1 /*
2 * Simultaneous authentication of equals
3 * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "utils/const_time.h"
13 #include "crypto/crypto.h"
14 #include "crypto/sha256.h"
15 #include "crypto/random.h"
16 #include "crypto/dh_groups.h"
17 #include "ieee802_11_defs.h"
18 #include "dragonfly.h"
19 #include "sae.h"
20
21
sae_set_group(struct sae_data * sae,int group)22 int sae_set_group(struct sae_data *sae, int group)
23 {
24 struct sae_temporary_data *tmp;
25
26 #ifdef CONFIG_TESTING_OPTIONS
27 /* Allow all groups for testing purposes in non-production builds. */
28 #else /* CONFIG_TESTING_OPTIONS */
29 if (!dragonfly_suitable_group(group, 0)) {
30 wpa_printf(MSG_DEBUG, "SAE: Reject unsuitable group %d", group);
31 return -1;
32 }
33 #endif /* CONFIG_TESTING_OPTIONS */
34
35 sae_clear_data(sae);
36 tmp = sae->tmp = os_zalloc(sizeof(*tmp));
37 if (tmp == NULL)
38 return -1;
39
40 /* First, check if this is an ECC group */
41 tmp->ec = crypto_ec_init(group);
42 if (tmp->ec) {
43 wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d",
44 group);
45 sae->group = group;
46 tmp->prime_len = crypto_ec_prime_len(tmp->ec);
47 tmp->prime = crypto_ec_get_prime(tmp->ec);
48 tmp->order_len = crypto_ec_order_len(tmp->ec);
49 tmp->order = crypto_ec_get_order(tmp->ec);
50 return 0;
51 }
52
53 /* Not an ECC group, check FFC */
54 tmp->dh = dh_groups_get(group);
55 if (tmp->dh) {
56 wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d",
57 group);
58 sae->group = group;
59 tmp->prime_len = tmp->dh->prime_len;
60 if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
61 sae_clear_data(sae);
62 return -1;
63 }
64
65 tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
66 tmp->prime_len);
67 if (tmp->prime_buf == NULL) {
68 sae_clear_data(sae);
69 return -1;
70 }
71 tmp->prime = tmp->prime_buf;
72
73 tmp->order_len = tmp->dh->order_len;
74 tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
75 tmp->dh->order_len);
76 if (tmp->order_buf == NULL) {
77 sae_clear_data(sae);
78 return -1;
79 }
80 tmp->order = tmp->order_buf;
81
82 return 0;
83 }
84
85 /* Unsupported group */
86 wpa_printf(MSG_DEBUG,
87 "SAE: Group %d not supported by the crypto library", group);
88 return -1;
89 }
90
91
sae_clear_temp_data(struct sae_data * sae)92 void sae_clear_temp_data(struct sae_data *sae)
93 {
94 struct sae_temporary_data *tmp;
95 if (sae == NULL || sae->tmp == NULL)
96 return;
97 tmp = sae->tmp;
98 crypto_ec_deinit(tmp->ec);
99 crypto_bignum_deinit(tmp->prime_buf, 0);
100 crypto_bignum_deinit(tmp->order_buf, 0);
101 crypto_bignum_deinit(tmp->sae_rand, 1);
102 crypto_bignum_deinit(tmp->pwe_ffc, 1);
103 crypto_bignum_deinit(tmp->own_commit_scalar, 0);
104 crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
105 crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
106 crypto_ec_point_deinit(tmp->pwe_ecc, 1);
107 crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
108 crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
109 wpabuf_free(tmp->anti_clogging_token);
110 os_free(tmp->pw_id);
111 bin_clear_free(tmp, sizeof(*tmp));
112 sae->tmp = NULL;
113 }
114
115
sae_clear_data(struct sae_data * sae)116 void sae_clear_data(struct sae_data *sae)
117 {
118 if (sae == NULL)
119 return;
120 sae_clear_temp_data(sae);
121 crypto_bignum_deinit(sae->peer_commit_scalar, 0);
122 os_memset(sae, 0, sizeof(*sae));
123 }
124
125
sae_pwd_seed_key(const u8 * addr1,const u8 * addr2,u8 * key)126 static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
127 {
128 wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
129 " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
130 if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
131 os_memcpy(key, addr1, ETH_ALEN);
132 os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
133 } else {
134 os_memcpy(key, addr2, ETH_ALEN);
135 os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
136 }
137 }
138
139
sae_test_pwd_seed_ecc(struct sae_data * sae,const u8 * pwd_seed,const u8 * prime,const u8 * qr,const u8 * qnr,u8 * pwd_value)140 static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
141 const u8 *prime, const u8 *qr, const u8 *qnr,
142 u8 *pwd_value)
143 {
144 struct crypto_bignum *y_sqr, *x_cand;
145 int res;
146 size_t bits;
147 int cmp_prime;
148 unsigned int in_range;
149
150 wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
151
152 /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
153 bits = crypto_ec_prime_len_bits(sae->tmp->ec);
154 if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
155 prime, sae->tmp->prime_len, pwd_value, bits) < 0)
156 return -1;
157 if (bits % 8)
158 buf_shift_right(pwd_value, sae->tmp->prime_len, 8 - bits % 8);
159 wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
160 pwd_value, sae->tmp->prime_len);
161
162 cmp_prime = const_time_memcmp(pwd_value, prime, sae->tmp->prime_len);
163 /* Create a const_time mask for selection based on prf result
164 * being smaller than prime. */
165 in_range = const_time_fill_msb((unsigned int) cmp_prime);
166 /* The algorithm description would skip the next steps if
167 * cmp_prime >= 0 (reutnr 0 here), but go through them regardless to
168 * minimize externally observable differences in behavior. */
169
170 x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
171 if (!x_cand)
172 return -1;
173 y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
174 crypto_bignum_deinit(x_cand, 1);
175 if (!y_sqr)
176 return -1;
177
178 res = dragonfly_is_quadratic_residue_blind(sae->tmp->ec, qr, qnr,
179 y_sqr);
180 crypto_bignum_deinit(y_sqr, 1);
181 if (res < 0)
182 return res;
183 return const_time_select_int(in_range, res, 0);
184 }
185
186
187 /* Returns -1 on fatal failure, 0 if PWE cannot be derived from the provided
188 * pwd-seed, or 1 if a valid PWE was derived from pwd-seed. */
sae_test_pwd_seed_ffc(struct sae_data * sae,const u8 * pwd_seed,struct crypto_bignum * pwe)189 static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
190 struct crypto_bignum *pwe)
191 {
192 u8 pwd_value[SAE_MAX_PRIME_LEN];
193 size_t bits = sae->tmp->prime_len * 8;
194 u8 exp[1];
195 struct crypto_bignum *a, *b = NULL;
196 int res, is_val;
197 u8 pwd_value_valid;
198
199 wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
200
201 /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
202 if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
203 sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
204 bits) < 0)
205 return -1;
206 wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
207 sae->tmp->prime_len);
208
209 /* Check whether pwd-value < p */
210 res = const_time_memcmp(pwd_value, sae->tmp->dh->prime,
211 sae->tmp->prime_len);
212 /* pwd-value >= p is invalid, so res is < 0 for the valid cases and
213 * the negative sign can be used to fill the mask for constant time
214 * selection */
215 pwd_value_valid = const_time_fill_msb(res);
216
217 /* If pwd-value >= p, force pwd-value to be < p and perform the
218 * calculations anyway to hide timing difference. The derived PWE will
219 * be ignored in that case. */
220 pwd_value[0] = const_time_select_u8(pwd_value_valid, pwd_value[0], 0);
221
222 /* PWE = pwd-value^((p-1)/r) modulo p */
223
224 res = -1;
225 a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
226 if (!a)
227 goto fail;
228
229 /* This is an optimization based on the used group that does not depend
230 * on the password in any way, so it is fine to use separate branches
231 * for this step without constant time operations. */
232 if (sae->tmp->dh->safe_prime) {
233 /*
234 * r = (p-1)/2 for the group used here, so this becomes:
235 * PWE = pwd-value^2 modulo p
236 */
237 exp[0] = 2;
238 b = crypto_bignum_init_set(exp, sizeof(exp));
239 } else {
240 /* Calculate exponent: (p-1)/r */
241 exp[0] = 1;
242 b = crypto_bignum_init_set(exp, sizeof(exp));
243 if (b == NULL ||
244 crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
245 crypto_bignum_div(b, sae->tmp->order, b) < 0)
246 goto fail;
247 }
248
249 if (!b)
250 goto fail;
251
252 res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
253 if (res < 0)
254 goto fail;
255
256 /* There were no fatal errors in calculations, so determine the return
257 * value using constant time operations. We get here for number of
258 * invalid cases which are cleared here after having performed all the
259 * computation. PWE is valid if pwd-value was less than prime and
260 * PWE > 1. Start with pwd-value check first and then use constant time
261 * operations to clear res to 0 if PWE is 0 or 1.
262 */
263 res = const_time_select_u8(pwd_value_valid, 1, 0);
264 is_val = crypto_bignum_is_zero(pwe);
265 res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
266 is_val = crypto_bignum_is_one(pwe);
267 res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
268
269 fail:
270 crypto_bignum_deinit(a, 1);
271 crypto_bignum_deinit(b, 1);
272 return res;
273 }
274
275
sae_derive_pwe_ecc(struct sae_data * sae,const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier)276 static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
277 const u8 *addr2, const u8 *password,
278 size_t password_len, const char *identifier)
279 {
280 u8 counter, k;
281 u8 addrs[2 * ETH_ALEN];
282 const u8 *addr[3];
283 size_t len[3];
284 size_t num_elem;
285 u8 *dummy_password, *tmp_password;
286 int pwd_seed_odd = 0;
287 u8 prime[SAE_MAX_ECC_PRIME_LEN];
288 size_t prime_len;
289 struct crypto_bignum *x = NULL, *y = NULL, *qr = NULL, *qnr = NULL;
290 u8 x_bin[SAE_MAX_ECC_PRIME_LEN];
291 u8 x_cand_bin[SAE_MAX_ECC_PRIME_LEN];
292 u8 qr_bin[SAE_MAX_ECC_PRIME_LEN];
293 u8 qnr_bin[SAE_MAX_ECC_PRIME_LEN];
294 u8 x_y[2 * SAE_MAX_ECC_PRIME_LEN];
295 int res = -1;
296 u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
297 * mask */
298 unsigned int is_eq;
299
300 os_memset(x_bin, 0, sizeof(x_bin));
301
302 dummy_password = os_malloc(password_len);
303 tmp_password = os_malloc(password_len);
304 if (!dummy_password || !tmp_password ||
305 random_get_bytes(dummy_password, password_len) < 0)
306 goto fail;
307
308 prime_len = sae->tmp->prime_len;
309 if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
310 prime_len) < 0)
311 goto fail;
312
313 /*
314 * Create a random quadratic residue (qr) and quadratic non-residue
315 * (qnr) modulo p for blinding purposes during the loop.
316 */
317 if (dragonfly_get_random_qr_qnr(sae->tmp->prime, &qr, &qnr) < 0 ||
318 crypto_bignum_to_bin(qr, qr_bin, sizeof(qr_bin), prime_len) < 0 ||
319 crypto_bignum_to_bin(qnr, qnr_bin, sizeof(qnr_bin), prime_len) < 0)
320 goto fail;
321
322 wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
323 password, password_len);
324 if (identifier)
325 wpa_printf(MSG_DEBUG, "SAE: password identifier: %s",
326 identifier);
327
328 /*
329 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
330 * base = password [|| identifier]
331 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
332 * base || counter)
333 */
334 sae_pwd_seed_key(addr1, addr2, addrs);
335
336 addr[0] = tmp_password;
337 len[0] = password_len;
338 num_elem = 1;
339 if (identifier) {
340 addr[num_elem] = (const u8 *) identifier;
341 len[num_elem] = os_strlen(identifier);
342 num_elem++;
343 }
344 addr[num_elem] = &counter;
345 len[num_elem] = sizeof(counter);
346 num_elem++;
347
348 /*
349 * Continue for at least k iterations to protect against side-channel
350 * attacks that attempt to determine the number of iterations required
351 * in the loop.
352 */
353 k = dragonfly_min_pwe_loop_iter(sae->group);
354
355 for (counter = 1; counter <= k || !found; counter++) {
356 u8 pwd_seed[SHA256_MAC_LEN];
357
358 if (counter > 200) {
359 /* This should not happen in practice */
360 wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
361 break;
362 }
363
364 wpa_printf(MSG_DEBUG, "SAE: counter = %03u", counter);
365 const_time_select_bin(found, dummy_password, password,
366 password_len, tmp_password);
367 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
368 addr, len, pwd_seed) < 0)
369 break;
370
371 res = sae_test_pwd_seed_ecc(sae, pwd_seed,
372 prime, qr_bin, qnr_bin, x_cand_bin);
373 const_time_select_bin(found, x_bin, x_cand_bin, prime_len,
374 x_bin);
375 pwd_seed_odd = const_time_select_u8(
376 found, pwd_seed_odd,
377 pwd_seed[SHA256_MAC_LEN - 1] & 0x01);
378 os_memset(pwd_seed, 0, sizeof(pwd_seed));
379 if (res < 0)
380 goto fail;
381 /* Need to minimize differences in handling res == 0 and 1 here
382 * to avoid differences in timing and instruction cache access,
383 * so use const_time_select_*() to make local copies of the
384 * values based on whether this loop iteration was the one that
385 * found the pwd-seed/x. */
386
387 /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
388 * (with res converted to 0/0xff) handles this in constant time.
389 */
390 found |= res * 0xff;
391 wpa_printf(MSG_DEBUG, "SAE: pwd-seed result %d found=0x%02x",
392 res, found);
393 }
394
395 if (!found) {
396 wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
397 res = -1;
398 goto fail;
399 }
400
401 x = crypto_bignum_init_set(x_bin, prime_len);
402 if (!x) {
403 res = -1;
404 goto fail;
405 }
406
407 /* y = sqrt(x^3 + ax + b) mod p
408 * if LSB(save) == LSB(y): PWE = (x, y)
409 * else: PWE = (x, p - y)
410 *
411 * Calculate y and the two possible values for PWE and after that,
412 * use constant time selection to copy the correct alternative.
413 */
414 y = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x);
415 if (!y ||
416 dragonfly_sqrt(sae->tmp->ec, y, y) < 0 ||
417 crypto_bignum_to_bin(y, x_y, SAE_MAX_ECC_PRIME_LEN,
418 prime_len) < 0 ||
419 crypto_bignum_sub(sae->tmp->prime, y, y) < 0 ||
420 crypto_bignum_to_bin(y, x_y + SAE_MAX_ECC_PRIME_LEN,
421 SAE_MAX_ECC_PRIME_LEN, prime_len) < 0) {
422 wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
423 goto fail;
424 }
425
426 is_eq = const_time_eq(pwd_seed_odd, x_y[prime_len - 1] & 0x01);
427 const_time_select_bin(is_eq, x_y, x_y + SAE_MAX_ECC_PRIME_LEN,
428 prime_len, x_y + prime_len);
429 os_memcpy(x_y, x_bin, prime_len);
430 wpa_hexdump_key(MSG_DEBUG, "SAE: PWE", x_y, 2 * prime_len);
431 crypto_ec_point_deinit(sae->tmp->pwe_ecc, 1);
432 sae->tmp->pwe_ecc = crypto_ec_point_from_bin(sae->tmp->ec, x_y);
433 if (!sae->tmp->pwe_ecc) {
434 wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
435 res = -1;
436 }
437
438 fail:
439 forced_memzero(x_y, sizeof(x_y));
440 crypto_bignum_deinit(qr, 0);
441 crypto_bignum_deinit(qnr, 0);
442 crypto_bignum_deinit(y, 1);
443 os_free(dummy_password);
444 bin_clear_free(tmp_password, password_len);
445 crypto_bignum_deinit(x, 1);
446 os_memset(x_bin, 0, sizeof(x_bin));
447 os_memset(x_cand_bin, 0, sizeof(x_cand_bin));
448
449 return res;
450 }
451
452
sae_derive_pwe_ffc(struct sae_data * sae,const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier)453 static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
454 const u8 *addr2, const u8 *password,
455 size_t password_len, const char *identifier)
456 {
457 u8 counter, k, sel_counter = 0;
458 u8 addrs[2 * ETH_ALEN];
459 const u8 *addr[3];
460 size_t len[3];
461 size_t num_elem;
462 u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
463 * mask */
464 u8 mask;
465 struct crypto_bignum *pwe;
466 size_t prime_len = sae->tmp->prime_len * 8;
467 u8 *pwe_buf;
468
469 crypto_bignum_deinit(sae->tmp->pwe_ffc, 1);
470 sae->tmp->pwe_ffc = NULL;
471
472 /* Allocate a buffer to maintain selected and candidate PWE for constant
473 * time selection. */
474 pwe_buf = os_zalloc(prime_len * 2);
475 pwe = crypto_bignum_init();
476 if (!pwe_buf || !pwe)
477 goto fail;
478
479 wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
480 password, password_len);
481
482 /*
483 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
484 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
485 * password [|| identifier] || counter)
486 */
487 sae_pwd_seed_key(addr1, addr2, addrs);
488
489 addr[0] = password;
490 len[0] = password_len;
491 num_elem = 1;
492 if (identifier) {
493 addr[num_elem] = (const u8 *) identifier;
494 len[num_elem] = os_strlen(identifier);
495 num_elem++;
496 }
497 addr[num_elem] = &counter;
498 len[num_elem] = sizeof(counter);
499 num_elem++;
500
501 k = dragonfly_min_pwe_loop_iter(sae->group);
502
503 for (counter = 1; counter <= k || !found; counter++) {
504 u8 pwd_seed[SHA256_MAC_LEN];
505 int res;
506
507 if (counter > 200) {
508 /* This should not happen in practice */
509 wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
510 break;
511 }
512
513 wpa_printf(MSG_DEBUG, "SAE: counter = %02u", counter);
514 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
515 addr, len, pwd_seed) < 0)
516 break;
517 res = sae_test_pwd_seed_ffc(sae, pwd_seed, pwe);
518 /* res is -1 for fatal failure, 0 if a valid PWE was not found,
519 * or 1 if a valid PWE was found. */
520 if (res < 0)
521 break;
522 /* Store the candidate PWE into the second half of pwe_buf and
523 * the selected PWE in the beginning of pwe_buf using constant
524 * time selection. */
525 if (crypto_bignum_to_bin(pwe, pwe_buf + prime_len, prime_len,
526 prime_len) < 0)
527 break;
528 const_time_select_bin(found, pwe_buf, pwe_buf + prime_len,
529 prime_len, pwe_buf);
530 sel_counter = const_time_select_u8(found, sel_counter, counter);
531 mask = const_time_eq_u8(res, 1);
532 found = const_time_select_u8(found, found, mask);
533 }
534
535 if (!found)
536 goto fail;
537
538 wpa_printf(MSG_DEBUG, "SAE: Use PWE from counter = %02u", sel_counter);
539 sae->tmp->pwe_ffc = crypto_bignum_init_set(pwe_buf, prime_len);
540 fail:
541 crypto_bignum_deinit(pwe, 1);
542 bin_clear_free(pwe_buf, prime_len * 2);
543 return sae->tmp->pwe_ffc ? 0 : -1;
544 }
545
546
sae_derive_commit_element_ecc(struct sae_data * sae,struct crypto_bignum * mask)547 static int sae_derive_commit_element_ecc(struct sae_data *sae,
548 struct crypto_bignum *mask)
549 {
550 /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
551 if (!sae->tmp->own_commit_element_ecc) {
552 sae->tmp->own_commit_element_ecc =
553 crypto_ec_point_init(sae->tmp->ec);
554 if (!sae->tmp->own_commit_element_ecc)
555 return -1;
556 }
557
558 if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
559 sae->tmp->own_commit_element_ecc) < 0 ||
560 crypto_ec_point_invert(sae->tmp->ec,
561 sae->tmp->own_commit_element_ecc) < 0) {
562 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
563 return -1;
564 }
565
566 return 0;
567 }
568
569
sae_derive_commit_element_ffc(struct sae_data * sae,struct crypto_bignum * mask)570 static int sae_derive_commit_element_ffc(struct sae_data *sae,
571 struct crypto_bignum *mask)
572 {
573 /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
574 if (!sae->tmp->own_commit_element_ffc) {
575 sae->tmp->own_commit_element_ffc = crypto_bignum_init();
576 if (!sae->tmp->own_commit_element_ffc)
577 return -1;
578 }
579
580 if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
581 sae->tmp->own_commit_element_ffc) < 0 ||
582 crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
583 sae->tmp->prime,
584 sae->tmp->own_commit_element_ffc) < 0) {
585 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
586 return -1;
587 }
588
589 return 0;
590 }
591
592
sae_derive_commit(struct sae_data * sae)593 static int sae_derive_commit(struct sae_data *sae)
594 {
595 struct crypto_bignum *mask;
596 int ret;
597
598 mask = crypto_bignum_init();
599 if (!sae->tmp->sae_rand)
600 sae->tmp->sae_rand = crypto_bignum_init();
601 if (!sae->tmp->own_commit_scalar)
602 sae->tmp->own_commit_scalar = crypto_bignum_init();
603 ret = !mask || !sae->tmp->sae_rand || !sae->tmp->own_commit_scalar ||
604 dragonfly_generate_scalar(sae->tmp->order, sae->tmp->sae_rand,
605 mask,
606 sae->tmp->own_commit_scalar) < 0 ||
607 (sae->tmp->ec &&
608 sae_derive_commit_element_ecc(sae, mask) < 0) ||
609 (sae->tmp->dh &&
610 sae_derive_commit_element_ffc(sae, mask) < 0);
611 crypto_bignum_deinit(mask, 1);
612 return ret ? -1 : 0;
613 }
614
615
sae_prepare_commit(const u8 * addr1,const u8 * addr2,const u8 * password,size_t password_len,const char * identifier,struct sae_data * sae)616 int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
617 const u8 *password, size_t password_len,
618 const char *identifier, struct sae_data *sae)
619 {
620 if (sae->tmp == NULL ||
621 (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
622 password_len,
623 identifier) < 0) ||
624 (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
625 password_len,
626 identifier) < 0) ||
627 sae_derive_commit(sae) < 0)
628 return -1;
629 return 0;
630 }
631
632
sae_derive_k_ecc(struct sae_data * sae,u8 * k)633 static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
634 {
635 struct crypto_ec_point *K;
636 int ret = -1;
637
638 K = crypto_ec_point_init(sae->tmp->ec);
639 if (K == NULL)
640 goto fail;
641
642 /*
643 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
644 * PEER-COMMIT-ELEMENT)))
645 * If K is identity element (point-at-infinity), reject
646 * k = F(K) (= x coordinate)
647 */
648
649 if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
650 sae->peer_commit_scalar, K) < 0 ||
651 crypto_ec_point_add(sae->tmp->ec, K,
652 sae->tmp->peer_commit_element_ecc, K) < 0 ||
653 crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
654 crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
655 crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
656 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
657 goto fail;
658 }
659
660 wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
661
662 ret = 0;
663 fail:
664 crypto_ec_point_deinit(K, 1);
665 return ret;
666 }
667
668
sae_derive_k_ffc(struct sae_data * sae,u8 * k)669 static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
670 {
671 struct crypto_bignum *K;
672 int ret = -1;
673
674 K = crypto_bignum_init();
675 if (K == NULL)
676 goto fail;
677
678 /*
679 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
680 * PEER-COMMIT-ELEMENT)))
681 * If K is identity element (one), reject.
682 * k = F(K) (= x coordinate)
683 */
684
685 if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
686 sae->tmp->prime, K) < 0 ||
687 crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
688 sae->tmp->prime, K) < 0 ||
689 crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
690 ||
691 crypto_bignum_is_one(K) ||
692 crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
693 0) {
694 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
695 goto fail;
696 }
697
698 wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
699
700 ret = 0;
701 fail:
702 crypto_bignum_deinit(K, 1);
703 return ret;
704 }
705
706
sae_derive_keys(struct sae_data * sae,const u8 * k)707 static int sae_derive_keys(struct sae_data *sae, const u8 *k)
708 {
709 u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
710 u8 keyseed[SHA256_MAC_LEN];
711 u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
712 struct crypto_bignum *tmp;
713 int ret = -1;
714
715 tmp = crypto_bignum_init();
716 if (tmp == NULL)
717 goto fail;
718
719 /* keyseed = H(<0>32, k)
720 * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
721 * (commit-scalar + peer-commit-scalar) modulo r)
722 * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
723 */
724
725 os_memset(null_key, 0, sizeof(null_key));
726 hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
727 keyseed);
728 wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
729
730 crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
731 tmp);
732 crypto_bignum_mod(tmp, sae->tmp->order, tmp);
733 /* IEEE Std 802.11-2016 is not exactly clear on the encoding of the bit
734 * string that is needed for KCK, PMK, and PMKID derivation, but it
735 * seems to make most sense to encode the
736 * (commit-scalar + peer-commit-scalar) mod r part as a bit string by
737 * zero padding it from left to the length of the order (in full
738 * octets). */
739 crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->order_len);
740 wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
741 if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
742 val, sae->tmp->order_len, keys, sizeof(keys)) < 0)
743 goto fail;
744 os_memset(keyseed, 0, sizeof(keyseed));
745 os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
746 os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
747 os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
748 os_memset(keys, 0, sizeof(keys));
749 wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
750 wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
751
752 ret = 0;
753 fail:
754 crypto_bignum_deinit(tmp, 0);
755 return ret;
756 }
757
758
sae_process_commit(struct sae_data * sae)759 int sae_process_commit(struct sae_data *sae)
760 {
761 u8 k[SAE_MAX_PRIME_LEN];
762 if (sae->tmp == NULL ||
763 (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
764 (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
765 sae_derive_keys(sae, k) < 0)
766 return -1;
767 return 0;
768 }
769
770
sae_write_commit(struct sae_data * sae,struct wpabuf * buf,const struct wpabuf * token,const char * identifier)771 void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
772 const struct wpabuf *token, const char *identifier)
773 {
774 u8 *pos;
775
776 if (sae->tmp == NULL)
777 return;
778
779 wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
780 if (token) {
781 wpabuf_put_buf(buf, token);
782 wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
783 wpabuf_head(token), wpabuf_len(token));
784 }
785 pos = wpabuf_put(buf, sae->tmp->prime_len);
786 crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
787 sae->tmp->prime_len, sae->tmp->prime_len);
788 wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
789 pos, sae->tmp->prime_len);
790 if (sae->tmp->ec) {
791 pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
792 crypto_ec_point_to_bin(sae->tmp->ec,
793 sae->tmp->own_commit_element_ecc,
794 pos, pos + sae->tmp->prime_len);
795 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
796 pos, sae->tmp->prime_len);
797 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
798 pos + sae->tmp->prime_len, sae->tmp->prime_len);
799 } else {
800 pos = wpabuf_put(buf, sae->tmp->prime_len);
801 crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
802 sae->tmp->prime_len, sae->tmp->prime_len);
803 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
804 pos, sae->tmp->prime_len);
805 }
806
807 if (identifier) {
808 /* Password Identifier element */
809 wpabuf_put_u8(buf, WLAN_EID_EXTENSION);
810 wpabuf_put_u8(buf, 1 + os_strlen(identifier));
811 wpabuf_put_u8(buf, WLAN_EID_EXT_PASSWORD_IDENTIFIER);
812 wpabuf_put_str(buf, identifier);
813 wpa_printf(MSG_DEBUG, "SAE: own Password Identifier: %s",
814 identifier);
815 }
816 }
817
818
sae_group_allowed(struct sae_data * sae,int * allowed_groups,u16 group)819 u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
820 {
821 if (allowed_groups) {
822 int i;
823 for (i = 0; allowed_groups[i] > 0; i++) {
824 if (allowed_groups[i] == group)
825 break;
826 }
827 if (allowed_groups[i] != group) {
828 wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
829 "enabled in the current configuration",
830 group);
831 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
832 }
833 }
834
835 if (sae->state == SAE_COMMITTED && group != sae->group) {
836 wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
837 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
838 }
839
840 if (group != sae->group && sae_set_group(sae, group) < 0) {
841 wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
842 group);
843 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
844 }
845
846 if (sae->tmp == NULL) {
847 wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
848 return WLAN_STATUS_UNSPECIFIED_FAILURE;
849 }
850
851 if (sae->tmp->dh && !allowed_groups) {
852 wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
853 "explicit configuration enabling it", group);
854 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
855 }
856
857 return WLAN_STATUS_SUCCESS;
858 }
859
860
sae_is_password_id_elem(const u8 * pos,const u8 * end)861 static int sae_is_password_id_elem(const u8 *pos, const u8 *end)
862 {
863 return end - pos >= 3 &&
864 pos[0] == WLAN_EID_EXTENSION &&
865 pos[1] >= 1 &&
866 end - pos - 2 >= pos[1] &&
867 pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER;
868 }
869
870
sae_parse_commit_token(struct sae_data * sae,const u8 ** pos,const u8 * end,const u8 ** token,size_t * token_len)871 static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
872 const u8 *end, const u8 **token,
873 size_t *token_len)
874 {
875 size_t scalar_elem_len, tlen;
876 const u8 *elem;
877
878 if (token)
879 *token = NULL;
880 if (token_len)
881 *token_len = 0;
882
883 scalar_elem_len = (sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len;
884 if (scalar_elem_len >= (size_t) (end - *pos))
885 return; /* No extra data beyond peer scalar and element */
886
887 /* It is a bit difficult to parse this now that there is an
888 * optional variable length Anti-Clogging Token field and
889 * optional variable length Password Identifier element in the
890 * frame. We are sending out fixed length Anti-Clogging Token
891 * fields, so use that length as a requirement for the received
892 * token and check for the presence of possible Password
893 * Identifier element based on the element header information.
894 */
895 tlen = end - (*pos + scalar_elem_len);
896
897 if (tlen < SHA256_MAC_LEN) {
898 wpa_printf(MSG_DEBUG,
899 "SAE: Too short optional data (%u octets) to include our Anti-Clogging Token",
900 (unsigned int) tlen);
901 return;
902 }
903
904 elem = *pos + scalar_elem_len;
905 if (sae_is_password_id_elem(elem, end)) {
906 /* Password Identifier element takes out all available
907 * extra octets, so there can be no Anti-Clogging token in
908 * this frame. */
909 return;
910 }
911
912 elem += SHA256_MAC_LEN;
913 if (sae_is_password_id_elem(elem, end)) {
914 /* Password Identifier element is included in the end, so
915 * remove its length from the Anti-Clogging token field. */
916 tlen -= 2 + elem[1];
917 }
918
919 wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
920 if (token)
921 *token = *pos;
922 if (token_len)
923 *token_len = tlen;
924 *pos += tlen;
925 }
926
927
sae_parse_commit_scalar(struct sae_data * sae,const u8 ** pos,const u8 * end)928 static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
929 const u8 *end)
930 {
931 struct crypto_bignum *peer_scalar;
932
933 if (sae->tmp->prime_len > end - *pos) {
934 wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
935 return WLAN_STATUS_UNSPECIFIED_FAILURE;
936 }
937
938 peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
939 if (peer_scalar == NULL)
940 return WLAN_STATUS_UNSPECIFIED_FAILURE;
941
942 /*
943 * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
944 * the peer and it is in Authenticated state, the new Commit Message
945 * shall be dropped if the peer-scalar is identical to the one used in
946 * the existing protocol instance.
947 */
948 if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
949 crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
950 wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
951 "peer-commit-scalar");
952 crypto_bignum_deinit(peer_scalar, 0);
953 return WLAN_STATUS_UNSPECIFIED_FAILURE;
954 }
955
956 /* 1 < scalar < r */
957 if (crypto_bignum_is_zero(peer_scalar) ||
958 crypto_bignum_is_one(peer_scalar) ||
959 crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
960 wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
961 crypto_bignum_deinit(peer_scalar, 0);
962 return WLAN_STATUS_UNSPECIFIED_FAILURE;
963 }
964
965
966 crypto_bignum_deinit(sae->peer_commit_scalar, 0);
967 sae->peer_commit_scalar = peer_scalar;
968 wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
969 *pos, sae->tmp->prime_len);
970 *pos += sae->tmp->prime_len;
971
972 return WLAN_STATUS_SUCCESS;
973 }
974
975
sae_parse_commit_element_ecc(struct sae_data * sae,const u8 ** pos,const u8 * end)976 static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 **pos,
977 const u8 *end)
978 {
979 u8 prime[SAE_MAX_ECC_PRIME_LEN];
980
981 if (2 * sae->tmp->prime_len > end - *pos) {
982 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
983 "commit-element");
984 return WLAN_STATUS_UNSPECIFIED_FAILURE;
985 }
986
987 if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
988 sae->tmp->prime_len) < 0)
989 return WLAN_STATUS_UNSPECIFIED_FAILURE;
990
991 /* element x and y coordinates < p */
992 if (os_memcmp(*pos, prime, sae->tmp->prime_len) >= 0 ||
993 os_memcmp(*pos + sae->tmp->prime_len, prime,
994 sae->tmp->prime_len) >= 0) {
995 wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
996 "element");
997 return WLAN_STATUS_UNSPECIFIED_FAILURE;
998 }
999
1000 wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
1001 *pos, sae->tmp->prime_len);
1002 wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
1003 *pos + sae->tmp->prime_len, sae->tmp->prime_len);
1004
1005 crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
1006 sae->tmp->peer_commit_element_ecc =
1007 crypto_ec_point_from_bin(sae->tmp->ec, *pos);
1008 if (sae->tmp->peer_commit_element_ecc == NULL)
1009 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1010
1011 if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
1012 sae->tmp->peer_commit_element_ecc)) {
1013 wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
1014 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1015 }
1016
1017 *pos += 2 * sae->tmp->prime_len;
1018
1019 return WLAN_STATUS_SUCCESS;
1020 }
1021
1022
sae_parse_commit_element_ffc(struct sae_data * sae,const u8 ** pos,const u8 * end)1023 static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 **pos,
1024 const u8 *end)
1025 {
1026 struct crypto_bignum *res, *one;
1027 const u8 one_bin[1] = { 0x01 };
1028
1029 if (sae->tmp->prime_len > end - *pos) {
1030 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1031 "commit-element");
1032 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1033 }
1034 wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", *pos,
1035 sae->tmp->prime_len);
1036
1037 crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
1038 sae->tmp->peer_commit_element_ffc =
1039 crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1040 if (sae->tmp->peer_commit_element_ffc == NULL)
1041 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1042 /* 1 < element < p - 1 */
1043 res = crypto_bignum_init();
1044 one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
1045 if (!res || !one ||
1046 crypto_bignum_sub(sae->tmp->prime, one, res) ||
1047 crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
1048 crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
1049 crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
1050 crypto_bignum_deinit(res, 0);
1051 crypto_bignum_deinit(one, 0);
1052 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
1053 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1054 }
1055 crypto_bignum_deinit(one, 0);
1056
1057 /* scalar-op(r, ELEMENT) = 1 modulo p */
1058 if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
1059 sae->tmp->order, sae->tmp->prime, res) < 0 ||
1060 !crypto_bignum_is_one(res)) {
1061 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
1062 crypto_bignum_deinit(res, 0);
1063 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1064 }
1065 crypto_bignum_deinit(res, 0);
1066
1067 *pos += sae->tmp->prime_len;
1068
1069 return WLAN_STATUS_SUCCESS;
1070 }
1071
1072
sae_parse_commit_element(struct sae_data * sae,const u8 ** pos,const u8 * end)1073 static u16 sae_parse_commit_element(struct sae_data *sae, const u8 **pos,
1074 const u8 *end)
1075 {
1076 if (sae->tmp->dh)
1077 return sae_parse_commit_element_ffc(sae, pos, end);
1078 return sae_parse_commit_element_ecc(sae, pos, end);
1079 }
1080
1081
sae_parse_password_identifier(struct sae_data * sae,const u8 * pos,const u8 * end)1082 static int sae_parse_password_identifier(struct sae_data *sae,
1083 const u8 *pos, const u8 *end)
1084 {
1085 wpa_hexdump(MSG_DEBUG, "SAE: Possible elements at the end of the frame",
1086 pos, end - pos);
1087 if (!sae_is_password_id_elem(pos, end)) {
1088 if (sae->tmp->pw_id) {
1089 wpa_printf(MSG_DEBUG,
1090 "SAE: No Password Identifier included, but expected one (%s)",
1091 sae->tmp->pw_id);
1092 return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1093 }
1094 os_free(sae->tmp->pw_id);
1095 sae->tmp->pw_id = NULL;
1096 return WLAN_STATUS_SUCCESS; /* No Password Identifier */
1097 }
1098
1099 if (sae->tmp->pw_id &&
1100 (pos[1] - 1 != (int) os_strlen(sae->tmp->pw_id) ||
1101 os_memcmp(sae->tmp->pw_id, pos + 3, pos[1] - 1) != 0)) {
1102 wpa_printf(MSG_DEBUG,
1103 "SAE: The included Password Identifier does not match the expected one (%s)",
1104 sae->tmp->pw_id);
1105 return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1106 }
1107
1108 os_free(sae->tmp->pw_id);
1109 sae->tmp->pw_id = os_malloc(pos[1]);
1110 if (!sae->tmp->pw_id)
1111 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1112 os_memcpy(sae->tmp->pw_id, pos + 3, pos[1] - 1);
1113 sae->tmp->pw_id[pos[1] - 1] = '\0';
1114 wpa_hexdump_ascii(MSG_DEBUG, "SAE: Received Password Identifier",
1115 sae->tmp->pw_id, pos[1] - 1);
1116 return WLAN_STATUS_SUCCESS;
1117 }
1118
1119
sae_parse_commit(struct sae_data * sae,const u8 * data,size_t len,const u8 ** token,size_t * token_len,int * allowed_groups)1120 u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
1121 const u8 **token, size_t *token_len, int *allowed_groups)
1122 {
1123 const u8 *pos = data, *end = data + len;
1124 u16 res;
1125
1126 /* Check Finite Cyclic Group */
1127 if (end - pos < 2)
1128 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1129 res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
1130 if (res != WLAN_STATUS_SUCCESS)
1131 return res;
1132 pos += 2;
1133
1134 /* Optional Anti-Clogging Token */
1135 sae_parse_commit_token(sae, &pos, end, token, token_len);
1136
1137 /* commit-scalar */
1138 res = sae_parse_commit_scalar(sae, &pos, end);
1139 if (res != WLAN_STATUS_SUCCESS)
1140 return res;
1141
1142 /* commit-element */
1143 res = sae_parse_commit_element(sae, &pos, end);
1144 if (res != WLAN_STATUS_SUCCESS)
1145 return res;
1146
1147 /* Optional Password Identifier element */
1148 res = sae_parse_password_identifier(sae, pos, end);
1149 if (res != WLAN_STATUS_SUCCESS)
1150 return res;
1151
1152 /*
1153 * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
1154 * the values we sent which would be evidence of a reflection attack.
1155 */
1156 if (!sae->tmp->own_commit_scalar ||
1157 crypto_bignum_cmp(sae->tmp->own_commit_scalar,
1158 sae->peer_commit_scalar) != 0 ||
1159 (sae->tmp->dh &&
1160 (!sae->tmp->own_commit_element_ffc ||
1161 crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
1162 sae->tmp->peer_commit_element_ffc) != 0)) ||
1163 (sae->tmp->ec &&
1164 (!sae->tmp->own_commit_element_ecc ||
1165 crypto_ec_point_cmp(sae->tmp->ec,
1166 sae->tmp->own_commit_element_ecc,
1167 sae->tmp->peer_commit_element_ecc) != 0)))
1168 return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
1169
1170 /*
1171 * This is a reflection attack - return special value to trigger caller
1172 * to silently discard the frame instead of replying with a specific
1173 * status code.
1174 */
1175 return SAE_SILENTLY_DISCARD;
1176 }
1177
1178
sae_cn_confirm(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const u8 * element1,size_t element1_len,const struct crypto_bignum * scalar2,const u8 * element2,size_t element2_len,u8 * confirm)1179 static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
1180 const struct crypto_bignum *scalar1,
1181 const u8 *element1, size_t element1_len,
1182 const struct crypto_bignum *scalar2,
1183 const u8 *element2, size_t element2_len,
1184 u8 *confirm)
1185 {
1186 const u8 *addr[5];
1187 size_t len[5];
1188 u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
1189
1190 /* Confirm
1191 * CN(key, X, Y, Z, ...) =
1192 * HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
1193 * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
1194 * peer-commit-scalar, PEER-COMMIT-ELEMENT)
1195 * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
1196 * PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
1197 */
1198 addr[0] = sc;
1199 len[0] = 2;
1200 crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
1201 sae->tmp->prime_len);
1202 addr[1] = scalar_b1;
1203 len[1] = sae->tmp->prime_len;
1204 addr[2] = element1;
1205 len[2] = element1_len;
1206 crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
1207 sae->tmp->prime_len);
1208 addr[3] = scalar_b2;
1209 len[3] = sae->tmp->prime_len;
1210 addr[4] = element2;
1211 len[4] = element2_len;
1212 hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
1213 confirm);
1214 }
1215
1216
sae_cn_confirm_ecc(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const struct crypto_ec_point * element1,const struct crypto_bignum * scalar2,const struct crypto_ec_point * element2,u8 * confirm)1217 static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
1218 const struct crypto_bignum *scalar1,
1219 const struct crypto_ec_point *element1,
1220 const struct crypto_bignum *scalar2,
1221 const struct crypto_ec_point *element2,
1222 u8 *confirm)
1223 {
1224 u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
1225 u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
1226
1227 crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
1228 element_b1 + sae->tmp->prime_len);
1229 crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
1230 element_b2 + sae->tmp->prime_len);
1231
1232 sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
1233 scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
1234 }
1235
1236
sae_cn_confirm_ffc(struct sae_data * sae,const u8 * sc,const struct crypto_bignum * scalar1,const struct crypto_bignum * element1,const struct crypto_bignum * scalar2,const struct crypto_bignum * element2,u8 * confirm)1237 static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
1238 const struct crypto_bignum *scalar1,
1239 const struct crypto_bignum *element1,
1240 const struct crypto_bignum *scalar2,
1241 const struct crypto_bignum *element2,
1242 u8 *confirm)
1243 {
1244 u8 element_b1[SAE_MAX_PRIME_LEN];
1245 u8 element_b2[SAE_MAX_PRIME_LEN];
1246
1247 crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
1248 sae->tmp->prime_len);
1249 crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
1250 sae->tmp->prime_len);
1251
1252 sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
1253 scalar2, element_b2, sae->tmp->prime_len, confirm);
1254 }
1255
1256
sae_write_confirm(struct sae_data * sae,struct wpabuf * buf)1257 void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
1258 {
1259 const u8 *sc;
1260
1261 if (sae->tmp == NULL)
1262 return;
1263
1264 /* Send-Confirm */
1265 sc = wpabuf_put(buf, 0);
1266 wpabuf_put_le16(buf, sae->send_confirm);
1267 if (sae->send_confirm < 0xffff)
1268 sae->send_confirm++;
1269
1270 if (sae->tmp->ec)
1271 sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
1272 sae->tmp->own_commit_element_ecc,
1273 sae->peer_commit_scalar,
1274 sae->tmp->peer_commit_element_ecc,
1275 wpabuf_put(buf, SHA256_MAC_LEN));
1276 else
1277 sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
1278 sae->tmp->own_commit_element_ffc,
1279 sae->peer_commit_scalar,
1280 sae->tmp->peer_commit_element_ffc,
1281 wpabuf_put(buf, SHA256_MAC_LEN));
1282 }
1283
1284
sae_check_confirm(struct sae_data * sae,const u8 * data,size_t len)1285 int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
1286 {
1287 u8 verifier[SHA256_MAC_LEN];
1288
1289 if (len < 2 + SHA256_MAC_LEN) {
1290 wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
1291 return -1;
1292 }
1293
1294 wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
1295
1296 if (!sae->tmp || !sae->peer_commit_scalar ||
1297 !sae->tmp->own_commit_scalar) {
1298 wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
1299 return -1;
1300 }
1301
1302 if (sae->tmp->ec) {
1303 if (!sae->tmp->peer_commit_element_ecc ||
1304 !sae->tmp->own_commit_element_ecc)
1305 return -1;
1306 sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
1307 sae->tmp->peer_commit_element_ecc,
1308 sae->tmp->own_commit_scalar,
1309 sae->tmp->own_commit_element_ecc,
1310 verifier);
1311 } else {
1312 if (!sae->tmp->peer_commit_element_ffc ||
1313 !sae->tmp->own_commit_element_ffc)
1314 return -1;
1315 sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
1316 sae->tmp->peer_commit_element_ffc,
1317 sae->tmp->own_commit_scalar,
1318 sae->tmp->own_commit_element_ffc,
1319 verifier);
1320 }
1321
1322 if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
1323 wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
1324 wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
1325 data + 2, SHA256_MAC_LEN);
1326 wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
1327 verifier, SHA256_MAC_LEN);
1328 return -1;
1329 }
1330
1331 return 0;
1332 }
1333
1334
sae_state_txt(enum sae_state state)1335 const char * sae_state_txt(enum sae_state state)
1336 {
1337 switch (state) {
1338 case SAE_NOTHING:
1339 return "Nothing";
1340 case SAE_COMMITTED:
1341 return "Committed";
1342 case SAE_CONFIRMED:
1343 return "Confirmed";
1344 case SAE_ACCEPTED:
1345 return "Accepted";
1346 }
1347 return "?";
1348 }
1349