1 /*
2 * Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #if defined(_WIN32)
11 # include <windows.h>
12 #endif
13
14 #include <stdio.h>
15 #include <string.h>
16
17 #include <openssl/engine.h>
18 #include <openssl/sha.h>
19 #include <openssl/aes.h>
20 #include <openssl/rsa.h>
21 #include <openssl/evp.h>
22 #include <openssl/async.h>
23 #include <openssl/bn.h>
24 #include <openssl/crypto.h>
25 #include <openssl/ssl.h>
26 #include <openssl/modes.h>
27
28 #if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
29 # undef ASYNC_POSIX
30 # define ASYNC_POSIX
31 # include <unistd.h>
32 #elif defined(_WIN32)
33 # undef ASYNC_WIN
34 # define ASYNC_WIN
35 #endif
36
37 #include "e_dasync_err.c"
38
39 /* Engine Id and Name */
40 static const char *engine_dasync_id = "dasync";
41 static const char *engine_dasync_name = "Dummy Async engine support";
42
43
44 /* Engine Lifetime functions */
45 static int dasync_destroy(ENGINE *e);
46 static int dasync_init(ENGINE *e);
47 static int dasync_finish(ENGINE *e);
48 void engine_load_dasync_int(void);
49
50
51 /* Set up digests. Just SHA1 for now */
52 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
53 const int **nids, int nid);
54
55 static void dummy_pause_job(void);
56
57 /* SHA1 */
58 static int dasync_sha1_init(EVP_MD_CTX *ctx);
59 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
60 size_t count);
61 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
62
63 /*
64 * Holds the EVP_MD object for sha1 in this engine. Set up once only during
65 * engine bind and can then be reused many times.
66 */
67 static EVP_MD *_hidden_sha1_md = NULL;
dasync_sha1(void)68 static const EVP_MD *dasync_sha1(void)
69 {
70 return _hidden_sha1_md;
71 }
destroy_digests(void)72 static void destroy_digests(void)
73 {
74 EVP_MD_meth_free(_hidden_sha1_md);
75 _hidden_sha1_md = NULL;
76 }
77
dasync_digest_nids(const int ** nids)78 static int dasync_digest_nids(const int **nids)
79 {
80 static int digest_nids[2] = { 0, 0 };
81 static int pos = 0;
82 static int init = 0;
83
84 if (!init) {
85 const EVP_MD *md;
86 if ((md = dasync_sha1()) != NULL)
87 digest_nids[pos++] = EVP_MD_type(md);
88 digest_nids[pos] = 0;
89 init = 1;
90 }
91 *nids = digest_nids;
92 return pos;
93 }
94
95 /* RSA */
96
97 static int dasync_pub_enc(int flen, const unsigned char *from,
98 unsigned char *to, RSA *rsa, int padding);
99 static int dasync_pub_dec(int flen, const unsigned char *from,
100 unsigned char *to, RSA *rsa, int padding);
101 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
102 unsigned char *to, RSA *rsa, int padding);
103 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
104 unsigned char *to, RSA *rsa, int padding);
105 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
106 BN_CTX *ctx);
107
108 static int dasync_rsa_init(RSA *rsa);
109 static int dasync_rsa_finish(RSA *rsa);
110
111 static RSA_METHOD *dasync_rsa_method = NULL;
112
113 /* AES */
114
115 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
116 void *ptr);
117 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
118 const unsigned char *iv, int enc);
119 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
120 const unsigned char *in, size_t inl);
121 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
122
123 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
124 int arg, void *ptr);
125 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
126 const unsigned char *key,
127 const unsigned char *iv,
128 int enc);
129 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
130 unsigned char *out,
131 const unsigned char *in,
132 size_t inl);
133 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
134
135 struct dasync_pipeline_ctx {
136 void *inner_cipher_data;
137 unsigned int numpipes;
138 unsigned char **inbufs;
139 unsigned char **outbufs;
140 size_t *lens;
141 unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
142 unsigned int aadctr;
143 };
144
145 /*
146 * Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
147 * during engine bind and can then be reused many times.
148 */
149 static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
dasync_aes_128_cbc(void)150 static const EVP_CIPHER *dasync_aes_128_cbc(void)
151 {
152 return _hidden_aes_128_cbc;
153 }
154
155 /*
156 * Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
157 * once only during engine bind and can then be reused many times.
158 *
159 * This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
160 * which is implemented only if the AES-NI instruction set extension is available
161 * (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
162 * be available either.
163 *
164 * Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
165 * negotiate the encrypt-then-mac extension) won't negotiate it anyway.
166 */
167 static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
dasync_aes_128_cbc_hmac_sha1(void)168 static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
169 {
170 return _hidden_aes_128_cbc_hmac_sha1;
171 }
172
destroy_ciphers(void)173 static void destroy_ciphers(void)
174 {
175 EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
176 EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
177 _hidden_aes_128_cbc = NULL;
178 _hidden_aes_128_cbc_hmac_sha1 = NULL;
179 }
180
181 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
182 const int **nids, int nid);
183
184 static int dasync_cipher_nids[] = {
185 NID_aes_128_cbc_hmac_sha1,
186 NID_aes_128_cbc,
187 0
188 };
189
bind_dasync(ENGINE * e)190 static int bind_dasync(ENGINE *e)
191 {
192 /* Setup RSA_METHOD */
193 if ((dasync_rsa_method = RSA_meth_new("Dummy Async RSA method", 0)) == NULL
194 || RSA_meth_set_pub_enc(dasync_rsa_method, dasync_pub_enc) == 0
195 || RSA_meth_set_pub_dec(dasync_rsa_method, dasync_pub_dec) == 0
196 || RSA_meth_set_priv_enc(dasync_rsa_method, dasync_rsa_priv_enc) == 0
197 || RSA_meth_set_priv_dec(dasync_rsa_method, dasync_rsa_priv_dec) == 0
198 || RSA_meth_set_mod_exp(dasync_rsa_method, dasync_rsa_mod_exp) == 0
199 || RSA_meth_set_bn_mod_exp(dasync_rsa_method, BN_mod_exp_mont) == 0
200 || RSA_meth_set_init(dasync_rsa_method, dasync_rsa_init) == 0
201 || RSA_meth_set_finish(dasync_rsa_method, dasync_rsa_finish) == 0) {
202 DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
203 return 0;
204 }
205
206 /* Ensure the dasync error handling is set up */
207 ERR_load_DASYNC_strings();
208
209 if (!ENGINE_set_id(e, engine_dasync_id)
210 || !ENGINE_set_name(e, engine_dasync_name)
211 || !ENGINE_set_RSA(e, dasync_rsa_method)
212 || !ENGINE_set_digests(e, dasync_digests)
213 || !ENGINE_set_ciphers(e, dasync_ciphers)
214 || !ENGINE_set_destroy_function(e, dasync_destroy)
215 || !ENGINE_set_init_function(e, dasync_init)
216 || !ENGINE_set_finish_function(e, dasync_finish)) {
217 DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
218 return 0;
219 }
220
221 /*
222 * Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
223 * supplied by this engine
224 */
225 _hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
226 if (_hidden_sha1_md == NULL
227 || !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
228 || !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
229 || !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
230 sizeof(EVP_MD *) + sizeof(SHA_CTX))
231 || !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
232 || !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
233 || !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
234 || !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
235 EVP_MD_meth_free(_hidden_sha1_md);
236 _hidden_sha1_md = NULL;
237 }
238
239 _hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
240 16 /* block size */,
241 16 /* key len */);
242 if (_hidden_aes_128_cbc == NULL
243 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
244 || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
245 EVP_CIPH_FLAG_DEFAULT_ASN1
246 | EVP_CIPH_CBC_MODE
247 | EVP_CIPH_FLAG_PIPELINE
248 | EVP_CIPH_CUSTOM_COPY)
249 || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
250 dasync_aes128_init_key)
251 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
252 dasync_aes128_cbc_cipher)
253 || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
254 dasync_aes128_cbc_cleanup)
255 || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
256 dasync_aes128_cbc_ctrl)
257 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
258 sizeof(struct dasync_pipeline_ctx))) {
259 EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
260 _hidden_aes_128_cbc = NULL;
261 }
262
263 _hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
264 NID_aes_128_cbc_hmac_sha1,
265 16 /* block size */,
266 16 /* key len */);
267 if (_hidden_aes_128_cbc_hmac_sha1 == NULL
268 || EVP_aes_128_cbc_hmac_sha1() == NULL
269 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
270 || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
271 EVP_CIPH_CBC_MODE
272 | EVP_CIPH_FLAG_DEFAULT_ASN1
273 | EVP_CIPH_FLAG_AEAD_CIPHER
274 | EVP_CIPH_FLAG_PIPELINE
275 | EVP_CIPH_CUSTOM_COPY)
276 || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
277 dasync_aes128_cbc_hmac_sha1_init_key)
278 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
279 dasync_aes128_cbc_hmac_sha1_cipher)
280 || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
281 dasync_aes128_cbc_hmac_sha1_cleanup)
282 || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
283 dasync_aes128_cbc_hmac_sha1_ctrl)
284 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
285 sizeof(struct dasync_pipeline_ctx))) {
286 EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
287 _hidden_aes_128_cbc_hmac_sha1 = NULL;
288 }
289
290 return 1;
291 }
292
293 # ifndef OPENSSL_NO_DYNAMIC_ENGINE
bind_helper(ENGINE * e,const char * id)294 static int bind_helper(ENGINE *e, const char *id)
295 {
296 if (id && (strcmp(id, engine_dasync_id) != 0))
297 return 0;
298 if (!bind_dasync(e))
299 return 0;
300 return 1;
301 }
302
303 IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)304 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
305 # endif
306
307 static ENGINE *engine_dasync(void)
308 {
309 ENGINE *ret = ENGINE_new();
310 if (!ret)
311 return NULL;
312 if (!bind_dasync(ret)) {
313 ENGINE_free(ret);
314 return NULL;
315 }
316 return ret;
317 }
318
engine_load_dasync_int(void)319 void engine_load_dasync_int(void)
320 {
321 ENGINE *toadd = engine_dasync();
322 if (!toadd)
323 return;
324 ENGINE_add(toadd);
325 ENGINE_free(toadd);
326 ERR_clear_error();
327 }
328
dasync_init(ENGINE * e)329 static int dasync_init(ENGINE *e)
330 {
331 return 1;
332 }
333
334
dasync_finish(ENGINE * e)335 static int dasync_finish(ENGINE *e)
336 {
337 return 1;
338 }
339
340
dasync_destroy(ENGINE * e)341 static int dasync_destroy(ENGINE *e)
342 {
343 destroy_digests();
344 destroy_ciphers();
345 RSA_meth_free(dasync_rsa_method);
346 ERR_unload_DASYNC_strings();
347 return 1;
348 }
349
dasync_digests(ENGINE * e,const EVP_MD ** digest,const int ** nids,int nid)350 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
351 const int **nids, int nid)
352 {
353 int ok = 1;
354 if (!digest) {
355 /* We are returning a list of supported nids */
356 return dasync_digest_nids(nids);
357 }
358 /* We are being asked for a specific digest */
359 switch (nid) {
360 case NID_sha1:
361 *digest = dasync_sha1();
362 break;
363 default:
364 ok = 0;
365 *digest = NULL;
366 break;
367 }
368 return ok;
369 }
370
dasync_ciphers(ENGINE * e,const EVP_CIPHER ** cipher,const int ** nids,int nid)371 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
372 const int **nids, int nid)
373 {
374 int ok = 1;
375 if (cipher == NULL) {
376 /* We are returning a list of supported nids */
377 if (dasync_aes_128_cbc_hmac_sha1() == NULL) {
378 *nids = dasync_cipher_nids + 1;
379 return 1;
380 }
381 *nids = dasync_cipher_nids;
382 return (sizeof(dasync_cipher_nids) -
383 1) / sizeof(dasync_cipher_nids[0]);
384 }
385 /* We are being asked for a specific cipher */
386 switch (nid) {
387 case NID_aes_128_cbc:
388 *cipher = dasync_aes_128_cbc();
389 break;
390 case NID_aes_128_cbc_hmac_sha1:
391 *cipher = dasync_aes_128_cbc_hmac_sha1();
392 break;
393 default:
394 ok = 0;
395 *cipher = NULL;
396 break;
397 }
398 return ok;
399 }
400
wait_cleanup(ASYNC_WAIT_CTX * ctx,const void * key,OSSL_ASYNC_FD readfd,void * pvwritefd)401 static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
402 OSSL_ASYNC_FD readfd, void *pvwritefd)
403 {
404 OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
405 #if defined(ASYNC_WIN)
406 CloseHandle(readfd);
407 CloseHandle(*pwritefd);
408 #elif defined(ASYNC_POSIX)
409 close(readfd);
410 close(*pwritefd);
411 #endif
412 OPENSSL_free(pwritefd);
413 }
414
415 #define DUMMY_CHAR 'X'
416
dummy_pause_job(void)417 static void dummy_pause_job(void) {
418 ASYNC_JOB *job;
419 ASYNC_WAIT_CTX *waitctx;
420 OSSL_ASYNC_FD pipefds[2] = {0, 0};
421 OSSL_ASYNC_FD *writefd;
422 #if defined(ASYNC_WIN)
423 DWORD numwritten, numread;
424 char buf = DUMMY_CHAR;
425 #elif defined(ASYNC_POSIX)
426 char buf = DUMMY_CHAR;
427 #endif
428
429 if ((job = ASYNC_get_current_job()) == NULL)
430 return;
431
432 waitctx = ASYNC_get_wait_ctx(job);
433
434 if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
435 (void **)&writefd)) {
436 pipefds[1] = *writefd;
437 } else {
438 writefd = OPENSSL_malloc(sizeof(*writefd));
439 if (writefd == NULL)
440 return;
441 #if defined(ASYNC_WIN)
442 if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
443 OPENSSL_free(writefd);
444 return;
445 }
446 #elif defined(ASYNC_POSIX)
447 if (pipe(pipefds) != 0) {
448 OPENSSL_free(writefd);
449 return;
450 }
451 #endif
452 *writefd = pipefds[1];
453
454 if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
455 writefd, wait_cleanup)) {
456 wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
457 return;
458 }
459 }
460 /*
461 * In the Dummy async engine we are cheating. We signal that the job
462 * is complete by waking it before the call to ASYNC_pause_job(). A real
463 * async engine would only wake when the job was actually complete
464 */
465 #if defined(ASYNC_WIN)
466 WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
467 #elif defined(ASYNC_POSIX)
468 if (write(pipefds[1], &buf, 1) < 0)
469 return;
470 #endif
471
472 /* Ignore errors - we carry on anyway */
473 ASYNC_pause_job();
474
475 /* Clear the wake signal */
476 #if defined(ASYNC_WIN)
477 ReadFile(pipefds[0], &buf, 1, &numread, NULL);
478 #elif defined(ASYNC_POSIX)
479 if (read(pipefds[0], &buf, 1) < 0)
480 return;
481 #endif
482 }
483
484 /*
485 * SHA1 implementation. At the moment we just defer to the standard
486 * implementation
487 */
488 #undef data
489 #define data(ctx) ((SHA_CTX *)EVP_MD_CTX_md_data(ctx))
dasync_sha1_init(EVP_MD_CTX * ctx)490 static int dasync_sha1_init(EVP_MD_CTX *ctx)
491 {
492 dummy_pause_job();
493
494 return SHA1_Init(data(ctx));
495 }
496
dasync_sha1_update(EVP_MD_CTX * ctx,const void * data,size_t count)497 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
498 size_t count)
499 {
500 dummy_pause_job();
501
502 return SHA1_Update(data(ctx), data, (size_t)count);
503 }
504
dasync_sha1_final(EVP_MD_CTX * ctx,unsigned char * md)505 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
506 {
507 dummy_pause_job();
508
509 return SHA1_Final(md, data(ctx));
510 }
511
512 /*
513 * RSA implementation
514 */
515
dasync_pub_enc(int flen,const unsigned char * from,unsigned char * to,RSA * rsa,int padding)516 static int dasync_pub_enc(int flen, const unsigned char *from,
517 unsigned char *to, RSA *rsa, int padding) {
518 /* Ignore errors - we carry on anyway */
519 dummy_pause_job();
520 return RSA_meth_get_pub_enc(RSA_PKCS1_OpenSSL())
521 (flen, from, to, rsa, padding);
522 }
523
dasync_pub_dec(int flen,const unsigned char * from,unsigned char * to,RSA * rsa,int padding)524 static int dasync_pub_dec(int flen, const unsigned char *from,
525 unsigned char *to, RSA *rsa, int padding) {
526 /* Ignore errors - we carry on anyway */
527 dummy_pause_job();
528 return RSA_meth_get_pub_dec(RSA_PKCS1_OpenSSL())
529 (flen, from, to, rsa, padding);
530 }
531
dasync_rsa_priv_enc(int flen,const unsigned char * from,unsigned char * to,RSA * rsa,int padding)532 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
533 unsigned char *to, RSA *rsa, int padding)
534 {
535 /* Ignore errors - we carry on anyway */
536 dummy_pause_job();
537 return RSA_meth_get_priv_enc(RSA_PKCS1_OpenSSL())
538 (flen, from, to, rsa, padding);
539 }
540
dasync_rsa_priv_dec(int flen,const unsigned char * from,unsigned char * to,RSA * rsa,int padding)541 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
542 unsigned char *to, RSA *rsa, int padding)
543 {
544 /* Ignore errors - we carry on anyway */
545 dummy_pause_job();
546 return RSA_meth_get_priv_dec(RSA_PKCS1_OpenSSL())
547 (flen, from, to, rsa, padding);
548 }
549
dasync_rsa_mod_exp(BIGNUM * r0,const BIGNUM * I,RSA * rsa,BN_CTX * ctx)550 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
551 {
552 /* Ignore errors - we carry on anyway */
553 dummy_pause_job();
554 return RSA_meth_get_mod_exp(RSA_PKCS1_OpenSSL())(r0, I, rsa, ctx);
555 }
556
dasync_rsa_init(RSA * rsa)557 static int dasync_rsa_init(RSA *rsa)
558 {
559 return RSA_meth_get_init(RSA_PKCS1_OpenSSL())(rsa);
560 }
dasync_rsa_finish(RSA * rsa)561 static int dasync_rsa_finish(RSA *rsa)
562 {
563 return RSA_meth_get_finish(RSA_PKCS1_OpenSSL())(rsa);
564 }
565
566 /* Cipher helper functions */
567
dasync_cipher_ctrl_helper(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr,int aeadcapable)568 static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
569 void *ptr, int aeadcapable)
570 {
571 int ret;
572 struct dasync_pipeline_ctx *pipe_ctx =
573 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
574
575 if (pipe_ctx == NULL)
576 return 0;
577
578 switch (type) {
579 case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
580 pipe_ctx->numpipes = arg;
581 pipe_ctx->outbufs = (unsigned char **)ptr;
582 break;
583
584 case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
585 pipe_ctx->numpipes = arg;
586 pipe_ctx->inbufs = (unsigned char **)ptr;
587 break;
588
589 case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
590 pipe_ctx->numpipes = arg;
591 pipe_ctx->lens = (size_t *)ptr;
592 break;
593
594 case EVP_CTRL_AEAD_SET_MAC_KEY:
595 if (!aeadcapable)
596 return -1;
597 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
598 ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
599 (ctx, type, arg, ptr);
600 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
601 return ret;
602
603 case EVP_CTRL_AEAD_TLS1_AAD:
604 {
605 unsigned char *p = ptr;
606 unsigned int len;
607
608 if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
609 return -1;
610
611 if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
612 return -1;
613
614 memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
615 EVP_AEAD_TLS1_AAD_LEN);
616 pipe_ctx->aadctr++;
617
618 len = p[arg - 2] << 8 | p[arg - 1];
619
620 if (EVP_CIPHER_CTX_encrypting(ctx)) {
621 if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
622 if (len < AES_BLOCK_SIZE)
623 return 0;
624 len -= AES_BLOCK_SIZE;
625 }
626
627 return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
628 & -AES_BLOCK_SIZE) - len;
629 } else {
630 return SHA_DIGEST_LENGTH;
631 }
632 }
633
634 case EVP_CTRL_COPY:
635 {
636 const EVP_CIPHER *cipher = aeadcapable
637 ? EVP_aes_128_cbc_hmac_sha1()
638 : EVP_aes_128_cbc();
639 size_t data_size = EVP_CIPHER_impl_ctx_size(cipher);
640 void *cipher_data = OPENSSL_malloc(data_size);
641
642 if (cipher_data == NULL)
643 return 0;
644 memcpy(cipher_data, pipe_ctx->inner_cipher_data, data_size);
645 pipe_ctx->inner_cipher_data = cipher_data;
646 return 1;
647 }
648
649 default:
650 return 0;
651 }
652
653 return 1;
654 }
655
dasync_cipher_init_key_helper(EVP_CIPHER_CTX * ctx,const unsigned char * key,const unsigned char * iv,int enc,const EVP_CIPHER * cipher)656 static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
657 const unsigned char *key,
658 const unsigned char *iv, int enc,
659 const EVP_CIPHER *cipher)
660 {
661 int ret;
662 struct dasync_pipeline_ctx *pipe_ctx =
663 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
664
665 if (pipe_ctx->inner_cipher_data == NULL
666 && EVP_CIPHER_impl_ctx_size(cipher) != 0) {
667 pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
668 EVP_CIPHER_impl_ctx_size(cipher));
669 if (pipe_ctx->inner_cipher_data == NULL) {
670 DASYNCerr(DASYNC_F_DASYNC_CIPHER_INIT_KEY_HELPER,
671 ERR_R_MALLOC_FAILURE);
672 return 0;
673 }
674 }
675
676 pipe_ctx->numpipes = 0;
677 pipe_ctx->aadctr = 0;
678
679 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
680 ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
681 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
682
683 return ret;
684 }
685
dasync_cipher_helper(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t inl,const EVP_CIPHER * cipher)686 static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
687 const unsigned char *in, size_t inl,
688 const EVP_CIPHER *cipher)
689 {
690 int ret = 1;
691 unsigned int i, pipes;
692 struct dasync_pipeline_ctx *pipe_ctx =
693 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
694
695 pipes = pipe_ctx->numpipes;
696 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
697 if (pipes == 0) {
698 if (pipe_ctx->aadctr != 0) {
699 if (pipe_ctx->aadctr != 1)
700 return -1;
701 EVP_CIPHER_meth_get_ctrl(cipher)
702 (ctx, EVP_CTRL_AEAD_TLS1_AAD,
703 EVP_AEAD_TLS1_AAD_LEN,
704 pipe_ctx->tlsaad[0]);
705 }
706 ret = EVP_CIPHER_meth_get_do_cipher(cipher)
707 (ctx, out, in, inl);
708 } else {
709 if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
710 return -1;
711 for (i = 0; i < pipes; i++) {
712 if (pipe_ctx->aadctr > 0) {
713 EVP_CIPHER_meth_get_ctrl(cipher)
714 (ctx, EVP_CTRL_AEAD_TLS1_AAD,
715 EVP_AEAD_TLS1_AAD_LEN,
716 pipe_ctx->tlsaad[i]);
717 }
718 ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
719 (ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
720 pipe_ctx->lens[i]);
721 }
722 pipe_ctx->numpipes = 0;
723 }
724 pipe_ctx->aadctr = 0;
725 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
726 return ret;
727 }
728
dasync_cipher_cleanup_helper(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher)729 static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
730 const EVP_CIPHER *cipher)
731 {
732 struct dasync_pipeline_ctx *pipe_ctx =
733 (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
734
735 OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
736 EVP_CIPHER_impl_ctx_size(cipher));
737
738 return 1;
739 }
740
741 /*
742 * AES128 CBC Implementation
743 */
744
dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)745 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
746 void *ptr)
747 {
748 return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0);
749 }
750
dasync_aes128_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * key,const unsigned char * iv,int enc)751 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
752 const unsigned char *iv, int enc)
753 {
754 return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
755 }
756
dasync_aes128_cbc_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t inl)757 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
758 const unsigned char *in, size_t inl)
759 {
760 return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
761 }
762
dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX * ctx)763 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
764 {
765 return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
766 }
767
768
769 /*
770 * AES128 CBC HMAC SHA1 Implementation
771 */
772
dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)773 static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
774 int arg, void *ptr)
775 {
776 return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1);
777 }
778
dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * key,const unsigned char * iv,int enc)779 static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
780 const unsigned char *key,
781 const unsigned char *iv,
782 int enc)
783 {
784 /*
785 * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
786 * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
787 */
788 return dasync_cipher_init_key_helper(ctx, key, iv, enc,
789 EVP_aes_128_cbc_hmac_sha1());
790 }
791
dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t inl)792 static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
793 unsigned char *out,
794 const unsigned char *in,
795 size_t inl)
796 {
797 return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
798 }
799
dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX * ctx)800 static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
801 {
802 /*
803 * We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
804 * see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
805 */
806 return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
807 }
808