1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 #ifndef RE2_RE2_H_
6 #define RE2_RE2_H_
7
8 // C++ interface to the re2 regular-expression library.
9 // RE2 supports Perl-style regular expressions (with extensions like
10 // \d, \w, \s, ...).
11 //
12 // -----------------------------------------------------------------------
13 // REGEXP SYNTAX:
14 //
15 // This module uses the re2 library and hence supports
16 // its syntax for regular expressions, which is similar to Perl's with
17 // some of the more complicated things thrown away. In particular,
18 // backreferences and generalized assertions are not available, nor is \Z.
19 //
20 // See https://github.com/google/re2/wiki/Syntax for the syntax
21 // supported by RE2, and a comparison with PCRE and PERL regexps.
22 //
23 // For those not familiar with Perl's regular expressions,
24 // here are some examples of the most commonly used extensions:
25 //
26 // "hello (\\w+) world" -- \w matches a "word" character
27 // "version (\\d+)" -- \d matches a digit
28 // "hello\\s+world" -- \s matches any whitespace character
29 // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary
30 // "(?i)hello" -- (?i) turns on case-insensitive matching
31 // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible
32 //
33 // -----------------------------------------------------------------------
34 // MATCHING INTERFACE:
35 //
36 // The "FullMatch" operation checks that supplied text matches a
37 // supplied pattern exactly.
38 //
39 // Example: successful match
40 // CHECK(RE2::FullMatch("hello", "h.*o"));
41 //
42 // Example: unsuccessful match (requires full match):
43 // CHECK(!RE2::FullMatch("hello", "e"));
44 //
45 // -----------------------------------------------------------------------
46 // UTF-8 AND THE MATCHING INTERFACE:
47 //
48 // By default, the pattern and input text are interpreted as UTF-8.
49 // The RE2::Latin1 option causes them to be interpreted as Latin-1.
50 //
51 // Example:
52 // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
53 // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
54 //
55 // -----------------------------------------------------------------------
56 // MATCHING WITH SUBSTRING EXTRACTION:
57 //
58 // You can supply extra pointer arguments to extract matched substrings.
59 // On match failure, none of the pointees will have been modified.
60 // On match success, the substrings will be converted (as necessary) and
61 // their values will be assigned to their pointees until all conversions
62 // have succeeded or one conversion has failed.
63 // On conversion failure, the pointees will be in an indeterminate state
64 // because the caller has no way of knowing which conversion failed.
65 // However, conversion cannot fail for types like string and StringPiece
66 // that do not inspect the substring contents. Hence, in the common case
67 // where all of the pointees are of such types, failure is always due to
68 // match failure and thus none of the pointees will have been modified.
69 //
70 // Example: extracts "ruby" into "s" and 1234 into "i"
71 // int i;
72 // std::string s;
73 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
74 //
75 // Example: fails because string cannot be stored in integer
76 // CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
77 //
78 // Example: fails because there aren't enough sub-patterns
79 // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
80 //
81 // Example: does not try to extract any extra sub-patterns
82 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
83 //
84 // Example: does not try to extract into NULL
85 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
86 //
87 // Example: integer overflow causes failure
88 // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
89 //
90 // NOTE(rsc): Asking for substrings slows successful matches quite a bit.
91 // This may get a little faster in the future, but right now is slower
92 // than PCRE. On the other hand, failed matches run *very* fast (faster
93 // than PCRE), as do matches without substring extraction.
94 //
95 // -----------------------------------------------------------------------
96 // PARTIAL MATCHES
97 //
98 // You can use the "PartialMatch" operation when you want the pattern
99 // to match any substring of the text.
100 //
101 // Example: simple search for a string:
102 // CHECK(RE2::PartialMatch("hello", "ell"));
103 //
104 // Example: find first number in a string
105 // int number;
106 // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
107 // CHECK_EQ(number, 100);
108 //
109 // -----------------------------------------------------------------------
110 // PRE-COMPILED REGULAR EXPRESSIONS
111 //
112 // RE2 makes it easy to use any string as a regular expression, without
113 // requiring a separate compilation step.
114 //
115 // If speed is of the essence, you can create a pre-compiled "RE2"
116 // object from the pattern and use it multiple times. If you do so,
117 // you can typically parse text faster than with sscanf.
118 //
119 // Example: precompile pattern for faster matching:
120 // RE2 pattern("h.*o");
121 // while (ReadLine(&str)) {
122 // if (RE2::FullMatch(str, pattern)) ...;
123 // }
124 //
125 // -----------------------------------------------------------------------
126 // SCANNING TEXT INCREMENTALLY
127 //
128 // The "Consume" operation may be useful if you want to repeatedly
129 // match regular expressions at the front of a string and skip over
130 // them as they match. This requires use of the "StringPiece" type,
131 // which represents a sub-range of a real string.
132 //
133 // Example: read lines of the form "var = value" from a string.
134 // std::string contents = ...; // Fill string somehow
135 // StringPiece input(contents); // Wrap a StringPiece around it
136 //
137 // std::string var;
138 // int value;
139 // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
140 // ...;
141 // }
142 //
143 // Each successful call to "Consume" will set "var/value", and also
144 // advance "input" so it points past the matched text. Note that if the
145 // regular expression matches an empty string, input will advance
146 // by 0 bytes. If the regular expression being used might match
147 // an empty string, the loop body must check for this case and either
148 // advance the string or break out of the loop.
149 //
150 // The "FindAndConsume" operation is similar to "Consume" but does not
151 // anchor your match at the beginning of the string. For example, you
152 // could extract all words from a string by repeatedly calling
153 // RE2::FindAndConsume(&input, "(\\w+)", &word)
154 //
155 // -----------------------------------------------------------------------
156 // USING VARIABLE NUMBER OF ARGUMENTS
157 //
158 // The above operations require you to know the number of arguments
159 // when you write the code. This is not always possible or easy (for
160 // example, the regular expression may be calculated at run time).
161 // You can use the "N" version of the operations when the number of
162 // match arguments are determined at run time.
163 //
164 // Example:
165 // const RE2::Arg* args[10];
166 // int n;
167 // // ... populate args with pointers to RE2::Arg values ...
168 // // ... set n to the number of RE2::Arg objects ...
169 // bool match = RE2::FullMatchN(input, pattern, args, n);
170 //
171 // The last statement is equivalent to
172 //
173 // bool match = RE2::FullMatch(input, pattern,
174 // *args[0], *args[1], ..., *args[n - 1]);
175 //
176 // -----------------------------------------------------------------------
177 // PARSING HEX/OCTAL/C-RADIX NUMBERS
178 //
179 // By default, if you pass a pointer to a numeric value, the
180 // corresponding text is interpreted as a base-10 number. You can
181 // instead wrap the pointer with a call to one of the operators Hex(),
182 // Octal(), or CRadix() to interpret the text in another base. The
183 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
184 // prefixes, but defaults to base-10.
185 //
186 // Example:
187 // int a, b, c, d;
188 // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
189 // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
190 // will leave 64 in a, b, c, and d.
191
192 #include <stddef.h>
193 #include <stdint.h>
194 #include <algorithm>
195 #include <map>
196 #include <mutex>
197 #include <string>
198
199 #include "re2/stringpiece.h"
200
201 namespace re2 {
202 class Prog;
203 class Regexp;
204 } // namespace re2
205
206 namespace re2 {
207
208 // Interface for regular expression matching. Also corresponds to a
209 // pre-compiled regular expression. An "RE2" object is safe for
210 // concurrent use by multiple threads.
211 class RE2 {
212 public:
213 // We convert user-passed pointers into special Arg objects
214 class Arg;
215 class Options;
216
217 // Defined in set.h.
218 class Set;
219
220 enum ErrorCode {
221 NoError = 0,
222
223 // Unexpected error
224 ErrorInternal,
225
226 // Parse errors
227 ErrorBadEscape, // bad escape sequence
228 ErrorBadCharClass, // bad character class
229 ErrorBadCharRange, // bad character class range
230 ErrorMissingBracket, // missing closing ]
231 ErrorMissingParen, // missing closing )
232 ErrorTrailingBackslash, // trailing \ at end of regexp
233 ErrorRepeatArgument, // repeat argument missing, e.g. "*"
234 ErrorRepeatSize, // bad repetition argument
235 ErrorRepeatOp, // bad repetition operator
236 ErrorBadPerlOp, // bad perl operator
237 ErrorBadUTF8, // invalid UTF-8 in regexp
238 ErrorBadNamedCapture, // bad named capture group
239 ErrorPatternTooLarge // pattern too large (compile failed)
240 };
241
242 // Predefined common options.
243 // If you need more complicated things, instantiate
244 // an Option class, possibly passing one of these to
245 // the Option constructor, change the settings, and pass that
246 // Option class to the RE2 constructor.
247 enum CannedOptions {
248 DefaultOptions = 0,
249 Latin1, // treat input as Latin-1 (default UTF-8)
250 POSIX, // POSIX syntax, leftmost-longest match
251 Quiet // do not log about regexp parse errors
252 };
253
254 // Need to have the const char* and const std::string& forms for implicit
255 // conversions when passing string literals to FullMatch and PartialMatch.
256 // Otherwise the StringPiece form would be sufficient.
257 #ifndef SWIG
258 RE2(const char* pattern);
259 RE2(const std::string& pattern);
260 #endif
261 RE2(const StringPiece& pattern);
262 RE2(const StringPiece& pattern, const Options& options);
263 ~RE2();
264
265 // Returns whether RE2 was created properly.
ok()266 bool ok() const { return error_code() == NoError; }
267
268 // The string specification for this RE2. E.g.
269 // RE2 re("ab*c?d+");
270 // re.pattern(); // "ab*c?d+"
pattern()271 const std::string& pattern() const { return pattern_; }
272
273 // If RE2 could not be created properly, returns an error string.
274 // Else returns the empty string.
error()275 const std::string& error() const { return *error_; }
276
277 // If RE2 could not be created properly, returns an error code.
278 // Else returns RE2::NoError (== 0).
error_code()279 ErrorCode error_code() const { return error_code_; }
280
281 // If RE2 could not be created properly, returns the offending
282 // portion of the regexp.
error_arg()283 const std::string& error_arg() const { return error_arg_; }
284
285 // Returns the program size, a very approximate measure of a regexp's "cost".
286 // Larger numbers are more expensive than smaller numbers.
287 int ProgramSize() const;
288 int ReverseProgramSize() const;
289
290 // EXPERIMENTAL! SUBJECT TO CHANGE!
291 // Outputs the program fanout as a histogram bucketed by powers of 2.
292 // Returns the number of the largest non-empty bucket.
293 int ProgramFanout(std::map<int, int>* histogram) const;
294 int ReverseProgramFanout(std::map<int, int>* histogram) const;
295
296 // Returns the underlying Regexp; not for general use.
297 // Returns entire_regexp_ so that callers don't need
298 // to know about prefix_ and prefix_foldcase_.
Regexp()299 re2::Regexp* Regexp() const { return entire_regexp_; }
300
301 /***** The array-based matching interface ******/
302
303 // The functions here have names ending in 'N' and are used to implement
304 // the functions whose names are the prefix before the 'N'. It is sometimes
305 // useful to invoke them directly, but the syntax is awkward, so the 'N'-less
306 // versions should be preferred.
307 static bool FullMatchN(const StringPiece& text, const RE2& re,
308 const Arg* const args[], int n);
309 static bool PartialMatchN(const StringPiece& text, const RE2& re,
310 const Arg* const args[], int n);
311 static bool ConsumeN(StringPiece* input, const RE2& re,
312 const Arg* const args[], int n);
313 static bool FindAndConsumeN(StringPiece* input, const RE2& re,
314 const Arg* const args[], int n);
315
316 #ifndef SWIG
317 private:
318 template <typename F, typename SP>
Apply(F f,SP sp,const RE2 & re)319 static inline bool Apply(F f, SP sp, const RE2& re) {
320 return f(sp, re, NULL, 0);
321 }
322
323 template <typename F, typename SP, typename... A>
Apply(F f,SP sp,const RE2 & re,const A &...a)324 static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) {
325 const Arg* const args[] = {&a...};
326 const int n = sizeof...(a);
327 return f(sp, re, args, n);
328 }
329
330 public:
331 // In order to allow FullMatch() et al. to be called with a varying number
332 // of arguments of varying types, we use two layers of variadic templates.
333 // The first layer constructs the temporary Arg objects. The second layer
334 // (above) constructs the array of pointers to the temporary Arg objects.
335
336 /***** The useful part: the matching interface *****/
337
338 // Matches "text" against "re". If pointer arguments are
339 // supplied, copies matched sub-patterns into them.
340 //
341 // You can pass in a "const char*" or a "std::string" for "text".
342 // You can pass in a "const char*" or a "std::string" or a "RE2" for "re".
343 //
344 // The provided pointer arguments can be pointers to any scalar numeric
345 // type, or one of:
346 // std::string (matched piece is copied to string)
347 // StringPiece (StringPiece is mutated to point to matched piece)
348 // T (where "bool T::ParseFrom(const char*, size_t)" exists)
349 // (void*)NULL (the corresponding matched sub-pattern is not copied)
350 //
351 // Returns true iff all of the following conditions are satisfied:
352 // a. "text" matches "re" exactly
353 // b. The number of matched sub-patterns is >= number of supplied pointers
354 // c. The "i"th argument has a suitable type for holding the
355 // string captured as the "i"th sub-pattern. If you pass in
356 // NULL for the "i"th argument, or pass fewer arguments than
357 // number of sub-patterns, "i"th captured sub-pattern is
358 // ignored.
359 //
360 // CAVEAT: An optional sub-pattern that does not exist in the
361 // matched string is assigned the empty string. Therefore, the
362 // following will return false (because the empty string is not a
363 // valid number):
364 // int number;
365 // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
366 template <typename... A>
FullMatch(const StringPiece & text,const RE2 & re,A &&...a)367 static bool FullMatch(const StringPiece& text, const RE2& re, A&&... a) {
368 return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...);
369 }
370
371 // Exactly like FullMatch(), except that "re" is allowed to match
372 // a substring of "text".
373 template <typename... A>
PartialMatch(const StringPiece & text,const RE2 & re,A &&...a)374 static bool PartialMatch(const StringPiece& text, const RE2& re, A&&... a) {
375 return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...);
376 }
377
378 // Like FullMatch() and PartialMatch(), except that "re" has to match
379 // a prefix of the text, and "input" is advanced past the matched
380 // text. Note: "input" is modified iff this routine returns true
381 // and "re" matched a non-empty substring of "text".
382 template <typename... A>
Consume(StringPiece * input,const RE2 & re,A &&...a)383 static bool Consume(StringPiece* input, const RE2& re, A&&... a) {
384 return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...);
385 }
386
387 // Like Consume(), but does not anchor the match at the beginning of
388 // the text. That is, "re" need not start its match at the beginning
389 // of "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds
390 // the next word in "s" and stores it in "word".
391 template <typename... A>
FindAndConsume(StringPiece * input,const RE2 & re,A &&...a)392 static bool FindAndConsume(StringPiece* input, const RE2& re, A&&... a) {
393 return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...);
394 }
395 #endif
396
397 // Replace the first match of "re" in "str" with "rewrite".
398 // Within "rewrite", backslash-escaped digits (\1 to \9) can be
399 // used to insert text matching corresponding parenthesized group
400 // from the pattern. \0 in "rewrite" refers to the entire matching
401 // text. E.g.,
402 //
403 // std::string s = "yabba dabba doo";
404 // CHECK(RE2::Replace(&s, "b+", "d"));
405 //
406 // will leave "s" containing "yada dabba doo"
407 //
408 // Returns true if the pattern matches and a replacement occurs,
409 // false otherwise.
410 static bool Replace(std::string* str,
411 const RE2& re,
412 const StringPiece& rewrite);
413
414 // Like Replace(), except replaces successive non-overlapping occurrences
415 // of the pattern in the string with the rewrite. E.g.
416 //
417 // std::string s = "yabba dabba doo";
418 // CHECK(RE2::GlobalReplace(&s, "b+", "d"));
419 //
420 // will leave "s" containing "yada dada doo"
421 // Replacements are not subject to re-matching.
422 //
423 // Because GlobalReplace only replaces non-overlapping matches,
424 // replacing "ana" within "banana" makes only one replacement, not two.
425 //
426 // Returns the number of replacements made.
427 static int GlobalReplace(std::string* str,
428 const RE2& re,
429 const StringPiece& rewrite);
430
431 // Like Replace, except that if the pattern matches, "rewrite"
432 // is copied into "out" with substitutions. The non-matching
433 // portions of "text" are ignored.
434 //
435 // Returns true iff a match occurred and the extraction happened
436 // successfully; if no match occurs, the string is left unaffected.
437 //
438 // REQUIRES: "text" must not alias any part of "*out".
439 static bool Extract(const StringPiece& text,
440 const RE2& re,
441 const StringPiece& rewrite,
442 std::string* out);
443
444 // Escapes all potentially meaningful regexp characters in
445 // 'unquoted'. The returned string, used as a regular expression,
446 // will exactly match the original string. For example,
447 // 1.5-2.0?
448 // may become:
449 // 1\.5\-2\.0\?
450 static std::string QuoteMeta(const StringPiece& unquoted);
451
452 // Computes range for any strings matching regexp. The min and max can in
453 // some cases be arbitrarily precise, so the caller gets to specify the
454 // maximum desired length of string returned.
455 //
456 // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
457 // string s that is an anchored match for this regexp satisfies
458 // min <= s && s <= max.
459 //
460 // Note that PossibleMatchRange() will only consider the first copy of an
461 // infinitely repeated element (i.e., any regexp element followed by a '*' or
462 // '+' operator). Regexps with "{N}" constructions are not affected, as those
463 // do not compile down to infinite repetitions.
464 //
465 // Returns true on success, false on error.
466 bool PossibleMatchRange(std::string* min, std::string* max,
467 int maxlen) const;
468
469 // Generic matching interface
470
471 // Type of match.
472 enum Anchor {
473 UNANCHORED, // No anchoring
474 ANCHOR_START, // Anchor at start only
475 ANCHOR_BOTH // Anchor at start and end
476 };
477
478 // Return the number of capturing subpatterns, or -1 if the
479 // regexp wasn't valid on construction. The overall match ($0)
480 // does not count: if the regexp is "(a)(b)", returns 2.
NumberOfCapturingGroups()481 int NumberOfCapturingGroups() const { return num_captures_; }
482
483 // Return a map from names to capturing indices.
484 // The map records the index of the leftmost group
485 // with the given name.
486 // Only valid until the re is deleted.
487 const std::map<std::string, int>& NamedCapturingGroups() const;
488
489 // Return a map from capturing indices to names.
490 // The map has no entries for unnamed groups.
491 // Only valid until the re is deleted.
492 const std::map<int, std::string>& CapturingGroupNames() const;
493
494 // General matching routine.
495 // Match against text starting at offset startpos
496 // and stopping the search at offset endpos.
497 // Returns true if match found, false if not.
498 // On a successful match, fills in submatch[] (up to nsubmatch entries)
499 // with information about submatches.
500 // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, with
501 // submatch[0] = "barbaz", submatch[1].data() = NULL, submatch[2] = "bar",
502 // submatch[3].data() = NULL, ..., up to submatch[nsubmatch-1].data() = NULL.
503 // Caveat: submatch[] may be clobbered even on match failure.
504 //
505 // Don't ask for more match information than you will use:
506 // runs much faster with nsubmatch == 1 than nsubmatch > 1, and
507 // runs even faster if nsubmatch == 0.
508 // Doesn't make sense to use nsubmatch > 1 + NumberOfCapturingGroups(),
509 // but will be handled correctly.
510 //
511 // Passing text == StringPiece(NULL, 0) will be handled like any other
512 // empty string, but note that on return, it will not be possible to tell
513 // whether submatch i matched the empty string or did not match:
514 // either way, submatch[i].data() == NULL.
515 bool Match(const StringPiece& text,
516 size_t startpos,
517 size_t endpos,
518 Anchor re_anchor,
519 StringPiece* submatch,
520 int nsubmatch) const;
521
522 // Check that the given rewrite string is suitable for use with this
523 // regular expression. It checks that:
524 // * The regular expression has enough parenthesized subexpressions
525 // to satisfy all of the \N tokens in rewrite
526 // * The rewrite string doesn't have any syntax errors. E.g.,
527 // '\' followed by anything other than a digit or '\'.
528 // A true return value guarantees that Replace() and Extract() won't
529 // fail because of a bad rewrite string.
530 bool CheckRewriteString(const StringPiece& rewrite,
531 std::string* error) const;
532
533 // Returns the maximum submatch needed for the rewrite to be done by
534 // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
535 static int MaxSubmatch(const StringPiece& rewrite);
536
537 // Append the "rewrite" string, with backslash subsitutions from "vec",
538 // to string "out".
539 // Returns true on success. This method can fail because of a malformed
540 // rewrite string. CheckRewriteString guarantees that the rewrite will
541 // be sucessful.
542 bool Rewrite(std::string* out,
543 const StringPiece& rewrite,
544 const StringPiece* vec,
545 int veclen) const;
546
547 // Constructor options
548 class Options {
549 public:
550 // The options are (defaults in parentheses):
551 //
552 // utf8 (true) text and pattern are UTF-8; otherwise Latin-1
553 // posix_syntax (false) restrict regexps to POSIX egrep syntax
554 // longest_match (false) search for longest match, not first match
555 // log_errors (true) log syntax and execution errors to ERROR
556 // max_mem (see below) approx. max memory footprint of RE2
557 // literal (false) interpret string as literal, not regexp
558 // never_nl (false) never match \n, even if it is in regexp
559 // dot_nl (false) dot matches everything including new line
560 // never_capture (false) parse all parens as non-capturing
561 // case_sensitive (true) match is case-sensitive (regexp can override
562 // with (?i) unless in posix_syntax mode)
563 //
564 // The following options are only consulted when posix_syntax == true.
565 // When posix_syntax == false, these features are always enabled and
566 // cannot be turned off; to perform multi-line matching in that case,
567 // begin the regexp with (?m).
568 // perl_classes (false) allow Perl's \d \s \w \D \S \W
569 // word_boundary (false) allow Perl's \b \B (word boundary and not)
570 // one_line (false) ^ and $ only match beginning and end of text
571 //
572 // The max_mem option controls how much memory can be used
573 // to hold the compiled form of the regexp (the Prog) and
574 // its cached DFA graphs. Code Search placed limits on the number
575 // of Prog instructions and DFA states: 10,000 for both.
576 // In RE2, those limits would translate to about 240 KB per Prog
577 // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
578 // better job of keeping them small than Code Search did).
579 // Each RE2 has two Progs (one forward, one reverse), and each Prog
580 // can have two DFAs (one first match, one longest match).
581 // That makes 4 DFAs:
582 //
583 // forward, first-match - used for UNANCHORED or ANCHOR_START searches
584 // if opt.longest_match() == false
585 // forward, longest-match - used for all ANCHOR_BOTH searches,
586 // and the other two kinds if
587 // opt.longest_match() == true
588 // reverse, first-match - never used
589 // reverse, longest-match - used as second phase for unanchored searches
590 //
591 // The RE2 memory budget is statically divided between the two
592 // Progs and then the DFAs: two thirds to the forward Prog
593 // and one third to the reverse Prog. The forward Prog gives half
594 // of what it has left over to each of its DFAs. The reverse Prog
595 // gives it all to its longest-match DFA.
596 //
597 // Once a DFA fills its budget, it flushes its cache and starts over.
598 // If this happens too often, RE2 falls back on the NFA implementation.
599
600 // For now, make the default budget something close to Code Search.
601 static const int kDefaultMaxMem = 8<<20;
602
603 enum Encoding {
604 EncodingUTF8 = 1,
605 EncodingLatin1
606 };
607
Options()608 Options() :
609 encoding_(EncodingUTF8),
610 posix_syntax_(false),
611 longest_match_(false),
612 log_errors_(true),
613 max_mem_(kDefaultMaxMem),
614 literal_(false),
615 never_nl_(false),
616 dot_nl_(false),
617 never_capture_(false),
618 case_sensitive_(true),
619 perl_classes_(false),
620 word_boundary_(false),
621 one_line_(false) {
622 }
623
624 /*implicit*/ Options(CannedOptions);
625
encoding()626 Encoding encoding() const { return encoding_; }
set_encoding(Encoding encoding)627 void set_encoding(Encoding encoding) { encoding_ = encoding; }
628
629 // Legacy interface to encoding.
630 // TODO(rsc): Remove once clients have been converted.
utf8()631 bool utf8() const { return encoding_ == EncodingUTF8; }
set_utf8(bool b)632 void set_utf8(bool b) {
633 if (b) {
634 encoding_ = EncodingUTF8;
635 } else {
636 encoding_ = EncodingLatin1;
637 }
638 }
639
posix_syntax()640 bool posix_syntax() const { return posix_syntax_; }
set_posix_syntax(bool b)641 void set_posix_syntax(bool b) { posix_syntax_ = b; }
642
longest_match()643 bool longest_match() const { return longest_match_; }
set_longest_match(bool b)644 void set_longest_match(bool b) { longest_match_ = b; }
645
log_errors()646 bool log_errors() const { return log_errors_; }
set_log_errors(bool b)647 void set_log_errors(bool b) { log_errors_ = b; }
648
max_mem()649 int64_t max_mem() const { return max_mem_; }
set_max_mem(int64_t m)650 void set_max_mem(int64_t m) { max_mem_ = m; }
651
literal()652 bool literal() const { return literal_; }
set_literal(bool b)653 void set_literal(bool b) { literal_ = b; }
654
never_nl()655 bool never_nl() const { return never_nl_; }
set_never_nl(bool b)656 void set_never_nl(bool b) { never_nl_ = b; }
657
dot_nl()658 bool dot_nl() const { return dot_nl_; }
set_dot_nl(bool b)659 void set_dot_nl(bool b) { dot_nl_ = b; }
660
never_capture()661 bool never_capture() const { return never_capture_; }
set_never_capture(bool b)662 void set_never_capture(bool b) { never_capture_ = b; }
663
case_sensitive()664 bool case_sensitive() const { return case_sensitive_; }
set_case_sensitive(bool b)665 void set_case_sensitive(bool b) { case_sensitive_ = b; }
666
perl_classes()667 bool perl_classes() const { return perl_classes_; }
set_perl_classes(bool b)668 void set_perl_classes(bool b) { perl_classes_ = b; }
669
word_boundary()670 bool word_boundary() const { return word_boundary_; }
set_word_boundary(bool b)671 void set_word_boundary(bool b) { word_boundary_ = b; }
672
one_line()673 bool one_line() const { return one_line_; }
set_one_line(bool b)674 void set_one_line(bool b) { one_line_ = b; }
675
Copy(const Options & src)676 void Copy(const Options& src) {
677 *this = src;
678 }
679
680 int ParseFlags() const;
681
682 private:
683 Encoding encoding_;
684 bool posix_syntax_;
685 bool longest_match_;
686 bool log_errors_;
687 int64_t max_mem_;
688 bool literal_;
689 bool never_nl_;
690 bool dot_nl_;
691 bool never_capture_;
692 bool case_sensitive_;
693 bool perl_classes_;
694 bool word_boundary_;
695 bool one_line_;
696 };
697
698 // Returns the options set in the constructor.
options()699 const Options& options() const { return options_; }
700
701 // Argument converters; see below.
702 static inline Arg CRadix(short* x);
703 static inline Arg CRadix(unsigned short* x);
704 static inline Arg CRadix(int* x);
705 static inline Arg CRadix(unsigned int* x);
706 static inline Arg CRadix(long* x);
707 static inline Arg CRadix(unsigned long* x);
708 static inline Arg CRadix(long long* x);
709 static inline Arg CRadix(unsigned long long* x);
710
711 static inline Arg Hex(short* x);
712 static inline Arg Hex(unsigned short* x);
713 static inline Arg Hex(int* x);
714 static inline Arg Hex(unsigned int* x);
715 static inline Arg Hex(long* x);
716 static inline Arg Hex(unsigned long* x);
717 static inline Arg Hex(long long* x);
718 static inline Arg Hex(unsigned long long* x);
719
720 static inline Arg Octal(short* x);
721 static inline Arg Octal(unsigned short* x);
722 static inline Arg Octal(int* x);
723 static inline Arg Octal(unsigned int* x);
724 static inline Arg Octal(long* x);
725 static inline Arg Octal(unsigned long* x);
726 static inline Arg Octal(long long* x);
727 static inline Arg Octal(unsigned long long* x);
728
729 private:
730 void Init(const StringPiece& pattern, const Options& options);
731
732 bool DoMatch(const StringPiece& text,
733 Anchor re_anchor,
734 size_t* consumed,
735 const Arg* const args[],
736 int n) const;
737
738 re2::Prog* ReverseProg() const;
739
740 std::string pattern_; // string regular expression
741 Options options_; // option flags
742 std::string prefix_; // required prefix (before regexp_)
743 bool prefix_foldcase_; // prefix is ASCII case-insensitive
744 re2::Regexp* entire_regexp_; // parsed regular expression
745 re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed
746 re2::Prog* prog_; // compiled program for regexp
747 int num_captures_; // Number of capturing groups
748 bool is_one_pass_; // can use prog_->SearchOnePass?
749
750 mutable re2::Prog* rprog_; // reverse program for regexp
751 mutable const std::string* error_; // Error indicator
752 // (or points to empty string)
753 mutable ErrorCode error_code_; // Error code
754 mutable std::string error_arg_; // Fragment of regexp showing error
755
756 // Map from capture names to indices
757 mutable const std::map<std::string, int>* named_groups_;
758
759 // Map from capture indices to names
760 mutable const std::map<int, std::string>* group_names_;
761
762 // Onces for lazy computations.
763 mutable std::once_flag rprog_once_;
764 mutable std::once_flag named_groups_once_;
765 mutable std::once_flag group_names_once_;
766
767 RE2(const RE2&) = delete;
768 RE2& operator=(const RE2&) = delete;
769 };
770
771 /***** Implementation details *****/
772
773 // Hex/Octal/Binary?
774
775 // Special class for parsing into objects that define a ParseFrom() method
776 template <class T>
777 class _RE2_MatchObject {
778 public:
Parse(const char * str,size_t n,void * dest)779 static inline bool Parse(const char* str, size_t n, void* dest) {
780 if (dest == NULL) return true;
781 T* object = reinterpret_cast<T*>(dest);
782 return object->ParseFrom(str, n);
783 }
784 };
785
786 class RE2::Arg {
787 public:
788 // Empty constructor so we can declare arrays of RE2::Arg
789 Arg();
790
791 // Constructor specially designed for NULL arguments
792 Arg(void*);
793 Arg(std::nullptr_t);
794
795 typedef bool (*Parser)(const char* str, size_t n, void* dest);
796
797 // Type-specific parsers
798 #define MAKE_PARSER(type, name) \
799 Arg(type* p) : arg_(p), parser_(name) {} \
800 Arg(type* p, Parser parser) : arg_(p), parser_(parser) {}
801
MAKE_PARSER(char,parse_char)802 MAKE_PARSER(char, parse_char)
803 MAKE_PARSER(signed char, parse_schar)
804 MAKE_PARSER(unsigned char, parse_uchar)
805 MAKE_PARSER(float, parse_float)
806 MAKE_PARSER(double, parse_double)
807 MAKE_PARSER(std::string, parse_string)
808 MAKE_PARSER(StringPiece, parse_stringpiece)
809
810 MAKE_PARSER(short, parse_short)
811 MAKE_PARSER(unsigned short, parse_ushort)
812 MAKE_PARSER(int, parse_int)
813 MAKE_PARSER(unsigned int, parse_uint)
814 MAKE_PARSER(long, parse_long)
815 MAKE_PARSER(unsigned long, parse_ulong)
816 MAKE_PARSER(long long, parse_longlong)
817 MAKE_PARSER(unsigned long long, parse_ulonglong)
818
819 #undef MAKE_PARSER
820
821 // Generic constructor templates
822 template <class T> Arg(T* p)
823 : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { }
Arg(T * p,Parser parser)824 template <class T> Arg(T* p, Parser parser)
825 : arg_(p), parser_(parser) { }
826
827 // Parse the data
828 bool Parse(const char* str, size_t n) const;
829
830 private:
831 void* arg_;
832 Parser parser_;
833
834 static bool parse_null (const char* str, size_t n, void* dest);
835 static bool parse_char (const char* str, size_t n, void* dest);
836 static bool parse_schar (const char* str, size_t n, void* dest);
837 static bool parse_uchar (const char* str, size_t n, void* dest);
838 static bool parse_float (const char* str, size_t n, void* dest);
839 static bool parse_double (const char* str, size_t n, void* dest);
840 static bool parse_string (const char* str, size_t n, void* dest);
841 static bool parse_stringpiece (const char* str, size_t n, void* dest);
842
843 #define DECLARE_INTEGER_PARSER(name) \
844 private: \
845 static bool parse_##name(const char* str, size_t n, void* dest); \
846 static bool parse_##name##_radix(const char* str, size_t n, void* dest, \
847 int radix); \
848 \
849 public: \
850 static bool parse_##name##_hex(const char* str, size_t n, void* dest); \
851 static bool parse_##name##_octal(const char* str, size_t n, void* dest); \
852 static bool parse_##name##_cradix(const char* str, size_t n, void* dest);
853
854 DECLARE_INTEGER_PARSER(short)
855 DECLARE_INTEGER_PARSER(ushort)
856 DECLARE_INTEGER_PARSER(int)
857 DECLARE_INTEGER_PARSER(uint)
858 DECLARE_INTEGER_PARSER(long)
859 DECLARE_INTEGER_PARSER(ulong)
860 DECLARE_INTEGER_PARSER(longlong)
861 DECLARE_INTEGER_PARSER(ulonglong)
862
863 #undef DECLARE_INTEGER_PARSER
864
865 };
866
Arg()867 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
Arg(void * p)868 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
Arg(std::nullptr_t p)869 inline RE2::Arg::Arg(std::nullptr_t p) : arg_(p), parser_(parse_null) { }
870
Parse(const char * str,size_t n)871 inline bool RE2::Arg::Parse(const char* str, size_t n) const {
872 return (*parser_)(str, n, arg_);
873 }
874
875 // This part of the parser, appropriate only for ints, deals with bases
876 #define MAKE_INTEGER_PARSER(type, name) \
877 inline RE2::Arg RE2::Hex(type* ptr) { \
878 return RE2::Arg(ptr, RE2::Arg::parse_##name##_hex); \
879 } \
880 inline RE2::Arg RE2::Octal(type* ptr) { \
881 return RE2::Arg(ptr, RE2::Arg::parse_##name##_octal); \
882 } \
883 inline RE2::Arg RE2::CRadix(type* ptr) { \
884 return RE2::Arg(ptr, RE2::Arg::parse_##name##_cradix); \
885 }
886
MAKE_INTEGER_PARSER(short,short)887 MAKE_INTEGER_PARSER(short, short)
888 MAKE_INTEGER_PARSER(unsigned short, ushort)
889 MAKE_INTEGER_PARSER(int, int)
890 MAKE_INTEGER_PARSER(unsigned int, uint)
891 MAKE_INTEGER_PARSER(long, long)
892 MAKE_INTEGER_PARSER(unsigned long, ulong)
893 MAKE_INTEGER_PARSER(long long, longlong)
894 MAKE_INTEGER_PARSER(unsigned long long, ulonglong)
895
896 #undef MAKE_INTEGER_PARSER
897
898 #ifndef SWIG
899
900 // Silence warnings about missing initializers for members of LazyRE2.
901 // Note that we test for Clang first because it defines __GNUC__ as well.
902 #if defined(__clang__)
903 #elif defined(__GNUC__) && __GNUC__ >= 6
904 #pragma GCC diagnostic ignored "-Wmissing-field-initializers"
905 #endif
906
907 // Helper for writing global or static RE2s safely.
908 // Write
909 // static LazyRE2 re = {".*"};
910 // and then use *re instead of writing
911 // static RE2 re(".*");
912 // The former is more careful about multithreaded
913 // situations than the latter.
914 //
915 // N.B. This class never deletes the RE2 object that
916 // it constructs: that's a feature, so that it can be used
917 // for global and function static variables.
918 class LazyRE2 {
919 private:
920 struct NoArg {};
921
922 public:
923 typedef RE2 element_type; // support std::pointer_traits
924
925 // Constructor omitted to preserve braced initialization in C++98.
926
927 // Pretend to be a pointer to Type (never NULL due to on-demand creation):
928 RE2& operator*() const { return *get(); }
929 RE2* operator->() const { return get(); }
930
931 // Named accessor/initializer:
932 RE2* get() const {
933 std::call_once(once_, &LazyRE2::Init, this);
934 return ptr_;
935 }
936
937 // All data fields must be public to support {"foo"} initialization.
938 const char* pattern_;
939 RE2::CannedOptions options_;
940 NoArg barrier_against_excess_initializers_;
941
942 mutable RE2* ptr_;
943 mutable std::once_flag once_;
944
945 private:
946 static void Init(const LazyRE2* lazy_re2) {
947 lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_);
948 }
949
950 void operator=(const LazyRE2&); // disallowed
951 };
952 #endif // SWIG
953
954 } // namespace re2
955
956 using re2::RE2;
957 using re2::LazyRE2;
958
959 #endif // RE2_RE2_H_
960