //
1169 //------------------------------------------------------------------------------
pushNewNode(RBBINode::NodeType t)1170 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
1171 if (U_FAILURE(*fRB->fStatus)) {
1172 return NULL;
1173 }
1174 if (fNodeStackPtr >= kStackSize - 1) {
1175 error(U_BRK_RULE_SYNTAX);
1176 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
1177 return NULL;
1178 }
1179 fNodeStackPtr++;
1180 fNodeStack[fNodeStackPtr] = new RBBINode(t);
1181 if (fNodeStack[fNodeStackPtr] == NULL) {
1182 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
1183 }
1184 return fNodeStack[fNodeStackPtr];
1185 }
1186
1187
1188
1189 //------------------------------------------------------------------------------
1190 //
1191 // scanSet Construct a UnicodeSet from the text at the current scan
1192 // position. Advance the scan position to the first character
1193 // after the set.
1194 //
1195 // A new RBBI setref node referring to the set is pushed onto the node
1196 // stack.
1197 //
1198 // The scan position is normally under the control of the state machine
1199 // that controls rule parsing. UnicodeSets, however, are parsed by
1200 // the UnicodeSet constructor, not by the RBBI rule parser.
1201 //
1202 //------------------------------------------------------------------------------
scanSet()1203 void RBBIRuleScanner::scanSet() {
1204 UnicodeSet *uset;
1205 ParsePosition pos;
1206 int startPos;
1207 int i;
1208
1209 if (U_FAILURE(*fRB->fStatus)) {
1210 return;
1211 }
1212
1213 pos.setIndex(fScanIndex);
1214 startPos = fScanIndex;
1215 UErrorCode localStatus = U_ZERO_ERROR;
1216 uset = new UnicodeSet();
1217 if (uset == NULL) {
1218 localStatus = U_MEMORY_ALLOCATION_ERROR;
1219 } else {
1220 uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus);
1221 }
1222 if (U_FAILURE(localStatus)) {
1223 // TODO: Get more accurate position of the error from UnicodeSet's return info.
1224 // UnicodeSet appears to not be reporting correctly at this time.
1225 #ifdef RBBI_DEBUG
1226 RBBIDebugPrintf("UnicodeSet parse position.ErrorIndex = %d\n", pos.getIndex());
1227 #endif
1228 error(localStatus);
1229 delete uset;
1230 return;
1231 }
1232
1233 // Verify that the set contains at least one code point.
1234 //
1235 U_ASSERT(uset!=NULL);
1236 if (uset->isEmpty()) {
1237 // This set is empty.
1238 // Make it an error, because it almost certainly is not what the user wanted.
1239 // Also, avoids having to think about corner cases in the tree manipulation code
1240 // that occurs later on.
1241 error(U_BRK_RULE_EMPTY_SET);
1242 delete uset;
1243 return;
1244 }
1245
1246
1247 // Advance the RBBI parse position over the UnicodeSet pattern.
1248 // Don't just set fScanIndex because the line/char positions maintained
1249 // for error reporting would be thrown off.
1250 i = pos.getIndex();
1251 for (;;) {
1252 if (fNextIndex >= i) {
1253 break;
1254 }
1255 nextCharLL();
1256 }
1257
1258 if (U_SUCCESS(*fRB->fStatus)) {
1259 RBBINode *n;
1260
1261 n = pushNewNode(RBBINode::setRef);
1262 if (U_FAILURE(*fRB->fStatus)) {
1263 return;
1264 }
1265 n->fFirstPos = startPos;
1266 n->fLastPos = fNextIndex;
1267 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
1268 // findSetFor() serves several purposes here:
1269 // - Adopts storage for the UnicodeSet, will be responsible for deleting.
1270 // - Maintains collection of all sets in use, needed later for establishing
1271 // character categories for run time engine.
1272 // - Eliminates mulitiple instances of the same set.
1273 // - Creates a new uset node if necessary (if this isn't a duplicate.)
1274 findSetFor(n->fText, n, uset);
1275 }
1276
1277 }
1278
numRules()1279 int32_t RBBIRuleScanner::numRules() {
1280 return fRuleNum;
1281 }
1282
1283 U_NAMESPACE_END
1284
1285 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1286