1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <assert.h>
11 #include <openssl/crypto.h>
12 #include "internal/cryptlib.h"
13 #include "bn_local.h"
14
15 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
16
bn_mul_add_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)17 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
18 BN_ULONG w)
19 {
20 BN_ULONG c1 = 0;
21
22 assert(num >= 0);
23 if (num <= 0)
24 return c1;
25
26 # ifndef OPENSSL_SMALL_FOOTPRINT
27 while (num & ~3) {
28 mul_add(rp[0], ap[0], w, c1);
29 mul_add(rp[1], ap[1], w, c1);
30 mul_add(rp[2], ap[2], w, c1);
31 mul_add(rp[3], ap[3], w, c1);
32 ap += 4;
33 rp += 4;
34 num -= 4;
35 }
36 # endif
37 while (num) {
38 mul_add(rp[0], ap[0], w, c1);
39 ap++;
40 rp++;
41 num--;
42 }
43
44 return c1;
45 }
46
bn_mul_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)47 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
48 {
49 BN_ULONG c1 = 0;
50
51 assert(num >= 0);
52 if (num <= 0)
53 return c1;
54
55 # ifndef OPENSSL_SMALL_FOOTPRINT
56 while (num & ~3) {
57 mul(rp[0], ap[0], w, c1);
58 mul(rp[1], ap[1], w, c1);
59 mul(rp[2], ap[2], w, c1);
60 mul(rp[3], ap[3], w, c1);
61 ap += 4;
62 rp += 4;
63 num -= 4;
64 }
65 # endif
66 while (num) {
67 mul(rp[0], ap[0], w, c1);
68 ap++;
69 rp++;
70 num--;
71 }
72 return c1;
73 }
74
bn_sqr_words(BN_ULONG * r,const BN_ULONG * a,int n)75 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
76 {
77 assert(n >= 0);
78 if (n <= 0)
79 return;
80
81 # ifndef OPENSSL_SMALL_FOOTPRINT
82 while (n & ~3) {
83 sqr(r[0], r[1], a[0]);
84 sqr(r[2], r[3], a[1]);
85 sqr(r[4], r[5], a[2]);
86 sqr(r[6], r[7], a[3]);
87 a += 4;
88 r += 8;
89 n -= 4;
90 }
91 # endif
92 while (n) {
93 sqr(r[0], r[1], a[0]);
94 a++;
95 r += 2;
96 n--;
97 }
98 }
99
100 #else /* !(defined(BN_LLONG) ||
101 * defined(BN_UMULT_HIGH)) */
102
bn_mul_add_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)103 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
104 BN_ULONG w)
105 {
106 BN_ULONG c = 0;
107 BN_ULONG bl, bh;
108
109 assert(num >= 0);
110 if (num <= 0)
111 return (BN_ULONG)0;
112
113 bl = LBITS(w);
114 bh = HBITS(w);
115
116 # ifndef OPENSSL_SMALL_FOOTPRINT
117 while (num & ~3) {
118 mul_add(rp[0], ap[0], bl, bh, c);
119 mul_add(rp[1], ap[1], bl, bh, c);
120 mul_add(rp[2], ap[2], bl, bh, c);
121 mul_add(rp[3], ap[3], bl, bh, c);
122 ap += 4;
123 rp += 4;
124 num -= 4;
125 }
126 # endif
127 while (num) {
128 mul_add(rp[0], ap[0], bl, bh, c);
129 ap++;
130 rp++;
131 num--;
132 }
133 return c;
134 }
135
bn_mul_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)136 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
137 {
138 BN_ULONG carry = 0;
139 BN_ULONG bl, bh;
140
141 assert(num >= 0);
142 if (num <= 0)
143 return (BN_ULONG)0;
144
145 bl = LBITS(w);
146 bh = HBITS(w);
147
148 # ifndef OPENSSL_SMALL_FOOTPRINT
149 while (num & ~3) {
150 mul(rp[0], ap[0], bl, bh, carry);
151 mul(rp[1], ap[1], bl, bh, carry);
152 mul(rp[2], ap[2], bl, bh, carry);
153 mul(rp[3], ap[3], bl, bh, carry);
154 ap += 4;
155 rp += 4;
156 num -= 4;
157 }
158 # endif
159 while (num) {
160 mul(rp[0], ap[0], bl, bh, carry);
161 ap++;
162 rp++;
163 num--;
164 }
165 return carry;
166 }
167
bn_sqr_words(BN_ULONG * r,const BN_ULONG * a,int n)168 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
169 {
170 assert(n >= 0);
171 if (n <= 0)
172 return;
173
174 # ifndef OPENSSL_SMALL_FOOTPRINT
175 while (n & ~3) {
176 sqr64(r[0], r[1], a[0]);
177 sqr64(r[2], r[3], a[1]);
178 sqr64(r[4], r[5], a[2]);
179 sqr64(r[6], r[7], a[3]);
180 a += 4;
181 r += 8;
182 n -= 4;
183 }
184 # endif
185 while (n) {
186 sqr64(r[0], r[1], a[0]);
187 a++;
188 r += 2;
189 n--;
190 }
191 }
192
193 #endif /* !(defined(BN_LLONG) ||
194 * defined(BN_UMULT_HIGH)) */
195
196 #if defined(BN_LLONG) && defined(BN_DIV2W)
197
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)198 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
199 {
200 return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));
201 }
202
203 #else
204
205 /* Divide h,l by d and return the result. */
206 /* I need to test this some more :-( */
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)207 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
208 {
209 BN_ULONG dh, dl, q, ret = 0, th, tl, t;
210 int i, count = 2;
211
212 if (d == 0)
213 return BN_MASK2;
214
215 i = BN_num_bits_word(d);
216 assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
217
218 i = BN_BITS2 - i;
219 if (h >= d)
220 h -= d;
221
222 if (i) {
223 d <<= i;
224 h = (h << i) | (l >> (BN_BITS2 - i));
225 l <<= i;
226 }
227 dh = (d & BN_MASK2h) >> BN_BITS4;
228 dl = (d & BN_MASK2l);
229 for (;;) {
230 if ((h >> BN_BITS4) == dh)
231 q = BN_MASK2l;
232 else
233 q = h / dh;
234
235 th = q * dh;
236 tl = dl * q;
237 for (;;) {
238 t = h - th;
239 if ((t & BN_MASK2h) ||
240 ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
241 break;
242 q--;
243 th -= dh;
244 tl -= dl;
245 }
246 t = (tl >> BN_BITS4);
247 tl = (tl << BN_BITS4) & BN_MASK2h;
248 th += t;
249
250 if (l < tl)
251 th++;
252 l -= tl;
253 if (h < th) {
254 h += d;
255 q--;
256 }
257 h -= th;
258
259 if (--count == 0)
260 break;
261
262 ret = q << BN_BITS4;
263 h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
264 l = (l & BN_MASK2l) << BN_BITS4;
265 }
266 ret |= q;
267 return ret;
268 }
269 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
270
271 #ifdef BN_LLONG
bn_add_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)272 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
273 int n)
274 {
275 BN_ULLONG ll = 0;
276
277 assert(n >= 0);
278 if (n <= 0)
279 return (BN_ULONG)0;
280
281 # ifndef OPENSSL_SMALL_FOOTPRINT
282 while (n & ~3) {
283 ll += (BN_ULLONG) a[0] + b[0];
284 r[0] = (BN_ULONG)ll & BN_MASK2;
285 ll >>= BN_BITS2;
286 ll += (BN_ULLONG) a[1] + b[1];
287 r[1] = (BN_ULONG)ll & BN_MASK2;
288 ll >>= BN_BITS2;
289 ll += (BN_ULLONG) a[2] + b[2];
290 r[2] = (BN_ULONG)ll & BN_MASK2;
291 ll >>= BN_BITS2;
292 ll += (BN_ULLONG) a[3] + b[3];
293 r[3] = (BN_ULONG)ll & BN_MASK2;
294 ll >>= BN_BITS2;
295 a += 4;
296 b += 4;
297 r += 4;
298 n -= 4;
299 }
300 # endif
301 while (n) {
302 ll += (BN_ULLONG) a[0] + b[0];
303 r[0] = (BN_ULONG)ll & BN_MASK2;
304 ll >>= BN_BITS2;
305 a++;
306 b++;
307 r++;
308 n--;
309 }
310 return (BN_ULONG)ll;
311 }
312 #else /* !BN_LLONG */
bn_add_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)313 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
314 int n)
315 {
316 BN_ULONG c, l, t;
317
318 assert(n >= 0);
319 if (n <= 0)
320 return (BN_ULONG)0;
321
322 c = 0;
323 # ifndef OPENSSL_SMALL_FOOTPRINT
324 while (n & ~3) {
325 t = a[0];
326 t = (t + c) & BN_MASK2;
327 c = (t < c);
328 l = (t + b[0]) & BN_MASK2;
329 c += (l < t);
330 r[0] = l;
331 t = a[1];
332 t = (t + c) & BN_MASK2;
333 c = (t < c);
334 l = (t + b[1]) & BN_MASK2;
335 c += (l < t);
336 r[1] = l;
337 t = a[2];
338 t = (t + c) & BN_MASK2;
339 c = (t < c);
340 l = (t + b[2]) & BN_MASK2;
341 c += (l < t);
342 r[2] = l;
343 t = a[3];
344 t = (t + c) & BN_MASK2;
345 c = (t < c);
346 l = (t + b[3]) & BN_MASK2;
347 c += (l < t);
348 r[3] = l;
349 a += 4;
350 b += 4;
351 r += 4;
352 n -= 4;
353 }
354 # endif
355 while (n) {
356 t = a[0];
357 t = (t + c) & BN_MASK2;
358 c = (t < c);
359 l = (t + b[0]) & BN_MASK2;
360 c += (l < t);
361 r[0] = l;
362 a++;
363 b++;
364 r++;
365 n--;
366 }
367 return (BN_ULONG)c;
368 }
369 #endif /* !BN_LLONG */
370
bn_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)371 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
372 int n)
373 {
374 BN_ULONG t1, t2;
375 int c = 0;
376
377 assert(n >= 0);
378 if (n <= 0)
379 return (BN_ULONG)0;
380
381 #ifndef OPENSSL_SMALL_FOOTPRINT
382 while (n & ~3) {
383 t1 = a[0];
384 t2 = b[0];
385 r[0] = (t1 - t2 - c) & BN_MASK2;
386 if (t1 != t2)
387 c = (t1 < t2);
388 t1 = a[1];
389 t2 = b[1];
390 r[1] = (t1 - t2 - c) & BN_MASK2;
391 if (t1 != t2)
392 c = (t1 < t2);
393 t1 = a[2];
394 t2 = b[2];
395 r[2] = (t1 - t2 - c) & BN_MASK2;
396 if (t1 != t2)
397 c = (t1 < t2);
398 t1 = a[3];
399 t2 = b[3];
400 r[3] = (t1 - t2 - c) & BN_MASK2;
401 if (t1 != t2)
402 c = (t1 < t2);
403 a += 4;
404 b += 4;
405 r += 4;
406 n -= 4;
407 }
408 #endif
409 while (n) {
410 t1 = a[0];
411 t2 = b[0];
412 r[0] = (t1 - t2 - c) & BN_MASK2;
413 if (t1 != t2)
414 c = (t1 < t2);
415 a++;
416 b++;
417 r++;
418 n--;
419 }
420 return c;
421 }
422
423 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
424
425 # undef bn_mul_comba8
426 # undef bn_mul_comba4
427 # undef bn_sqr_comba8
428 # undef bn_sqr_comba4
429
430 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
431 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
432 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
433 /*
434 * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
435 * c=(c2,c1,c0)
436 */
437
438 # ifdef BN_LLONG
439 /*
440 * Keep in mind that additions to multiplication result can not
441 * overflow, because its high half cannot be all-ones.
442 */
443 # define mul_add_c(a,b,c0,c1,c2) do { \
444 BN_ULONG hi; \
445 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
446 t += c0; /* no carry */ \
447 c0 = (BN_ULONG)Lw(t); \
448 hi = (BN_ULONG)Hw(t); \
449 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
450 } while(0)
451
452 # define mul_add_c2(a,b,c0,c1,c2) do { \
453 BN_ULONG hi; \
454 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
455 BN_ULLONG tt = t+c0; /* no carry */ \
456 c0 = (BN_ULONG)Lw(tt); \
457 hi = (BN_ULONG)Hw(tt); \
458 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
459 t += c0; /* no carry */ \
460 c0 = (BN_ULONG)Lw(t); \
461 hi = (BN_ULONG)Hw(t); \
462 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
463 } while(0)
464
465 # define sqr_add_c(a,i,c0,c1,c2) do { \
466 BN_ULONG hi; \
467 BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
468 t += c0; /* no carry */ \
469 c0 = (BN_ULONG)Lw(t); \
470 hi = (BN_ULONG)Hw(t); \
471 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
472 } while(0)
473
474 # define sqr_add_c2(a,i,j,c0,c1,c2) \
475 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
476
477 # elif defined(BN_UMULT_LOHI)
478 /*
479 * Keep in mind that additions to hi can not overflow, because
480 * the high word of a multiplication result cannot be all-ones.
481 */
482 # define mul_add_c(a,b,c0,c1,c2) do { \
483 BN_ULONG ta = (a), tb = (b); \
484 BN_ULONG lo, hi; \
485 BN_UMULT_LOHI(lo,hi,ta,tb); \
486 c0 += lo; hi += (c0<lo)?1:0; \
487 c1 += hi; c2 += (c1<hi)?1:0; \
488 } while(0)
489
490 # define mul_add_c2(a,b,c0,c1,c2) do { \
491 BN_ULONG ta = (a), tb = (b); \
492 BN_ULONG lo, hi, tt; \
493 BN_UMULT_LOHI(lo,hi,ta,tb); \
494 c0 += lo; tt = hi+((c0<lo)?1:0); \
495 c1 += tt; c2 += (c1<tt)?1:0; \
496 c0 += lo; hi += (c0<lo)?1:0; \
497 c1 += hi; c2 += (c1<hi)?1:0; \
498 } while(0)
499
500 # define sqr_add_c(a,i,c0,c1,c2) do { \
501 BN_ULONG ta = (a)[i]; \
502 BN_ULONG lo, hi; \
503 BN_UMULT_LOHI(lo,hi,ta,ta); \
504 c0 += lo; hi += (c0<lo)?1:0; \
505 c1 += hi; c2 += (c1<hi)?1:0; \
506 } while(0)
507
508 # define sqr_add_c2(a,i,j,c0,c1,c2) \
509 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
510
511 # elif defined(BN_UMULT_HIGH)
512 /*
513 * Keep in mind that additions to hi can not overflow, because
514 * the high word of a multiplication result cannot be all-ones.
515 */
516 # define mul_add_c(a,b,c0,c1,c2) do { \
517 BN_ULONG ta = (a), tb = (b); \
518 BN_ULONG lo = ta * tb; \
519 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
520 c0 += lo; hi += (c0<lo)?1:0; \
521 c1 += hi; c2 += (c1<hi)?1:0; \
522 } while(0)
523
524 # define mul_add_c2(a,b,c0,c1,c2) do { \
525 BN_ULONG ta = (a), tb = (b), tt; \
526 BN_ULONG lo = ta * tb; \
527 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
528 c0 += lo; tt = hi + ((c0<lo)?1:0); \
529 c1 += tt; c2 += (c1<tt)?1:0; \
530 c0 += lo; hi += (c0<lo)?1:0; \
531 c1 += hi; c2 += (c1<hi)?1:0; \
532 } while(0)
533
534 # define sqr_add_c(a,i,c0,c1,c2) do { \
535 BN_ULONG ta = (a)[i]; \
536 BN_ULONG lo = ta * ta; \
537 BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
538 c0 += lo; hi += (c0<lo)?1:0; \
539 c1 += hi; c2 += (c1<hi)?1:0; \
540 } while(0)
541
542 # define sqr_add_c2(a,i,j,c0,c1,c2) \
543 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
544
545 # else /* !BN_LLONG */
546 /*
547 * Keep in mind that additions to hi can not overflow, because
548 * the high word of a multiplication result cannot be all-ones.
549 */
550 # define mul_add_c(a,b,c0,c1,c2) do { \
551 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
552 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
553 mul64(lo,hi,bl,bh); \
554 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
555 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
556 } while(0)
557
558 # define mul_add_c2(a,b,c0,c1,c2) do { \
559 BN_ULONG tt; \
560 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
561 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
562 mul64(lo,hi,bl,bh); \
563 tt = hi; \
564 c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
565 c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
566 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
567 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
568 } while(0)
569
570 # define sqr_add_c(a,i,c0,c1,c2) do { \
571 BN_ULONG lo, hi; \
572 sqr64(lo,hi,(a)[i]); \
573 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
574 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
575 } while(0)
576
577 # define sqr_add_c2(a,i,j,c0,c1,c2) \
578 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
579 # endif /* !BN_LLONG */
580
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)581 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
582 {
583 BN_ULONG c1, c2, c3;
584
585 c1 = 0;
586 c2 = 0;
587 c3 = 0;
588 mul_add_c(a[0], b[0], c1, c2, c3);
589 r[0] = c1;
590 c1 = 0;
591 mul_add_c(a[0], b[1], c2, c3, c1);
592 mul_add_c(a[1], b[0], c2, c3, c1);
593 r[1] = c2;
594 c2 = 0;
595 mul_add_c(a[2], b[0], c3, c1, c2);
596 mul_add_c(a[1], b[1], c3, c1, c2);
597 mul_add_c(a[0], b[2], c3, c1, c2);
598 r[2] = c3;
599 c3 = 0;
600 mul_add_c(a[0], b[3], c1, c2, c3);
601 mul_add_c(a[1], b[2], c1, c2, c3);
602 mul_add_c(a[2], b[1], c1, c2, c3);
603 mul_add_c(a[3], b[0], c1, c2, c3);
604 r[3] = c1;
605 c1 = 0;
606 mul_add_c(a[4], b[0], c2, c3, c1);
607 mul_add_c(a[3], b[1], c2, c3, c1);
608 mul_add_c(a[2], b[2], c2, c3, c1);
609 mul_add_c(a[1], b[3], c2, c3, c1);
610 mul_add_c(a[0], b[4], c2, c3, c1);
611 r[4] = c2;
612 c2 = 0;
613 mul_add_c(a[0], b[5], c3, c1, c2);
614 mul_add_c(a[1], b[4], c3, c1, c2);
615 mul_add_c(a[2], b[3], c3, c1, c2);
616 mul_add_c(a[3], b[2], c3, c1, c2);
617 mul_add_c(a[4], b[1], c3, c1, c2);
618 mul_add_c(a[5], b[0], c3, c1, c2);
619 r[5] = c3;
620 c3 = 0;
621 mul_add_c(a[6], b[0], c1, c2, c3);
622 mul_add_c(a[5], b[1], c1, c2, c3);
623 mul_add_c(a[4], b[2], c1, c2, c3);
624 mul_add_c(a[3], b[3], c1, c2, c3);
625 mul_add_c(a[2], b[4], c1, c2, c3);
626 mul_add_c(a[1], b[5], c1, c2, c3);
627 mul_add_c(a[0], b[6], c1, c2, c3);
628 r[6] = c1;
629 c1 = 0;
630 mul_add_c(a[0], b[7], c2, c3, c1);
631 mul_add_c(a[1], b[6], c2, c3, c1);
632 mul_add_c(a[2], b[5], c2, c3, c1);
633 mul_add_c(a[3], b[4], c2, c3, c1);
634 mul_add_c(a[4], b[3], c2, c3, c1);
635 mul_add_c(a[5], b[2], c2, c3, c1);
636 mul_add_c(a[6], b[1], c2, c3, c1);
637 mul_add_c(a[7], b[0], c2, c3, c1);
638 r[7] = c2;
639 c2 = 0;
640 mul_add_c(a[7], b[1], c3, c1, c2);
641 mul_add_c(a[6], b[2], c3, c1, c2);
642 mul_add_c(a[5], b[3], c3, c1, c2);
643 mul_add_c(a[4], b[4], c3, c1, c2);
644 mul_add_c(a[3], b[5], c3, c1, c2);
645 mul_add_c(a[2], b[6], c3, c1, c2);
646 mul_add_c(a[1], b[7], c3, c1, c2);
647 r[8] = c3;
648 c3 = 0;
649 mul_add_c(a[2], b[7], c1, c2, c3);
650 mul_add_c(a[3], b[6], c1, c2, c3);
651 mul_add_c(a[4], b[5], c1, c2, c3);
652 mul_add_c(a[5], b[4], c1, c2, c3);
653 mul_add_c(a[6], b[3], c1, c2, c3);
654 mul_add_c(a[7], b[2], c1, c2, c3);
655 r[9] = c1;
656 c1 = 0;
657 mul_add_c(a[7], b[3], c2, c3, c1);
658 mul_add_c(a[6], b[4], c2, c3, c1);
659 mul_add_c(a[5], b[5], c2, c3, c1);
660 mul_add_c(a[4], b[6], c2, c3, c1);
661 mul_add_c(a[3], b[7], c2, c3, c1);
662 r[10] = c2;
663 c2 = 0;
664 mul_add_c(a[4], b[7], c3, c1, c2);
665 mul_add_c(a[5], b[6], c3, c1, c2);
666 mul_add_c(a[6], b[5], c3, c1, c2);
667 mul_add_c(a[7], b[4], c3, c1, c2);
668 r[11] = c3;
669 c3 = 0;
670 mul_add_c(a[7], b[5], c1, c2, c3);
671 mul_add_c(a[6], b[6], c1, c2, c3);
672 mul_add_c(a[5], b[7], c1, c2, c3);
673 r[12] = c1;
674 c1 = 0;
675 mul_add_c(a[6], b[7], c2, c3, c1);
676 mul_add_c(a[7], b[6], c2, c3, c1);
677 r[13] = c2;
678 c2 = 0;
679 mul_add_c(a[7], b[7], c3, c1, c2);
680 r[14] = c3;
681 r[15] = c1;
682 }
683
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)684 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
685 {
686 BN_ULONG c1, c2, c3;
687
688 c1 = 0;
689 c2 = 0;
690 c3 = 0;
691 mul_add_c(a[0], b[0], c1, c2, c3);
692 r[0] = c1;
693 c1 = 0;
694 mul_add_c(a[0], b[1], c2, c3, c1);
695 mul_add_c(a[1], b[0], c2, c3, c1);
696 r[1] = c2;
697 c2 = 0;
698 mul_add_c(a[2], b[0], c3, c1, c2);
699 mul_add_c(a[1], b[1], c3, c1, c2);
700 mul_add_c(a[0], b[2], c3, c1, c2);
701 r[2] = c3;
702 c3 = 0;
703 mul_add_c(a[0], b[3], c1, c2, c3);
704 mul_add_c(a[1], b[2], c1, c2, c3);
705 mul_add_c(a[2], b[1], c1, c2, c3);
706 mul_add_c(a[3], b[0], c1, c2, c3);
707 r[3] = c1;
708 c1 = 0;
709 mul_add_c(a[3], b[1], c2, c3, c1);
710 mul_add_c(a[2], b[2], c2, c3, c1);
711 mul_add_c(a[1], b[3], c2, c3, c1);
712 r[4] = c2;
713 c2 = 0;
714 mul_add_c(a[2], b[3], c3, c1, c2);
715 mul_add_c(a[3], b[2], c3, c1, c2);
716 r[5] = c3;
717 c3 = 0;
718 mul_add_c(a[3], b[3], c1, c2, c3);
719 r[6] = c1;
720 r[7] = c2;
721 }
722
bn_sqr_comba8(BN_ULONG * r,const BN_ULONG * a)723 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
724 {
725 BN_ULONG c1, c2, c3;
726
727 c1 = 0;
728 c2 = 0;
729 c3 = 0;
730 sqr_add_c(a, 0, c1, c2, c3);
731 r[0] = c1;
732 c1 = 0;
733 sqr_add_c2(a, 1, 0, c2, c3, c1);
734 r[1] = c2;
735 c2 = 0;
736 sqr_add_c(a, 1, c3, c1, c2);
737 sqr_add_c2(a, 2, 0, c3, c1, c2);
738 r[2] = c3;
739 c3 = 0;
740 sqr_add_c2(a, 3, 0, c1, c2, c3);
741 sqr_add_c2(a, 2, 1, c1, c2, c3);
742 r[3] = c1;
743 c1 = 0;
744 sqr_add_c(a, 2, c2, c3, c1);
745 sqr_add_c2(a, 3, 1, c2, c3, c1);
746 sqr_add_c2(a, 4, 0, c2, c3, c1);
747 r[4] = c2;
748 c2 = 0;
749 sqr_add_c2(a, 5, 0, c3, c1, c2);
750 sqr_add_c2(a, 4, 1, c3, c1, c2);
751 sqr_add_c2(a, 3, 2, c3, c1, c2);
752 r[5] = c3;
753 c3 = 0;
754 sqr_add_c(a, 3, c1, c2, c3);
755 sqr_add_c2(a, 4, 2, c1, c2, c3);
756 sqr_add_c2(a, 5, 1, c1, c2, c3);
757 sqr_add_c2(a, 6, 0, c1, c2, c3);
758 r[6] = c1;
759 c1 = 0;
760 sqr_add_c2(a, 7, 0, c2, c3, c1);
761 sqr_add_c2(a, 6, 1, c2, c3, c1);
762 sqr_add_c2(a, 5, 2, c2, c3, c1);
763 sqr_add_c2(a, 4, 3, c2, c3, c1);
764 r[7] = c2;
765 c2 = 0;
766 sqr_add_c(a, 4, c3, c1, c2);
767 sqr_add_c2(a, 5, 3, c3, c1, c2);
768 sqr_add_c2(a, 6, 2, c3, c1, c2);
769 sqr_add_c2(a, 7, 1, c3, c1, c2);
770 r[8] = c3;
771 c3 = 0;
772 sqr_add_c2(a, 7, 2, c1, c2, c3);
773 sqr_add_c2(a, 6, 3, c1, c2, c3);
774 sqr_add_c2(a, 5, 4, c1, c2, c3);
775 r[9] = c1;
776 c1 = 0;
777 sqr_add_c(a, 5, c2, c3, c1);
778 sqr_add_c2(a, 6, 4, c2, c3, c1);
779 sqr_add_c2(a, 7, 3, c2, c3, c1);
780 r[10] = c2;
781 c2 = 0;
782 sqr_add_c2(a, 7, 4, c3, c1, c2);
783 sqr_add_c2(a, 6, 5, c3, c1, c2);
784 r[11] = c3;
785 c3 = 0;
786 sqr_add_c(a, 6, c1, c2, c3);
787 sqr_add_c2(a, 7, 5, c1, c2, c3);
788 r[12] = c1;
789 c1 = 0;
790 sqr_add_c2(a, 7, 6, c2, c3, c1);
791 r[13] = c2;
792 c2 = 0;
793 sqr_add_c(a, 7, c3, c1, c2);
794 r[14] = c3;
795 r[15] = c1;
796 }
797
bn_sqr_comba4(BN_ULONG * r,const BN_ULONG * a)798 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
799 {
800 BN_ULONG c1, c2, c3;
801
802 c1 = 0;
803 c2 = 0;
804 c3 = 0;
805 sqr_add_c(a, 0, c1, c2, c3);
806 r[0] = c1;
807 c1 = 0;
808 sqr_add_c2(a, 1, 0, c2, c3, c1);
809 r[1] = c2;
810 c2 = 0;
811 sqr_add_c(a, 1, c3, c1, c2);
812 sqr_add_c2(a, 2, 0, c3, c1, c2);
813 r[2] = c3;
814 c3 = 0;
815 sqr_add_c2(a, 3, 0, c1, c2, c3);
816 sqr_add_c2(a, 2, 1, c1, c2, c3);
817 r[3] = c1;
818 c1 = 0;
819 sqr_add_c(a, 2, c2, c3, c1);
820 sqr_add_c2(a, 3, 1, c2, c3, c1);
821 r[4] = c2;
822 c2 = 0;
823 sqr_add_c2(a, 3, 2, c3, c1, c2);
824 r[5] = c3;
825 c3 = 0;
826 sqr_add_c(a, 3, c1, c2, c3);
827 r[6] = c1;
828 r[7] = c2;
829 }
830
831 # ifdef OPENSSL_NO_ASM
832 # ifdef OPENSSL_BN_ASM_MONT
833 # include <alloca.h>
834 /*
835 * This is essentially reference implementation, which may or may not
836 * result in performance improvement. E.g. on IA-32 this routine was
837 * observed to give 40% faster rsa1024 private key operations and 10%
838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840 * reference implementation, one to be used as starting point for
841 * platform-specific assembler. Mentioned numbers apply to compiler
842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843 * can vary not only from platform to platform, but even for compiler
844 * versions. Assembler vs. assembler improvement coefficients can
845 * [and are known to] differ and are to be documented elsewhere.
846 */
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0p,int num)847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
848 const BN_ULONG *np, const BN_ULONG *n0p, int num)
849 {
850 BN_ULONG c0, c1, ml, *tp, n0;
851 # ifdef mul64
852 BN_ULONG mh;
853 # endif
854 volatile BN_ULONG *vp;
855 int i = 0, j;
856
857 # if 0 /* template for platform-specific
858 * implementation */
859 if (ap == bp)
860 return bn_sqr_mont(rp, ap, np, n0p, num);
861 # endif
862 vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
863
864 n0 = *n0p;
865
866 c0 = 0;
867 ml = bp[0];
868 # ifdef mul64
869 mh = HBITS(ml);
870 ml = LBITS(ml);
871 for (j = 0; j < num; ++j)
872 mul(tp[j], ap[j], ml, mh, c0);
873 # else
874 for (j = 0; j < num; ++j)
875 mul(tp[j], ap[j], ml, c0);
876 # endif
877
878 tp[num] = c0;
879 tp[num + 1] = 0;
880 goto enter;
881
882 for (i = 0; i < num; i++) {
883 c0 = 0;
884 ml = bp[i];
885 # ifdef mul64
886 mh = HBITS(ml);
887 ml = LBITS(ml);
888 for (j = 0; j < num; ++j)
889 mul_add(tp[j], ap[j], ml, mh, c0);
890 # else
891 for (j = 0; j < num; ++j)
892 mul_add(tp[j], ap[j], ml, c0);
893 # endif
894 c1 = (tp[num] + c0) & BN_MASK2;
895 tp[num] = c1;
896 tp[num + 1] = (c1 < c0 ? 1 : 0);
897 enter:
898 c1 = tp[0];
899 ml = (c1 * n0) & BN_MASK2;
900 c0 = 0;
901 # ifdef mul64
902 mh = HBITS(ml);
903 ml = LBITS(ml);
904 mul_add(c1, np[0], ml, mh, c0);
905 # else
906 mul_add(c1, ml, np[0], c0);
907 # endif
908 for (j = 1; j < num; j++) {
909 c1 = tp[j];
910 # ifdef mul64
911 mul_add(c1, np[j], ml, mh, c0);
912 # else
913 mul_add(c1, ml, np[j], c0);
914 # endif
915 tp[j - 1] = c1 & BN_MASK2;
916 }
917 c1 = (tp[num] + c0) & BN_MASK2;
918 tp[num - 1] = c1;
919 tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
920 }
921
922 if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
923 c0 = bn_sub_words(rp, tp, np, num);
924 if (tp[num] != 0 || c0 == 0) {
925 for (i = 0; i < num + 2; i++)
926 vp[i] = 0;
927 return 1;
928 }
929 }
930 for (i = 0; i < num; i++)
931 rp[i] = tp[i], vp[i] = 0;
932 vp[num] = 0;
933 vp[num + 1] = 0;
934 return 1;
935 }
936 # else
937 /*
938 * Return value of 0 indicates that multiplication/convolution was not
939 * performed to signal the caller to fall down to alternative/original
940 * code-path.
941 */
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,int num)942 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
943 const BN_ULONG *np, const BN_ULONG *n0, int num)
944 {
945 return 0;
946 }
947 # endif /* OPENSSL_BN_ASM_MONT */
948 # endif
949
950 #else /* !BN_MUL_COMBA */
951
952 /* hmm... is it faster just to do a multiply? */
953 # undef bn_sqr_comba4
954 # undef bn_sqr_comba8
bn_sqr_comba4(BN_ULONG * r,const BN_ULONG * a)955 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
956 {
957 BN_ULONG t[8];
958 bn_sqr_normal(r, a, 4, t);
959 }
960
bn_sqr_comba8(BN_ULONG * r,const BN_ULONG * a)961 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
962 {
963 BN_ULONG t[16];
964 bn_sqr_normal(r, a, 8, t);
965 }
966
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)967 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
968 {
969 r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
970 r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
971 r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
972 r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
973 }
974
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)975 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
976 {
977 r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
978 r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
979 r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
980 r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
981 r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
982 r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
983 r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
984 r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
985 }
986
987 # ifdef OPENSSL_NO_ASM
988 # ifdef OPENSSL_BN_ASM_MONT
989 # include <alloca.h>
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0p,int num)990 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
991 const BN_ULONG *np, const BN_ULONG *n0p, int num)
992 {
993 BN_ULONG c0, c1, *tp, n0 = *n0p;
994 volatile BN_ULONG *vp;
995 int i = 0, j;
996
997 vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
998
999 for (i = 0; i <= num; i++)
1000 tp[i] = 0;
1001
1002 for (i = 0; i < num; i++) {
1003 c0 = bn_mul_add_words(tp, ap, num, bp[i]);
1004 c1 = (tp[num] + c0) & BN_MASK2;
1005 tp[num] = c1;
1006 tp[num + 1] = (c1 < c0 ? 1 : 0);
1007
1008 c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
1009 c1 = (tp[num] + c0) & BN_MASK2;
1010 tp[num] = c1;
1011 tp[num + 1] += (c1 < c0 ? 1 : 0);
1012 for (j = 0; j <= num; j++)
1013 tp[j] = tp[j + 1];
1014 }
1015
1016 if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
1017 c0 = bn_sub_words(rp, tp, np, num);
1018 if (tp[num] != 0 || c0 == 0) {
1019 for (i = 0; i < num + 2; i++)
1020 vp[i] = 0;
1021 return 1;
1022 }
1023 }
1024 for (i = 0; i < num; i++)
1025 rp[i] = tp[i], vp[i] = 0;
1026 vp[num] = 0;
1027 vp[num + 1] = 0;
1028 return 1;
1029 }
1030 # else
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,int num)1031 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1032 const BN_ULONG *np, const BN_ULONG *n0, int num)
1033 {
1034 return 0;
1035 }
1036 # endif /* OPENSSL_BN_ASM_MONT */
1037 # endif
1038
1039 #endif /* !BN_MUL_COMBA */
1040