1 // Copyright (c) 2017 The Khronos Group Inc.
2 // Copyright (c) 2017 Valve Corporation
3 // Copyright (c) 2017 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include "source/opt/mem_pass.h"
18
19 #include <memory>
20 #include <set>
21 #include <vector>
22
23 #include "OpenCLDebugInfo100.h"
24 #include "source/cfa.h"
25 #include "source/opt/basic_block.h"
26 #include "source/opt/dominator_analysis.h"
27 #include "source/opt/ir_context.h"
28 #include "source/opt/iterator.h"
29
30 namespace spvtools {
31 namespace opt {
32
33 namespace {
34
35 const uint32_t kCopyObjectOperandInIdx = 0;
36 const uint32_t kTypePointerStorageClassInIdx = 0;
37 const uint32_t kTypePointerTypeIdInIdx = 1;
38
39 } // namespace
40
IsBaseTargetType(const Instruction * typeInst) const41 bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
42 switch (typeInst->opcode()) {
43 case SpvOpTypeInt:
44 case SpvOpTypeFloat:
45 case SpvOpTypeBool:
46 case SpvOpTypeVector:
47 case SpvOpTypeMatrix:
48 case SpvOpTypeImage:
49 case SpvOpTypeSampler:
50 case SpvOpTypeSampledImage:
51 case SpvOpTypePointer:
52 return true;
53 default:
54 break;
55 }
56 return false;
57 }
58
IsTargetType(const Instruction * typeInst) const59 bool MemPass::IsTargetType(const Instruction* typeInst) const {
60 if (IsBaseTargetType(typeInst)) return true;
61 if (typeInst->opcode() == SpvOpTypeArray) {
62 if (!IsTargetType(
63 get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
64 return false;
65 }
66 return true;
67 }
68 if (typeInst->opcode() != SpvOpTypeStruct) return false;
69 // All struct members must be math type
70 return typeInst->WhileEachInId([this](const uint32_t* tid) {
71 Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
72 if (!IsTargetType(compTypeInst)) return false;
73 return true;
74 });
75 }
76
IsNonPtrAccessChain(const SpvOp opcode) const77 bool MemPass::IsNonPtrAccessChain(const SpvOp opcode) const {
78 return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
79 }
80
IsPtr(uint32_t ptrId)81 bool MemPass::IsPtr(uint32_t ptrId) {
82 uint32_t varId = ptrId;
83 Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
84 while (ptrInst->opcode() == SpvOpCopyObject) {
85 varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
86 ptrInst = get_def_use_mgr()->GetDef(varId);
87 }
88 const SpvOp op = ptrInst->opcode();
89 if (op == SpvOpVariable || IsNonPtrAccessChain(op)) return true;
90 if (op != SpvOpFunctionParameter) return false;
91 const uint32_t varTypeId = ptrInst->type_id();
92 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
93 return varTypeInst->opcode() == SpvOpTypePointer;
94 }
95
GetPtr(uint32_t ptrId,uint32_t * varId)96 Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
97 *varId = ptrId;
98 Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
99 Instruction* varInst;
100
101 if (ptrInst->opcode() == SpvOpConstantNull) {
102 *varId = 0;
103 return ptrInst;
104 }
105
106 if (ptrInst->opcode() != SpvOpVariable &&
107 ptrInst->opcode() != SpvOpFunctionParameter) {
108 varInst = ptrInst->GetBaseAddress();
109 } else {
110 varInst = ptrInst;
111 }
112 if (varInst->opcode() == SpvOpVariable) {
113 *varId = varInst->result_id();
114 } else {
115 *varId = 0;
116 }
117
118 while (ptrInst->opcode() == SpvOpCopyObject) {
119 uint32_t temp = ptrInst->GetSingleWordInOperand(0);
120 ptrInst = get_def_use_mgr()->GetDef(temp);
121 }
122
123 return ptrInst;
124 }
125
GetPtr(Instruction * ip,uint32_t * varId)126 Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
127 assert(ip->opcode() == SpvOpStore || ip->opcode() == SpvOpLoad ||
128 ip->opcode() == SpvOpImageTexelPointer || ip->IsAtomicWithLoad());
129
130 // All of these opcode place the pointer in position 0.
131 const uint32_t ptrId = ip->GetSingleWordInOperand(0);
132 return GetPtr(ptrId, varId);
133 }
134
HasOnlyNamesAndDecorates(uint32_t id) const135 bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
136 return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
137 SpvOp op = user->opcode();
138 if (op != SpvOpName && !IsNonTypeDecorate(op)) {
139 return false;
140 }
141 return true;
142 });
143 }
144
KillAllInsts(BasicBlock * bp,bool killLabel)145 void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
146 bp->KillAllInsts(killLabel);
147 }
148
HasLoads(uint32_t varId) const149 bool MemPass::HasLoads(uint32_t varId) const {
150 return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
151 SpvOp op = user->opcode();
152 // TODO(): The following is slightly conservative. Could be
153 // better handling of non-store/name.
154 if (IsNonPtrAccessChain(op) || op == SpvOpCopyObject) {
155 if (HasLoads(user->result_id())) {
156 return false;
157 }
158 } else if (op != SpvOpStore && op != SpvOpName && !IsNonTypeDecorate(op)) {
159 return false;
160 }
161 return true;
162 });
163 }
164
IsLiveVar(uint32_t varId) const165 bool MemPass::IsLiveVar(uint32_t varId) const {
166 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
167 // assume live if not a variable eg. function parameter
168 if (varInst->opcode() != SpvOpVariable) return true;
169 // non-function scope vars are live
170 const uint32_t varTypeId = varInst->type_id();
171 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
172 if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
173 SpvStorageClassFunction)
174 return true;
175 // test if variable is loaded from
176 return HasLoads(varId);
177 }
178
AddStores(uint32_t ptr_id,std::queue<Instruction * > * insts)179 void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
180 get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
181 SpvOp op = user->opcode();
182 if (IsNonPtrAccessChain(op)) {
183 AddStores(user->result_id(), insts);
184 } else if (op == SpvOpStore) {
185 insts->push(user);
186 }
187 });
188 }
189
DCEInst(Instruction * inst,const std::function<void (Instruction *)> & call_back)190 void MemPass::DCEInst(Instruction* inst,
191 const std::function<void(Instruction*)>& call_back) {
192 std::queue<Instruction*> deadInsts;
193 deadInsts.push(inst);
194 while (!deadInsts.empty()) {
195 Instruction* di = deadInsts.front();
196 // Don't delete labels
197 if (di->opcode() == SpvOpLabel) {
198 deadInsts.pop();
199 continue;
200 }
201 // Remember operands
202 std::set<uint32_t> ids;
203 di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
204 uint32_t varId = 0;
205 // Remember variable if dead load
206 if (di->opcode() == SpvOpLoad) (void)GetPtr(di, &varId);
207 if (call_back) {
208 call_back(di);
209 }
210 context()->KillInst(di);
211 // For all operands with no remaining uses, add their instruction
212 // to the dead instruction queue.
213 for (auto id : ids)
214 if (HasOnlyNamesAndDecorates(id)) {
215 Instruction* odi = get_def_use_mgr()->GetDef(id);
216 if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
217 }
218 // if a load was deleted and it was the variable's
219 // last load, add all its stores to dead queue
220 if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
221 deadInsts.pop();
222 }
223 }
224
MemPass()225 MemPass::MemPass() {}
226
HasOnlySupportedRefs(uint32_t varId)227 bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
228 return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
229 auto dbg_op = user->GetOpenCL100DebugOpcode();
230 if (dbg_op == OpenCLDebugInfo100DebugDeclare ||
231 dbg_op == OpenCLDebugInfo100DebugValue) {
232 return true;
233 }
234 SpvOp op = user->opcode();
235 if (op != SpvOpStore && op != SpvOpLoad && op != SpvOpName &&
236 !IsNonTypeDecorate(op)) {
237 return false;
238 }
239 return true;
240 });
241 }
242
Type2Undef(uint32_t type_id)243 uint32_t MemPass::Type2Undef(uint32_t type_id) {
244 const auto uitr = type2undefs_.find(type_id);
245 if (uitr != type2undefs_.end()) return uitr->second;
246 const uint32_t undefId = TakeNextId();
247 if (undefId == 0) {
248 return 0;
249 }
250
251 std::unique_ptr<Instruction> undef_inst(
252 new Instruction(context(), SpvOpUndef, type_id, undefId, {}));
253 get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
254 get_module()->AddGlobalValue(std::move(undef_inst));
255 type2undefs_[type_id] = undefId;
256 return undefId;
257 }
258
IsTargetVar(uint32_t varId)259 bool MemPass::IsTargetVar(uint32_t varId) {
260 if (varId == 0) {
261 return false;
262 }
263
264 if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
265 return false;
266 if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
267 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
268 if (varInst->opcode() != SpvOpVariable) return false;
269 const uint32_t varTypeId = varInst->type_id();
270 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
271 if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
272 SpvStorageClassFunction) {
273 seen_non_target_vars_.insert(varId);
274 return false;
275 }
276 const uint32_t varPteTypeId =
277 varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
278 Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
279 if (!IsTargetType(varPteTypeInst)) {
280 seen_non_target_vars_.insert(varId);
281 return false;
282 }
283 seen_target_vars_.insert(varId);
284 return true;
285 }
286
287 // Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
288 // |reachable_blocks|). There are two types of removal that this function can
289 // perform:
290 //
291 // 1- Any operand that comes directly from an unreachable block is completely
292 // removed. Since the block is unreachable, the edge between the unreachable
293 // block and the block holding |phi| has been removed.
294 //
295 // 2- Any operand that comes via a live block and was defined at an unreachable
296 // block gets its value replaced with an OpUndef value. Since the argument
297 // was generated in an unreachable block, it no longer exists, so it cannot
298 // be referenced. However, since the value does not reach |phi| directly
299 // from the unreachable block, the operand cannot be removed from |phi|.
300 // Therefore, we replace the argument value with OpUndef.
301 //
302 // For example, in the switch() below, assume that we want to remove the
303 // argument with value %11 coming from block %41.
304 //
305 // [ ... ]
306 // %41 = OpLabel <--- Unreachable block
307 // %11 = OpLoad %int %y
308 // [ ... ]
309 // OpSelectionMerge %16 None
310 // OpSwitch %12 %16 10 %13 13 %14 18 %15
311 // %13 = OpLabel
312 // OpBranch %16
313 // %14 = OpLabel
314 // OpStore %outparm %int_14
315 // OpBranch %16
316 // %15 = OpLabel
317 // OpStore %outparm %int_15
318 // OpBranch %16
319 // %16 = OpLabel
320 // %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
321 //
322 // Since %41 is now an unreachable block, the first operand of |phi| needs to
323 // be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
324 // removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
325 // in those arguments, we replace all references to %11 with an OpUndef value.
326 // This results in |phi| looking like:
327 //
328 // %50 = OpUndef %int
329 // [ ... ]
330 // %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
RemovePhiOperands(Instruction * phi,const std::unordered_set<BasicBlock * > & reachable_blocks)331 void MemPass::RemovePhiOperands(
332 Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
333 std::vector<Operand> keep_operands;
334 uint32_t type_id = 0;
335 // The id of an undefined value we've generated.
336 uint32_t undef_id = 0;
337
338 // Traverse all the operands in |phi|. Build the new operand vector by adding
339 // all the original operands from |phi| except the unwanted ones.
340 for (uint32_t i = 0; i < phi->NumOperands();) {
341 if (i < 2) {
342 // The first two arguments are always preserved.
343 keep_operands.push_back(phi->GetOperand(i));
344 ++i;
345 continue;
346 }
347
348 // The remaining Phi arguments come in pairs. Index 'i' contains the
349 // variable id, index 'i + 1' is the originating block id.
350 assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
351 "malformed Phi arguments");
352
353 BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
354 if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
355 // If the incoming block is unreachable, remove both operands as this
356 // means that the |phi| has lost an incoming edge.
357 i += 2;
358 continue;
359 }
360
361 // In all other cases, the operand must be kept but may need to be changed.
362 uint32_t arg_id = phi->GetSingleWordOperand(i);
363 Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
364 BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
365 if (def_block &&
366 reachable_blocks.find(def_block) == reachable_blocks.end()) {
367 // If the current |phi| argument was defined in an unreachable block, it
368 // means that this |phi| argument is no longer defined. Replace it with
369 // |undef_id|.
370 if (!undef_id) {
371 type_id = arg_def_instr->type_id();
372 undef_id = Type2Undef(type_id);
373 }
374 keep_operands.push_back(
375 Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
376 } else {
377 // Otherwise, the argument comes from a reachable block or from no block
378 // at all (meaning that it was defined in the global section of the
379 // program). In both cases, keep the argument intact.
380 keep_operands.push_back(phi->GetOperand(i));
381 }
382
383 keep_operands.push_back(phi->GetOperand(i + 1));
384
385 i += 2;
386 }
387
388 context()->ForgetUses(phi);
389 phi->ReplaceOperands(keep_operands);
390 context()->AnalyzeUses(phi);
391 }
392
RemoveBlock(Function::iterator * bi)393 void MemPass::RemoveBlock(Function::iterator* bi) {
394 auto& rm_block = **bi;
395
396 // Remove instructions from the block.
397 rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
398 // Note that we do not kill the block label instruction here. The label
399 // instruction is needed to identify the block, which is needed by the
400 // removal of phi operands.
401 if (inst != rm_block.GetLabelInst()) {
402 context()->KillInst(inst);
403 }
404 });
405
406 // Remove the label instruction last.
407 auto label = rm_block.GetLabelInst();
408 context()->KillInst(label);
409
410 *bi = bi->Erase();
411 }
412
RemoveUnreachableBlocks(Function * func)413 bool MemPass::RemoveUnreachableBlocks(Function* func) {
414 bool modified = false;
415
416 // Mark reachable all blocks reachable from the function's entry block.
417 std::unordered_set<BasicBlock*> reachable_blocks;
418 std::unordered_set<BasicBlock*> visited_blocks;
419 std::queue<BasicBlock*> worklist;
420 reachable_blocks.insert(func->entry().get());
421
422 // Initially mark the function entry point as reachable.
423 worklist.push(func->entry().get());
424
425 auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
426 this](uint32_t label_id) {
427 auto successor = cfg()->block(label_id);
428 if (visited_blocks.count(successor) == 0) {
429 reachable_blocks.insert(successor);
430 worklist.push(successor);
431 visited_blocks.insert(successor);
432 }
433 };
434
435 // Transitively mark all blocks reachable from the entry as reachable.
436 while (!worklist.empty()) {
437 BasicBlock* block = worklist.front();
438 worklist.pop();
439
440 // All the successors of a live block are also live.
441 static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
442 mark_reachable);
443
444 // All the Merge and ContinueTarget blocks of a live block are also live.
445 block->ForMergeAndContinueLabel(mark_reachable);
446 }
447
448 // Update operands of Phi nodes that reference unreachable blocks.
449 for (auto& block : *func) {
450 // If the block is about to be removed, don't bother updating its
451 // Phi instructions.
452 if (reachable_blocks.count(&block) == 0) {
453 continue;
454 }
455
456 // If the block is reachable and has Phi instructions, remove all
457 // operands from its Phi instructions that reference unreachable blocks.
458 // If the block has no Phi instructions, this is a no-op.
459 block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
460 RemovePhiOperands(phi, reachable_blocks);
461 });
462 }
463
464 // Erase unreachable blocks.
465 for (auto ebi = func->begin(); ebi != func->end();) {
466 if (reachable_blocks.count(&*ebi) == 0) {
467 RemoveBlock(&ebi);
468 modified = true;
469 } else {
470 ++ebi;
471 }
472 }
473
474 return modified;
475 }
476
CFGCleanup(Function * func)477 bool MemPass::CFGCleanup(Function* func) {
478 bool modified = false;
479 modified |= RemoveUnreachableBlocks(func);
480 return modified;
481 }
482
CollectTargetVars(Function * func)483 void MemPass::CollectTargetVars(Function* func) {
484 seen_target_vars_.clear();
485 seen_non_target_vars_.clear();
486 type2undefs_.clear();
487
488 // Collect target (and non-) variable sets. Remove variables with
489 // non-load/store refs from target variable set
490 for (auto& blk : *func) {
491 for (auto& inst : blk) {
492 switch (inst.opcode()) {
493 case SpvOpStore:
494 case SpvOpLoad: {
495 uint32_t varId;
496 (void)GetPtr(&inst, &varId);
497 if (!IsTargetVar(varId)) break;
498 if (HasOnlySupportedRefs(varId)) break;
499 seen_non_target_vars_.insert(varId);
500 seen_target_vars_.erase(varId);
501 } break;
502 default:
503 break;
504 }
505 }
506 }
507 }
508
509 } // namespace opt
510 } // namespace spvtools
511