1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkPathBuilder.h"
9 #include "include/core/SkRRect.h"
10 #include "include/private/SkPathRef.h"
11 #include "include/private/SkSafe32.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkPathPriv.h"
14 // need SkDVector
15 #include "src/pathops/SkPathOpsPoint.h"
16
SkPathBuilder()17 SkPathBuilder::SkPathBuilder() {
18 this->reset();
19 }
20
SkPathBuilder(SkPathFillType ft)21 SkPathBuilder::SkPathBuilder(SkPathFillType ft) {
22 this->reset();
23 fFillType = ft;
24 }
25
SkPathBuilder(const SkPath & src)26 SkPathBuilder::SkPathBuilder(const SkPath& src) {
27 *this = src;
28 }
29
~SkPathBuilder()30 SkPathBuilder::~SkPathBuilder() {
31 }
32
reset()33 SkPathBuilder& SkPathBuilder::reset() {
34 fPts.reset();
35 fVerbs.reset();
36 fConicWeights.reset();
37 fFillType = SkPathFillType::kWinding;
38 fIsVolatile = false;
39
40 // these are internal state
41
42 fSegmentMask = 0;
43 fLastMovePoint = {0, 0};
44 fLastMoveIndex = -1; // illegal
45 fNeedsMoveVerb = true;
46
47 // testing
48 fOverrideConvexity = SkPathConvexity::kUnknown;
49
50 return *this;
51 }
52
operator =(const SkPath & src)53 SkPathBuilder& SkPathBuilder::operator=(const SkPath& src) {
54 this->reset().setFillType(src.getFillType());
55
56 for (auto [verb, pts, w] : SkPathPriv::Iterate(src)) {
57 switch (verb) {
58 case SkPathVerb::kMove: this->moveTo(pts[0]); break;
59 case SkPathVerb::kLine: this->lineTo(pts[1]); break;
60 case SkPathVerb::kQuad: this->quadTo(pts[1], pts[2]); break;
61 case SkPathVerb::kConic: this->conicTo(pts[1], pts[2], w[0]); break;
62 case SkPathVerb::kCubic: this->cubicTo(pts[1], pts[2], pts[3]); break;
63 case SkPathVerb::kClose: this->close(); break;
64 }
65 }
66 return *this;
67 }
68
incReserve(int extraPtCount,int extraVbCount)69 void SkPathBuilder::incReserve(int extraPtCount, int extraVbCount) {
70 fPts.setReserve( Sk32_sat_add(fPts.count(), extraPtCount));
71 fVerbs.setReserve(Sk32_sat_add(fVerbs.count(), extraVbCount));
72 }
73
computeBounds() const74 SkRect SkPathBuilder::computeBounds() const {
75 SkRect bounds;
76 bounds.setBounds(fPts.begin(), fPts.count());
77 return bounds;
78 }
79
80 /*
81 * Some old behavior in SkPath -- should we keep it?
82 *
83 * After each edit (i.e. adding a verb)
84 this->setConvexityType(SkPathConvexity::kUnknown);
85 this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection);
86 */
87
moveTo(SkPoint pt)88 SkPathBuilder& SkPathBuilder::moveTo(SkPoint pt) {
89 // only needed while SkPath is mutable
90 fLastMoveIndex = SkToInt(fPts.size());
91
92 fPts.push_back(pt);
93 fVerbs.push_back((uint8_t)SkPathVerb::kMove);
94
95 fLastMovePoint = pt;
96 fNeedsMoveVerb = false;
97 return *this;
98 }
99
lineTo(SkPoint pt)100 SkPathBuilder& SkPathBuilder::lineTo(SkPoint pt) {
101 this->ensureMove();
102
103 fPts.push_back(pt);
104 fVerbs.push_back((uint8_t)SkPathVerb::kLine);
105
106 fSegmentMask |= kLine_SkPathSegmentMask;
107 return *this;
108 }
109
quadTo(SkPoint pt1,SkPoint pt2)110 SkPathBuilder& SkPathBuilder::quadTo(SkPoint pt1, SkPoint pt2) {
111 this->ensureMove();
112
113 SkPoint* p = fPts.append(2);
114 p[0] = pt1;
115 p[1] = pt2;
116 fVerbs.push_back((uint8_t)SkPathVerb::kQuad);
117
118 fSegmentMask |= kQuad_SkPathSegmentMask;
119 return *this;
120 }
121
conicTo(SkPoint pt1,SkPoint pt2,SkScalar w)122 SkPathBuilder& SkPathBuilder::conicTo(SkPoint pt1, SkPoint pt2, SkScalar w) {
123 this->ensureMove();
124
125 SkPoint* p = fPts.append(2);
126 p[0] = pt1;
127 p[1] = pt2;
128 fVerbs.push_back((uint8_t)SkPathVerb::kConic);
129 fConicWeights.push_back(w);
130
131 fSegmentMask |= kConic_SkPathSegmentMask;
132 return *this;
133 }
134
cubicTo(SkPoint pt1,SkPoint pt2,SkPoint pt3)135 SkPathBuilder& SkPathBuilder::cubicTo(SkPoint pt1, SkPoint pt2, SkPoint pt3) {
136 this->ensureMove();
137
138 SkPoint* p = fPts.append(3);
139 p[0] = pt1;
140 p[1] = pt2;
141 p[2] = pt3;
142 fVerbs.push_back((uint8_t)SkPathVerb::kCubic);
143
144 fSegmentMask |= kCubic_SkPathSegmentMask;
145 return *this;
146 }
147
close()148 SkPathBuilder& SkPathBuilder::close() {
149 if (fVerbs.count() > 0) {
150 this->ensureMove();
151
152 fVerbs.push_back((uint8_t)SkPathVerb::kClose);
153
154 // fLastMovePoint stays where it is -- the previous moveTo
155 fNeedsMoveVerb = true;
156 }
157 return *this;
158 }
159
160 ///////////////////////////////////////////////////////////////////////////////////////////
161
rLineTo(SkPoint p1)162 SkPathBuilder& SkPathBuilder::rLineTo(SkPoint p1) {
163 this->ensureMove();
164 return this->lineTo(fPts.back() + p1);
165 }
166
rQuadTo(SkPoint p1,SkPoint p2)167 SkPathBuilder& SkPathBuilder::rQuadTo(SkPoint p1, SkPoint p2) {
168 this->ensureMove();
169 SkPoint base = fPts.back();
170 return this->quadTo(base + p1, base + p2);
171 }
172
rConicTo(SkPoint p1,SkPoint p2,SkScalar w)173 SkPathBuilder& SkPathBuilder::rConicTo(SkPoint p1, SkPoint p2, SkScalar w) {
174 this->ensureMove();
175 SkPoint base = fPts.back();
176 return this->conicTo(base + p1, base + p2, w);
177 }
178
rCubicTo(SkPoint p1,SkPoint p2,SkPoint p3)179 SkPathBuilder& SkPathBuilder::rCubicTo(SkPoint p1, SkPoint p2, SkPoint p3) {
180 this->ensureMove();
181 SkPoint base = fPts.back();
182 return this->cubicTo(base + p1, base + p2, base + p3);
183 }
184
185 ///////////////////////////////////////////////////////////////////////////////////////////
186
make(sk_sp<SkPathRef> pr) const187 SkPath SkPathBuilder::make(sk_sp<SkPathRef> pr) const {
188 auto convexity = SkPathConvexity::kUnknown;
189 SkPathFirstDirection dir = SkPathFirstDirection::kUnknown;
190
191 switch (fIsA) {
192 case kIsA_Oval:
193 pr->setIsOval( true, fIsACCW, fIsAStart);
194 convexity = SkPathConvexity::kConvex;
195 dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
196 break;
197 case kIsA_RRect:
198 pr->setIsRRect(true, fIsACCW, fIsAStart);
199 convexity = SkPathConvexity::kConvex;
200 dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
201 break;
202 default: break;
203 }
204
205 if (fOverrideConvexity != SkPathConvexity::kUnknown) {
206 convexity = fOverrideConvexity;
207 }
208
209 // Wonder if we can combine convexity and dir internally...
210 // unknown, convex_cw, convex_ccw, concave
211 // Do we ever have direction w/o convexity, or viceversa (inside path)?
212 //
213 auto path = SkPath(std::move(pr), fFillType, fIsVolatile, convexity, dir);
214
215 // This hopefully can go away in the future when Paths are immutable,
216 // but if while they are still editable, we need to correctly set this.
217 const uint8_t* start = path.fPathRef->verbsBegin();
218 const uint8_t* stop = path.fPathRef->verbsEnd();
219 if (start < stop) {
220 SkASSERT(fLastMoveIndex >= 0);
221 // peek at the last verb, to know if our last contour is closed
222 const bool isClosed = (stop[-1] == (uint8_t)SkPathVerb::kClose);
223 path.fLastMoveToIndex = isClosed ? ~fLastMoveIndex : fLastMoveIndex;
224 }
225
226 return path;
227 }
228
snapshot() const229 SkPath SkPathBuilder::snapshot() const {
230 return this->make(sk_sp<SkPathRef>(new SkPathRef(fPts,
231 fVerbs,
232 fConicWeights,
233 fSegmentMask)));
234 }
235
detach()236 SkPath SkPathBuilder::detach() {
237 auto path = this->make(sk_sp<SkPathRef>(new SkPathRef(std::move(fPts),
238 std::move(fVerbs),
239 std::move(fConicWeights),
240 fSegmentMask)));
241 this->reset();
242 return path;
243 }
244
245 ///////////////////////////////////////////////////////////////////////////////////////////////////
246
arc_is_lone_point(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle,SkPoint * pt)247 static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
248 SkPoint* pt) {
249 if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) {
250 // Chrome uses this path to move into and out of ovals. If not
251 // treated as a special case the moves can distort the oval's
252 // bounding box (and break the circle special case).
253 pt->set(oval.fRight, oval.centerY());
254 return true;
255 } else if (0 == oval.width() && 0 == oval.height()) {
256 // Chrome will sometimes create 0 radius round rects. Having degenerate
257 // quad segments in the path prevents the path from being recognized as
258 // a rect.
259 // TODO: optimizing the case where only one of width or height is zero
260 // should also be considered. This case, however, doesn't seem to be
261 // as common as the single point case.
262 pt->set(oval.fRight, oval.fTop);
263 return true;
264 }
265 return false;
266 }
267
268 // Return the unit vectors pointing at the start/stop points for the given start/sweep angles
269 //
angles_to_unit_vectors(SkScalar startAngle,SkScalar sweepAngle,SkVector * startV,SkVector * stopV,SkRotationDirection * dir)270 static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
271 SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
272 SkScalar startRad = SkDegreesToRadians(startAngle),
273 stopRad = SkDegreesToRadians(startAngle + sweepAngle);
274
275 startV->fY = SkScalarSinSnapToZero(startRad);
276 startV->fX = SkScalarCosSnapToZero(startRad);
277 stopV->fY = SkScalarSinSnapToZero(stopRad);
278 stopV->fX = SkScalarCosSnapToZero(stopRad);
279
280 /* If the sweep angle is nearly (but less than) 360, then due to precision
281 loss in radians-conversion and/or sin/cos, we may end up with coincident
282 vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
283 of drawing a nearly complete circle (good).
284 e.g. canvas.drawArc(0, 359.99, ...)
285 -vs- canvas.drawArc(0, 359.9, ...)
286 We try to detect this edge case, and tweak the stop vector
287 */
288 if (*startV == *stopV) {
289 SkScalar sw = SkScalarAbs(sweepAngle);
290 if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
291 // make a guess at a tiny angle (in radians) to tweak by
292 SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle);
293 // not sure how much will be enough, so we use a loop
294 do {
295 stopRad -= deltaRad;
296 stopV->fY = SkScalarSinSnapToZero(stopRad);
297 stopV->fX = SkScalarCosSnapToZero(stopRad);
298 } while (*startV == *stopV);
299 }
300 }
301 *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
302 }
303
304 /**
305 * If this returns 0, then the caller should just line-to the singlePt, else it should
306 * ignore singlePt and append the specified number of conics.
307 */
build_arc_conics(const SkRect & oval,const SkVector & start,const SkVector & stop,SkRotationDirection dir,SkConic conics[SkConic::kMaxConicsForArc],SkPoint * singlePt)308 static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
309 SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc],
310 SkPoint* singlePt) {
311 SkMatrix matrix;
312
313 matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
314 matrix.postTranslate(oval.centerX(), oval.centerY());
315
316 int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
317 if (0 == count) {
318 matrix.mapXY(stop.x(), stop.y(), singlePt);
319 }
320 return count;
321 }
322
nearly_equal(const SkPoint & a,const SkPoint & b)323 static bool nearly_equal(const SkPoint& a, const SkPoint& b) {
324 return SkScalarNearlyEqual(a.fX, b.fX)
325 && SkScalarNearlyEqual(a.fY, b.fY);
326 }
327
arcTo(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle,bool forceMoveTo)328 SkPathBuilder& SkPathBuilder::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
329 bool forceMoveTo) {
330 if (oval.width() < 0 || oval.height() < 0) {
331 return *this;
332 }
333
334 if (fVerbs.count() == 0) {
335 forceMoveTo = true;
336 }
337
338 SkPoint lonePt;
339 if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) {
340 return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt);
341 }
342
343 SkVector startV, stopV;
344 SkRotationDirection dir;
345 angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);
346
347 SkPoint singlePt;
348
349 // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently
350 // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous
351 // arcs from the same oval.
352 auto addPt = [forceMoveTo, this](const SkPoint& pt) {
353 if (forceMoveTo) {
354 this->moveTo(pt);
355 } else if (!nearly_equal(fPts.back(), pt)) {
356 this->lineTo(pt);
357 }
358 };
359
360 // At this point, we know that the arc is not a lone point, but startV == stopV
361 // indicates that the sweepAngle is too small such that angles_to_unit_vectors
362 // cannot handle it.
363 if (startV == stopV) {
364 SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle);
365 SkScalar radiusX = oval.width() / 2;
366 SkScalar radiusY = oval.height() / 2;
367 // We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle
368 // is very small and radius is huge, the expected behavior here is to draw a line. But
369 // calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot.
370 singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle),
371 oval.centerY() + radiusY * SkScalarSin(endAngle));
372 addPt(singlePt);
373 return *this;
374 }
375
376 SkConic conics[SkConic::kMaxConicsForArc];
377 int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt);
378 if (count) {
379 this->incReserve(count * 2 + 1);
380 const SkPoint& pt = conics[0].fPts[0];
381 addPt(pt);
382 for (int i = 0; i < count; ++i) {
383 this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
384 }
385 } else {
386 addPt(singlePt);
387 }
388 return *this;
389 }
390
addArc(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle)391 SkPathBuilder& SkPathBuilder::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {
392 if (oval.isEmpty() || 0 == sweepAngle) {
393 return *this;
394 }
395
396 const SkScalar kFullCircleAngle = SkIntToScalar(360);
397
398 if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) {
399 // We can treat the arc as an oval if it begins at one of our legal starting positions.
400 // See SkPath::addOval() docs.
401 SkScalar startOver90 = startAngle / 90.f;
402 SkScalar startOver90I = SkScalarRoundToScalar(startOver90);
403 SkScalar error = startOver90 - startOver90I;
404 if (SkScalarNearlyEqual(error, 0)) {
405 // Index 1 is at startAngle == 0.
406 SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f);
407 startIndex = startIndex < 0 ? startIndex + 4.f : startIndex;
408 return this->addOval(oval, sweepAngle > 0 ? SkPathDirection::kCW : SkPathDirection::kCCW,
409 (unsigned) startIndex);
410 }
411 }
412 return this->arcTo(oval, startAngle, sweepAngle, true);
413 }
414
arcTo(SkPoint p1,SkPoint p2,SkScalar radius)415 SkPathBuilder& SkPathBuilder::arcTo(SkPoint p1, SkPoint p2, SkScalar radius) {
416 this->ensureMove();
417
418 if (radius == 0) {
419 return this->lineTo(p1);
420 }
421
422 // need to know our prev pt so we can construct tangent vectors
423 SkPoint start = fPts.back();
424
425 // need double precision for these calcs.
426 SkDVector befored, afterd;
427 befored.set({p1.fX - start.fX, p1.fY - start.fY}).normalize();
428 afterd.set({p2.fX - p1.fX, p2.fY - p1.fY}).normalize();
429 double cosh = befored.dot(afterd);
430 double sinh = befored.cross(afterd);
431
432 if (!befored.isFinite() || !afterd.isFinite() || SkScalarNearlyZero(SkDoubleToScalar(sinh))) {
433 return this->lineTo(p1);
434 }
435
436 // safe to convert back to floats now
437 SkVector before = befored.asSkVector();
438 SkVector after = afterd.asSkVector();
439 SkScalar dist = SkScalarAbs(SkDoubleToScalar(radius * (1 - cosh) / sinh));
440 SkScalar xx = p1.fX - dist * before.fX;
441 SkScalar yy = p1.fY - dist * before.fY;
442 after.setLength(dist);
443 this->lineTo(xx, yy);
444 SkScalar weight = SkScalarSqrt(SkDoubleToScalar(SK_ScalarHalf + cosh * 0.5));
445 return this->conicTo(p1, p1 + after, weight);
446 }
447
448 // This converts the SVG arc to conics.
449 // Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
450 // Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic()
451 // See also SVG implementation notes:
452 // http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
453 // Note that arcSweep bool value is flipped from the original implementation.
arcTo(SkPoint rad,SkScalar angle,SkPathBuilder::ArcSize arcLarge,SkPathDirection arcSweep,SkPoint endPt)454 SkPathBuilder& SkPathBuilder::arcTo(SkPoint rad, SkScalar angle, SkPathBuilder::ArcSize arcLarge,
455 SkPathDirection arcSweep, SkPoint endPt) {
456 this->ensureMove();
457
458 SkPoint srcPts[2] = { fPts.back(), endPt };
459
460 // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto")
461 // joining the endpoints.
462 // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
463 if (!rad.fX || !rad.fY) {
464 return this->lineTo(endPt);
465 }
466 // If the current point and target point for the arc are identical, it should be treated as a
467 // zero length path. This ensures continuity in animations.
468 if (srcPts[0] == srcPts[1]) {
469 return this->lineTo(endPt);
470 }
471 SkScalar rx = SkScalarAbs(rad.fX);
472 SkScalar ry = SkScalarAbs(rad.fY);
473 SkVector midPointDistance = srcPts[0] - srcPts[1];
474 midPointDistance *= 0.5f;
475
476 SkMatrix pointTransform;
477 pointTransform.setRotate(-angle);
478
479 SkPoint transformedMidPoint;
480 pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1);
481 SkScalar squareRx = rx * rx;
482 SkScalar squareRy = ry * ry;
483 SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX;
484 SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY;
485
486 // Check if the radii are big enough to draw the arc, scale radii if not.
487 // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
488 SkScalar radiiScale = squareX / squareRx + squareY / squareRy;
489 if (radiiScale > 1) {
490 radiiScale = SkScalarSqrt(radiiScale);
491 rx *= radiiScale;
492 ry *= radiiScale;
493 }
494
495 pointTransform.setScale(1 / rx, 1 / ry);
496 pointTransform.preRotate(-angle);
497
498 SkPoint unitPts[2];
499 pointTransform.mapPoints(unitPts, srcPts, (int) SK_ARRAY_COUNT(unitPts));
500 SkVector delta = unitPts[1] - unitPts[0];
501
502 SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY;
503 SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f);
504
505 SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared);
506 if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation
507 scaleFactor = -scaleFactor;
508 }
509 delta.scale(scaleFactor);
510 SkPoint centerPoint = unitPts[0] + unitPts[1];
511 centerPoint *= 0.5f;
512 centerPoint.offset(-delta.fY, delta.fX);
513 unitPts[0] -= centerPoint;
514 unitPts[1] -= centerPoint;
515 SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX);
516 SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX);
517 SkScalar thetaArc = theta2 - theta1;
518 if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
519 thetaArc += SK_ScalarPI * 2;
520 } else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
521 thetaArc -= SK_ScalarPI * 2;
522 }
523
524 // Very tiny angles cause our subsequent math to go wonky (skbug.com/9272)
525 // so we do a quick check here. The precise tolerance amount is just made up.
526 // PI/million happens to fix the bug in 9272, but a larger value is probably
527 // ok too.
528 if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) {
529 return this->lineTo(endPt);
530 }
531
532 pointTransform.setRotate(angle);
533 pointTransform.preScale(rx, ry);
534
535 // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd
536 int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3)));
537 SkScalar thetaWidth = thetaArc / segments;
538 SkScalar t = SkScalarTan(0.5f * thetaWidth);
539 if (!SkScalarIsFinite(t)) {
540 return *this;
541 }
542 SkScalar startTheta = theta1;
543 SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf);
544 auto scalar_is_integer = [](SkScalar scalar) -> bool {
545 return scalar == SkScalarFloorToScalar(scalar);
546 };
547 bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) &&
548 scalar_is_integer(rx) && scalar_is_integer(ry) &&
549 scalar_is_integer(endPt.fX) && scalar_is_integer(endPt.fY);
550
551 for (int i = 0; i < segments; ++i) {
552 SkScalar endTheta = startTheta + thetaWidth,
553 sinEndTheta = SkScalarSinSnapToZero(endTheta),
554 cosEndTheta = SkScalarCosSnapToZero(endTheta);
555
556 unitPts[1].set(cosEndTheta, sinEndTheta);
557 unitPts[1] += centerPoint;
558 unitPts[0] = unitPts[1];
559 unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta);
560 SkPoint mapped[2];
561 pointTransform.mapPoints(mapped, unitPts, (int) SK_ARRAY_COUNT(unitPts));
562 /*
563 Computing the arc width introduces rounding errors that cause arcs to start
564 outside their marks. A round rect may lose convexity as a result. If the input
565 values are on integers, place the conic on integers as well.
566 */
567 if (expectIntegers) {
568 for (SkPoint& point : mapped) {
569 point.fX = SkScalarRoundToScalar(point.fX);
570 point.fY = SkScalarRoundToScalar(point.fY);
571 }
572 }
573 this->conicTo(mapped[0], mapped[1], w);
574 startTheta = endTheta;
575 }
576
577 #ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT
578 // The final point should match the input point (by definition); replace it to
579 // ensure that rounding errors in the above math don't cause any problems.
580 fPts.back() = endPt;
581 #endif
582 return *this;
583 }
584
585 ///////////////////////////////////////////////////////////////////////////////////////////
586
587 namespace {
588 template <unsigned N> class PointIterator {
589 public:
PointIterator(SkPathDirection dir,unsigned startIndex)590 PointIterator(SkPathDirection dir, unsigned startIndex)
591 : fCurrent(startIndex % N)
592 , fAdvance(dir == SkPathDirection::kCW ? 1 : N - 1)
593 {}
594
current() const595 const SkPoint& current() const {
596 SkASSERT(fCurrent < N);
597 return fPts[fCurrent];
598 }
599
next()600 const SkPoint& next() {
601 fCurrent = (fCurrent + fAdvance) % N;
602 return this->current();
603 }
604
605 protected:
606 SkPoint fPts[N];
607
608 private:
609 unsigned fCurrent;
610 unsigned fAdvance;
611 };
612
613 class RectPointIterator : public PointIterator<4> {
614 public:
RectPointIterator(const SkRect & rect,SkPathDirection dir,unsigned startIndex)615 RectPointIterator(const SkRect& rect, SkPathDirection dir, unsigned startIndex)
616 : PointIterator(dir, startIndex) {
617
618 fPts[0] = SkPoint::Make(rect.fLeft, rect.fTop);
619 fPts[1] = SkPoint::Make(rect.fRight, rect.fTop);
620 fPts[2] = SkPoint::Make(rect.fRight, rect.fBottom);
621 fPts[3] = SkPoint::Make(rect.fLeft, rect.fBottom);
622 }
623 };
624
625 class OvalPointIterator : public PointIterator<4> {
626 public:
OvalPointIterator(const SkRect & oval,SkPathDirection dir,unsigned startIndex)627 OvalPointIterator(const SkRect& oval, SkPathDirection dir, unsigned startIndex)
628 : PointIterator(dir, startIndex) {
629
630 const SkScalar cx = oval.centerX();
631 const SkScalar cy = oval.centerY();
632
633 fPts[0] = SkPoint::Make(cx, oval.fTop);
634 fPts[1] = SkPoint::Make(oval.fRight, cy);
635 fPts[2] = SkPoint::Make(cx, oval.fBottom);
636 fPts[3] = SkPoint::Make(oval.fLeft, cy);
637 }
638 };
639
640 class RRectPointIterator : public PointIterator<8> {
641 public:
RRectPointIterator(const SkRRect & rrect,SkPathDirection dir,unsigned startIndex)642 RRectPointIterator(const SkRRect& rrect, SkPathDirection dir, unsigned startIndex)
643 : PointIterator(dir, startIndex)
644 {
645 const SkRect& bounds = rrect.getBounds();
646 const SkScalar L = bounds.fLeft;
647 const SkScalar T = bounds.fTop;
648 const SkScalar R = bounds.fRight;
649 const SkScalar B = bounds.fBottom;
650
651 fPts[0] = SkPoint::Make(L + rrect.radii(SkRRect::kUpperLeft_Corner).fX, T);
652 fPts[1] = SkPoint::Make(R - rrect.radii(SkRRect::kUpperRight_Corner).fX, T);
653 fPts[2] = SkPoint::Make(R, T + rrect.radii(SkRRect::kUpperRight_Corner).fY);
654 fPts[3] = SkPoint::Make(R, B - rrect.radii(SkRRect::kLowerRight_Corner).fY);
655 fPts[4] = SkPoint::Make(R - rrect.radii(SkRRect::kLowerRight_Corner).fX, B);
656 fPts[5] = SkPoint::Make(L + rrect.radii(SkRRect::kLowerLeft_Corner).fX, B);
657 fPts[6] = SkPoint::Make(L, B - rrect.radii(SkRRect::kLowerLeft_Corner).fY);
658 fPts[7] = SkPoint::Make(L, T + rrect.radii(SkRRect::kUpperLeft_Corner).fY);
659 }
660 };
661 } // anonymous namespace
662
663
addRect(const SkRect & rect,SkPathDirection dir,unsigned index)664 SkPathBuilder& SkPathBuilder::addRect(const SkRect& rect, SkPathDirection dir, unsigned index) {
665 const int kPts = 4; // moveTo + 3 lines
666 const int kVerbs = 5; // moveTo + 3 lines + close
667 this->incReserve(kPts, kVerbs);
668
669 RectPointIterator iter(rect, dir, index);
670
671 this->moveTo(iter.current());
672 this->lineTo(iter.next());
673 this->lineTo(iter.next());
674 this->lineTo(iter.next());
675 return this->close();
676 }
677
addOval(const SkRect & oval,SkPathDirection dir,unsigned index)678 SkPathBuilder& SkPathBuilder::addOval(const SkRect& oval, SkPathDirection dir, unsigned index) {
679 const IsA prevIsA = fIsA;
680
681 const int kPts = 9; // moveTo + 4 conics(2 pts each)
682 const int kVerbs = 6; // moveTo + 4 conics + close
683 this->incReserve(kPts, kVerbs);
684
685 OvalPointIterator ovalIter(oval, dir, index);
686 RectPointIterator rectIter(oval, dir, index + (dir == SkPathDirection::kCW ? 0 : 1));
687
688 // The corner iterator pts are tracking "behind" the oval/radii pts.
689
690 this->moveTo(ovalIter.current());
691 for (unsigned i = 0; i < 4; ++i) {
692 this->conicTo(rectIter.next(), ovalIter.next(), SK_ScalarRoot2Over2);
693 }
694 this->close();
695
696 if (prevIsA == kIsA_JustMoves) {
697 fIsA = kIsA_Oval;
698 fIsACCW = (dir == SkPathDirection::kCCW);
699 fIsAStart = index % 4;
700 }
701 return *this;
702 }
703
addRRect(const SkRRect & rrect,SkPathDirection dir,unsigned index)704 SkPathBuilder& SkPathBuilder::addRRect(const SkRRect& rrect, SkPathDirection dir, unsigned index) {
705 const IsA prevIsA = fIsA;
706 const SkRect& bounds = rrect.getBounds();
707
708 if (rrect.isRect() || rrect.isEmpty()) {
709 // degenerate(rect) => radii points are collapsing
710 this->addRect(bounds, dir, (index + 1) / 2);
711 } else if (rrect.isOval()) {
712 // degenerate(oval) => line points are collapsing
713 this->addOval(bounds, dir, index / 2);
714 } else {
715 // we start with a conic on odd indices when moving CW vs. even indices when moving CCW
716 const bool startsWithConic = ((index & 1) == (dir == SkPathDirection::kCW));
717 const SkScalar weight = SK_ScalarRoot2Over2;
718
719 const int kVerbs = startsWithConic
720 ? 9 // moveTo + 4x conicTo + 3x lineTo + close
721 : 10; // moveTo + 4x lineTo + 4x conicTo + close
722 this->incReserve(kVerbs);
723
724 RRectPointIterator rrectIter(rrect, dir, index);
725 // Corner iterator indices follow the collapsed radii model,
726 // adjusted such that the start pt is "behind" the radii start pt.
727 const unsigned rectStartIndex = index / 2 + (dir == SkPathDirection::kCW ? 0 : 1);
728 RectPointIterator rectIter(bounds, dir, rectStartIndex);
729
730 this->moveTo(rrectIter.current());
731 if (startsWithConic) {
732 for (unsigned i = 0; i < 3; ++i) {
733 this->conicTo(rectIter.next(), rrectIter.next(), weight);
734 this->lineTo(rrectIter.next());
735 }
736 this->conicTo(rectIter.next(), rrectIter.next(), weight);
737 // final lineTo handled by close().
738 } else {
739 for (unsigned i = 0; i < 4; ++i) {
740 this->lineTo(rrectIter.next());
741 this->conicTo(rectIter.next(), rrectIter.next(), weight);
742 }
743 }
744 this->close();
745 }
746
747 if (prevIsA == kIsA_JustMoves) {
748 fIsA = kIsA_RRect;
749 fIsACCW = (dir == SkPathDirection::kCCW);
750 fIsAStart = index % 8;
751 }
752 return *this;
753 }
754
addCircle(SkScalar x,SkScalar y,SkScalar r,SkPathDirection dir)755 SkPathBuilder& SkPathBuilder::addCircle(SkScalar x, SkScalar y, SkScalar r, SkPathDirection dir) {
756 if (r >= 0) {
757 this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir);
758 }
759 return *this;
760 }
761
addPolygon(const SkPoint pts[],int count,bool isClosed)762 SkPathBuilder& SkPathBuilder::addPolygon(const SkPoint pts[], int count, bool isClosed) {
763 if (count <= 0) {
764 return *this;
765 }
766
767 this->moveTo(pts[0]);
768 this->polylineTo(&pts[1], count - 1);
769 if (isClosed) {
770 this->close();
771 }
772 return *this;
773 }
774
polylineTo(const SkPoint pts[],int count)775 SkPathBuilder& SkPathBuilder::polylineTo(const SkPoint pts[], int count) {
776 if (count > 0) {
777 this->ensureMove();
778
779 this->incReserve(count, count);
780 memcpy(fPts.append(count), pts, count * sizeof(SkPoint));
781 memset(fVerbs.append(count), (uint8_t)SkPathVerb::kLine, count);
782 fSegmentMask |= kLine_SkPathSegmentMask;
783 }
784 return *this;
785 }
786
787 //////////////////////////////////////////////////////////////////////////////////////////////////
788
offset(SkScalar dx,SkScalar dy)789 SkPathBuilder& SkPathBuilder::offset(SkScalar dx, SkScalar dy) {
790 for (auto& p : fPts) {
791 p += {dx, dy};
792 }
793 return *this;
794 }
795
addPath(const SkPath & src)796 SkPathBuilder& SkPathBuilder::addPath(const SkPath& src) {
797 SkPath::RawIter iter(src);
798 SkPoint pts[4];
799 SkPath::Verb verb;
800
801 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
802 switch (verb) {
803 case SkPath::kMove_Verb: this->moveTo (pts[0]); break;
804 case SkPath::kLine_Verb: this->lineTo (pts[1]); break;
805 case SkPath::kQuad_Verb: this->quadTo (pts[1], pts[2]); break;
806 case SkPath::kCubic_Verb: this->cubicTo(pts[1], pts[2], pts[3]); break;
807 case SkPath::kConic_Verb: this->conicTo(pts[1], pts[2], iter.conicWeight()); break;
808 case SkPath::kClose_Verb: this->close(); break;
809 case SkPath::kDone_Verb: SkUNREACHABLE;
810 }
811 }
812
813 return *this;
814 }
815
privateReverseAddPath(const SkPath & src)816 SkPathBuilder& SkPathBuilder::privateReverseAddPath(const SkPath& src) {
817
818 const uint8_t* verbsBegin = src.fPathRef->verbsBegin();
819 const uint8_t* verbs = src.fPathRef->verbsEnd();
820 const SkPoint* pts = src.fPathRef->pointsEnd();
821 const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd();
822
823 bool needMove = true;
824 bool needClose = false;
825 while (verbs > verbsBegin) {
826 uint8_t v = *--verbs;
827 int n = SkPathPriv::PtsInVerb(v);
828
829 if (needMove) {
830 --pts;
831 this->moveTo(pts->fX, pts->fY);
832 needMove = false;
833 }
834 pts -= n;
835 switch ((SkPathVerb)v) {
836 case SkPathVerb::kMove:
837 if (needClose) {
838 this->close();
839 needClose = false;
840 }
841 needMove = true;
842 pts += 1; // so we see the point in "if (needMove)" above
843 break;
844 case SkPathVerb::kLine:
845 this->lineTo(pts[0]);
846 break;
847 case SkPathVerb::kQuad:
848 this->quadTo(pts[1], pts[0]);
849 break;
850 case SkPathVerb::kConic:
851 this->conicTo(pts[1], pts[0], *--conicWeights);
852 break;
853 case SkPathVerb::kCubic:
854 this->cubicTo(pts[2], pts[1], pts[0]);
855 break;
856 case SkPathVerb::kClose:
857 needClose = true;
858 break;
859 default:
860 SkDEBUGFAIL("unexpected verb");
861 }
862 }
863 return *this;
864 }
865