• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017 Rockchip Electronics Co. Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/clk.h>
17 #include <linux/clk-provider.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/reset.h>
25 #include <linux/phy/phy.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/mfd/syscon.h>
28 
29 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
30 
31 /*
32  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
33  * is the first address, the other from the bit4 to bit0 is the second address.
34  * when you configure the registers, you must set both of them. The Clock Lane
35  * and Data Lane use the same registers with the same second address, but the
36  * first address is different.
37  */
38 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
39 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
40 #define INNO_PHY_REG(first, second)	(FIRST_ADDRESS(first) | \
41 					 SECOND_ADDRESS(second))
42 
43 /* Analog Register Part: reg00 */
44 #define BANDGAP_POWER_MASK		BIT(7)
45 #define BANDGAP_POWER_DOWN		BIT(7)
46 #define BANDGAP_POWER_ON		0
47 #define LANE_EN_MASK			GENMASK(6, 2)
48 #define LANE_EN_CK			BIT(6)
49 #define LANE_EN_3			BIT(5)
50 #define LANE_EN_2			BIT(4)
51 #define LANE_EN_1			BIT(3)
52 #define LANE_EN_0			BIT(2)
53 #define POWER_WORK_MASK			GENMASK(1, 0)
54 #define POWER_WORK_ENABLE		UPDATE(1, 1, 0)
55 #define POWER_WORK_DISABLE		UPDATE(2, 1, 0)
56 /* Analog Register Part: reg01 */
57 #define REG_SYNCRST_MASK		BIT(2)
58 #define REG_SYNCRST_RESET		BIT(2)
59 #define REG_SYNCRST_NORMAL		0
60 #define REG_LDOPD_MASK			BIT(1)
61 #define REG_LDOPD_POWER_DOWN		BIT(1)
62 #define REG_LDOPD_POWER_ON		0
63 #define REG_PLLPD_MASK			BIT(0)
64 #define REG_PLLPD_POWER_DOWN		BIT(0)
65 #define REG_PLLPD_POWER_ON		0
66 /* Analog Register Part: reg03 */
67 #define REG_FBDIV_HI_MASK		BIT(5)
68 #define REG_FBDIV_HI(x)			UPDATE(x, 5, 5)
69 #define REG_PREDIV_MASK			GENMASK(4, 0)
70 #define REG_PREDIV(x)			UPDATE(x, 4, 0)
71 /* Analog Register Part: reg04 */
72 #define REG_FBDIV_LO_MASK		GENMASK(7, 0)
73 #define REG_FBDIV_LO(x)			UPDATE(x, 7, 0)
74 /* Analog Register Part: reg05 */
75 #define CLK_LANE_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
76 #define CLK_LANE_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
77 /* Analog Register Part: reg06 */
78 #define LDO_OUTPUT_SET_HI_MASK		BIT(7)
79 #define LDO_OUTPUT_SET_HI(x)		UPDATE(x, 7, 7)
80 #define LANE_3_SKEW_PHASE_SET_MASK	GENMASK(6, 4)
81 #define LANE_3_SKEW_PHASE_SET(x)	UPDATE(x, 6, 4)
82 #define LDO_OUTPUT_SET_LO_MASK		BIT(3)
83 #define LDO_OUTPUT_SET_LO(x)		UPDATE(x, 3, 3)
84 #define LANE_2_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
85 #define LANE_2_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
86 /* Analog Register Part: reg07 */
87 #define PRE_EMPHASIS_RANGE_SET_HI_MASK	BIT(7)
88 #define PRE_EMPHASIS_RANGE_SET_HI(x)	UPDATE(x, 7, 7)
89 #define LANE_1_SKEW_PHASE_SET_MASK	GENMASK(6, 4)
90 #define LANE_1_SKEW_PHASE_SET(x)	UPDATE(x, 6, 4)
91 #define PRE_EMPHASIS_RANGE_SET_LO_MASK	BIT(3)
92 #define PRE_EMPHASIS_RANGE_SET_LO(x)	UPDATE(x, 3, 3)
93 #define LANE_0_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
94 #define LANE_0_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
95 /* Analog Register Part: reg08 */
96 #define PRE_EMPHASIS_ENABLE_MASK	BIT(7)
97 #define PRE_EMPHASIS_ENABLE		BIT(7)
98 #define PRE_EMPHASIS_DISABLE		0
99 #define PLL_POST_DIV_ENABLE_MASK	BIT(5)
100 #define PLL_POST_DIV_ENABLE		BIT(5)
101 #define PLL_POST_DIV_DISABLE		0
102 #define DATA_LANE_VOD_RANGE_SET_MASK	GENMASK(3, 0)
103 #define DATA_LANE_VOD_RANGE_SET(x)	UPDATE(x, 3, 0)
104 /* Analog Register Part: reg0b */
105 #define CLOCK_LANE_VOD_RANGE_SET_MASK	GENMASK(3, 0)
106 #define CLOCK_LANE_VOD_RANGE_SET(x)	UPDATE(x, 3, 0)
107 #define VOD_MIN_RANGE			0x1
108 #define VOD_MID_RANGE			0x3
109 #define VOD_BIG_RANGE			0x7
110 #define VOD_MAX_RANGE			0xf
111 /* Analog Register Part: reg11 */
112 #define DATA_SAMPLE_PHASE_SET_MASK	GENMASK(7, 6)
113 #define DATA_SAMPLE_PHASE_SET(x)	UPDATE(x, 7, 6)
114 /* Digital Register Part: reg00 */
115 #define REG_DIG_RSTN_MASK		BIT(0)
116 #define REG_DIG_RSTN_NORMAL		BIT(0)
117 #define REG_DIG_RSTN_RESET		0
118 /* Digital Register Part: reg01 */
119 #define INV_PIN_TXCLKESC_0_ENABLE_MASK	BIT(1)
120 #define INV_PIN_TXCLKESC_0_ENABLE	BIT(1)
121 #define INV_PIN_TXCLKESC_0_DISABLE	0
122 #define INV_PIN_TXBYTECLKHS_ENABLE_MASK	BIT(0)
123 #define INV_PIN_TXBYTECLKHS_ENABLE	BIT(0)
124 #define INV_PIN_TXBYTECLKHS_DISABLE	0
125 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg00 */
126 #define DIFF_SIGNAL_SWAP_ENABLE_MASK	BIT(4)
127 #define DIFF_SIGNAL_SWAP_ENABLE		BIT(4)
128 #define DIFF_SIGNAL_SWAP_DISABLE	0
129 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
130 #define T_LPX_CNT_MASK			GENMASK(5, 0)
131 #define T_LPX_CNT(x)			UPDATE(x, 5, 0)
132 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
133 #define T_HS_ZERO_CNT_HI_MASK		BIT(7)
134 #define T_HS_ZERO_CNT_HI(x)		UPDATE(x, 7, 7)
135 #define T_HS_PREPARE_CNT_MASK		GENMASK(6, 0)
136 #define T_HS_PREPARE_CNT(x)		UPDATE(x, 6, 0)
137 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
138 #define T_HS_ZERO_CNT_LO_MASK		GENMASK(5, 0)
139 #define T_HS_ZERO_CNT_LO(x)		UPDATE(x, 5, 0)
140 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
141 #define T_HS_TRAIL_CNT_MASK		GENMASK(6, 0)
142 #define T_HS_TRAIL_CNT(x)		UPDATE(x, 6, 0)
143 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
144 #define T_HS_EXIT_CNT_LO_MASK		GENMASK(4, 0)
145 #define T_HS_EXIT_CNT_LO(x)		UPDATE(x, 4, 0)
146 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
147 #define T_CLK_POST_CNT_LO_MASK		GENMASK(3, 0)
148 #define T_CLK_POST_CNT_LO(x)		UPDATE(x, 3, 0)
149 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
150 #define LPDT_TX_PPI_SYNC_ENABLE_MASK	BIT(2)
151 #define LPDT_TX_PPI_SYNC_ENABLE		BIT(2)
152 #define LPDT_TX_PPI_SYNC_DISABLE	0
153 #define T_WAKEUP_CNT_HI_MASK		GENMASK(1, 0)
154 #define T_WAKEUP_CNT_HI(x)		UPDATE(x, 1, 0)
155 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
156 #define T_WAKEUP_CNT_LO_MASK		GENMASK(7, 0)
157 #define T_WAKEUP_CNT_LO(x)		UPDATE(x, 7, 0)
158 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
159 #define T_CLK_PRE_CNT_MASK		GENMASK(3, 0)
160 #define T_CLK_PRE_CNT(x)		UPDATE(x, 3, 0)
161 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
162 #define T_CLK_POST_HI_MASK		GENMASK(7, 6)
163 #define T_CLK_POST_HI(x)		UPDATE(x, 7, 6)
164 #define T_TA_GO_CNT_MASK		GENMASK(5, 0)
165 #define T_TA_GO_CNT(x)			UPDATE(x, 5, 0)
166 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
167 #define T_HS_EXIT_CNT_HI_MASK		BIT(6)
168 #define T_HS_EXIT_CNT_HI(x)		UPDATE(x, 6, 6)
169 #define T_TA_SURE_CNT_MASK		GENMASK(5, 0)
170 #define T_TA_SURE_CNT(x)		UPDATE(x, 5, 0)
171 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
172 #define T_TA_WAIT_CNT_MASK		GENMASK(5, 0)
173 #define T_TA_WAIT_CNT(x)		UPDATE(x, 5, 0)
174 
175 #define PSEC_PER_NSEC	1000L
176 #define PSECS_PER_SEC	1000000000000LL
177 
178 enum inno_video_phy_functions {
179 	INNO_PHY_PADCTL_FUNC_MIPI,
180 	INNO_PHY_PADCTL_FUNC_LVDS,
181 	INNO_PHY_PADCTL_FUNC_TTL,
182 	INNO_PHY_PADCTL_FUNC_IDLE,
183 };
184 
185 struct mipi_dphy_timing {
186 	unsigned int clkmiss;
187 	unsigned int clkpost;
188 	unsigned int clkpre;
189 	unsigned int clkprepare;
190 	unsigned int clksettle;
191 	unsigned int clktermen;
192 	unsigned int clktrail;
193 	unsigned int clkzero;
194 	unsigned int dtermen;
195 	unsigned int eot;
196 	unsigned int hsexit;
197 	unsigned int hsprepare;
198 	unsigned int hszero;
199 	unsigned int hssettle;
200 	unsigned int hsskip;
201 	unsigned int hstrail;
202 	unsigned int init;
203 	unsigned int lpx;
204 	unsigned int taget;
205 	unsigned int tago;
206 	unsigned int tasure;
207 	unsigned int wakeup;
208 };
209 
210 struct inno_mipi_dphy_timing {
211 	unsigned int max_lane_mbps;
212 	u8 lpx;
213 	u8 hs_prepare;
214 	u8 clk_lane_hs_zero;
215 	u8 data_lane_hs_zero;
216 	u8 hs_trail;
217 };
218 
219 struct inno_mipi_dphy {
220 	struct device *dev;
221 	struct clk *ref_clk;
222 	struct clk *pclk;
223 	struct regmap *regmap;
224 	struct reset_control *rst;
225 	struct regmap *grf;
226 
227 	unsigned int lanes;
228 	unsigned long lane_rate;
229 
230 	struct {
231 		struct clk_hw hw;
232 		u8 prediv;
233 		u16 fbdiv;
234 	} pll;
235 };
236 
237 enum {
238 	REGISTER_PART_ANALOG,
239 	REGISTER_PART_DIGITAL,
240 	REGISTER_PART_CLOCK_LANE,
241 	REGISTER_PART_DATA0_LANE,
242 	REGISTER_PART_DATA1_LANE,
243 	REGISTER_PART_DATA2_LANE,
244 	REGISTER_PART_DATA3_LANE,
245 };
246 
247 static const
248 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table[] = {
249 	{ 110, 0x02, 0x7f, 0x16, 0x02, 0x02},
250 	{ 150, 0x02, 0x7f, 0x16, 0x03, 0x02},
251 	{ 200, 0x02, 0x7f, 0x17, 0x04, 0x02},
252 	{ 250, 0x02, 0x7f, 0x17, 0x05, 0x04},
253 	{ 300, 0x02, 0x7f, 0x18, 0x06, 0x04},
254 	{ 400, 0x03, 0x7e, 0x19, 0x07, 0x04},
255 	{ 500, 0x03, 0x7c, 0x1b, 0x07, 0x08},
256 	{ 600, 0x03, 0x70, 0x1d, 0x08, 0x10},
257 	{ 700, 0x05, 0x40, 0x1e, 0x08, 0x30},
258 	{ 800, 0x05, 0x02, 0x1f, 0x09, 0x30},
259 	{1000, 0x05, 0x08, 0x20, 0x09, 0x30},
260 	{1200, 0x06, 0x03, 0x32, 0x14, 0x0f},
261 	{1400, 0x09, 0x03, 0x32, 0x14, 0x0f},
262 	{1600, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
263 	{1800, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
264 	{2000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
265 	{2200, 0x13, 0x64, 0x7e, 0x15, 0x0b},
266 	{2400, 0x13, 0x33, 0x7f, 0x15, 0x6a},
267 	{2500, 0x15, 0x54, 0x7f, 0x15, 0x6a},
268 };
269 
hw_to_inno(struct clk_hw * hw)270 static inline struct inno_mipi_dphy *hw_to_inno(struct clk_hw *hw)
271 {
272 	return container_of(hw, struct inno_mipi_dphy, pll.hw);
273 }
274 
inno_update_bits(struct inno_mipi_dphy * inno,u8 first,u8 second,u8 mask,u8 val)275 static void inno_update_bits(struct inno_mipi_dphy *inno, u8 first, u8 second,
276 			     u8 mask, u8 val)
277 {
278 	u32 reg = INNO_PHY_REG(first, second) << 2;
279 
280 	regmap_update_bits(inno->regmap, reg, mask, val);
281 }
282 
inno_mipi_dphy_reset(struct inno_mipi_dphy * inno)283 static void inno_mipi_dphy_reset(struct inno_mipi_dphy *inno)
284 {
285 	/* Reset analog */
286 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
287 			 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
288 	udelay(1);
289 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
290 			 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
291 	/* Reset digital */
292 	inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
293 			 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
294 	udelay(1);
295 	inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
296 			 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
297 }
298 
inno_mipi_dphy_power_work_enable(struct inno_mipi_dphy * inno)299 static void inno_mipi_dphy_power_work_enable(struct inno_mipi_dphy *inno)
300 {
301 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
302 			 POWER_WORK_MASK, POWER_WORK_ENABLE);
303 }
304 
inno_mipi_dphy_power_work_disable(struct inno_mipi_dphy * inno)305 static void inno_mipi_dphy_power_work_disable(struct inno_mipi_dphy *inno)
306 {
307 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
308 			 POWER_WORK_MASK, POWER_WORK_DISABLE);
309 }
310 
inno_mipi_dphy_bandgap_power_enable(struct inno_mipi_dphy * inno)311 static void inno_mipi_dphy_bandgap_power_enable(struct inno_mipi_dphy *inno)
312 {
313 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
314 			 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
315 }
316 
inno_mipi_dphy_bandgap_power_disable(struct inno_mipi_dphy * inno)317 static void inno_mipi_dphy_bandgap_power_disable(struct inno_mipi_dphy *inno)
318 {
319 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
320 			 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
321 }
322 
inno_mipi_dphy_lane_enable(struct inno_mipi_dphy * inno)323 static void inno_mipi_dphy_lane_enable(struct inno_mipi_dphy *inno)
324 {
325 	u8 val = LANE_EN_CK;
326 
327 	switch (inno->lanes) {
328 	case 1:
329 		val |= LANE_EN_0;
330 		break;
331 	case 2:
332 		val |= LANE_EN_1 | LANE_EN_0;
333 		break;
334 	case 3:
335 		val |= LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
336 		break;
337 	case 4:
338 	default:
339 		val |= LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
340 		break;
341 	}
342 
343 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, val);
344 }
345 
inno_mipi_dphy_lane_disable(struct inno_mipi_dphy * inno)346 static void inno_mipi_dphy_lane_disable(struct inno_mipi_dphy *inno)
347 {
348 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
349 }
350 
inno_mipi_dphy_pll_enable(struct inno_mipi_dphy * inno)351 static void inno_mipi_dphy_pll_enable(struct inno_mipi_dphy *inno)
352 {
353 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
354 			 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
355 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
356 			 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
357 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
358 			 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
359 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
360 			 PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
361 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
362 			 CLOCK_LANE_VOD_RANGE_SET_MASK,
363 			 CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
364 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
365 			 REG_LDOPD_MASK | REG_PLLPD_MASK,
366 			 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
367 }
368 
inno_mipi_dphy_pll_disable(struct inno_mipi_dphy * inno)369 static void inno_mipi_dphy_pll_disable(struct inno_mipi_dphy *inno)
370 {
371 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
372 			 REG_LDOPD_MASK | REG_PLLPD_MASK,
373 			 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
374 }
375 
mipi_dphy_timing_get_default(struct mipi_dphy_timing * timing,unsigned long period)376 static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
377 					 unsigned long period)
378 {
379 	/* Global Operation Timing Parameters */
380 	timing->clkmiss = 0;
381 	/*
382 	 * The D-PHY spec define the clk post min time is 60ns + 52UI and
383 	 * no define max time, so we set 200 + 52UI leave move margin.
384 	 */
385 	timing->clkpost = 200 + 52 * period / PSEC_PER_NSEC;
386 	timing->clkpre = 8 * period / PSEC_PER_NSEC;
387 	timing->clkprepare = 65;
388 	timing->clksettle = 95;
389 	timing->clktermen = 0;
390 	timing->clktrail = 80;
391 	timing->clkzero = 260;
392 	timing->dtermen = 0;
393 	timing->eot = 0;
394 	timing->hsexit = 120;
395 	timing->hsprepare = 65 + 4 * period / PSEC_PER_NSEC;
396 	timing->hszero = 145 + 6 * period / PSEC_PER_NSEC;
397 	timing->hssettle = 85 + 6 * period / PSEC_PER_NSEC;
398 	timing->hsskip = 40;
399 	timing->hstrail = max(8 * period / PSEC_PER_NSEC,
400 			      60 + 4 * period / PSEC_PER_NSEC);
401 	timing->init = 100000;
402 	timing->lpx = 60;
403 	timing->taget = 5 * timing->lpx;
404 	timing->tago = 4 * timing->lpx;
405 	timing->tasure = 2 * timing->lpx;
406 	timing->wakeup = 1000000;
407 }
408 
409 static const struct inno_mipi_dphy_timing *
inno_mipi_dphy_get_timing(struct inno_mipi_dphy * inno)410 inno_mipi_dphy_get_timing(struct inno_mipi_dphy *inno)
411 {
412 	const struct inno_mipi_dphy_timing *timings;
413 	unsigned int num_timings;
414 	unsigned int lane_mbps = inno->lane_rate / USEC_PER_SEC;
415 	unsigned int i;
416 
417 	timings = inno_mipi_dphy_timing_table;
418 	num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
419 
420 	for (i = 0; i < num_timings; i++)
421 		if (lane_mbps <= timings[i].max_lane_mbps)
422 			break;
423 
424 	if (i == num_timings)
425 		--i;
426 
427 	return &timings[i];
428 }
429 
inno_mipi_dphy_timing_init(struct inno_mipi_dphy * inno)430 static void inno_mipi_dphy_timing_init(struct inno_mipi_dphy *inno)
431 {
432 	struct mipi_dphy_timing gotp;
433 	const struct inno_mipi_dphy_timing *timing;
434 	unsigned long txbyteclk, txclkesc, ui, sys_clk;
435 	unsigned int esc_clk_div;
436 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
437 	u32 hs_prepare, hs_trail, hs_zero;
438 	unsigned int i;
439 
440 	memset(&gotp, 0, sizeof(gotp));
441 
442 	txbyteclk = inno->lane_rate / 8;
443 	sys_clk = clk_get_rate(inno->pclk);
444 	esc_clk_div = DIV_ROUND_UP(txbyteclk, 20000000);
445 	txclkesc = txbyteclk / esc_clk_div;
446 	ui = DIV_ROUND_CLOSEST_ULL(PSECS_PER_SEC, inno->lane_rate);
447 
448 	dev_dbg(inno->dev, "txbyteclk=%ld, ui=%ld, sys_clk=%ld\n",
449 		txbyteclk, ui, sys_clk);
450 
451 	mipi_dphy_timing_get_default(&gotp, ui);
452 	timing = inno_mipi_dphy_get_timing(inno);
453 
454 	hs_exit = DIV_ROUND_UP(gotp.hsexit * txbyteclk, NSEC_PER_SEC);
455 	clk_post = DIV_ROUND_UP(gotp.clkpost * txbyteclk, NSEC_PER_SEC);
456 	clk_pre = DIV_ROUND_UP(gotp.clkpre * txbyteclk, NSEC_PER_SEC);
457 
458 	wakeup = DIV_ROUND_UP(gotp.wakeup * sys_clk, NSEC_PER_SEC);
459 	if (wakeup > 0x3ff)
460 		wakeup = 0x3ff;
461 
462 	ta_go = DIV_ROUND_UP(gotp.tago * txclkesc, NSEC_PER_SEC);
463 	ta_sure = DIV_ROUND_UP(gotp.tasure * txclkesc, NSEC_PER_SEC);
464 	ta_wait = DIV_ROUND_UP(gotp.taget * txclkesc, NSEC_PER_SEC);
465 
466 	lpx = timing->lpx;
467 	hs_prepare = timing->hs_prepare;
468 	hs_trail = timing->hs_trail;
469 
470 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
471 		if (i == REGISTER_PART_CLOCK_LANE)
472 			hs_zero = timing->clk_lane_hs_zero;
473 		else
474 			hs_zero = timing->data_lane_hs_zero;
475 
476 		dev_dbg(inno->dev, "lpx=%x\n", lpx);
477 		dev_dbg(inno->dev,
478 			"hs_trail=%x, hs_exit=%x, hs_prepare=%x, hs_zero=%x\n",
479 			hs_trail, hs_exit, hs_prepare, hs_zero);
480 		dev_dbg(inno->dev, "clk_pre=%x, clk_post=%x\n",
481 			clk_pre, clk_post);
482 		dev_dbg(inno->dev, "ta_go=%x, ta_sure=%x, ta_wait=%x\n",
483 			ta_go, ta_sure, ta_wait);
484 
485 		inno_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
486 				 T_LPX_CNT(lpx));
487 		inno_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
488 				 T_HS_PREPARE_CNT(hs_prepare));
489 		inno_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
490 				 T_HS_ZERO_CNT_HI(hs_zero >> 6));
491 		inno_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
492 				 T_HS_ZERO_CNT_LO(hs_zero));
493 		inno_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
494 				 T_HS_TRAIL_CNT(hs_trail));
495 		inno_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
496 				 T_HS_EXIT_CNT_HI(hs_exit >> 5));
497 		inno_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
498 				 T_HS_EXIT_CNT_LO(hs_exit));
499 		inno_update_bits(inno, i, 0x10, T_CLK_POST_HI_MASK,
500 				 T_CLK_POST_HI(clk_post >> 4));
501 		inno_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
502 				 T_CLK_POST_CNT_LO(clk_post));
503 		inno_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
504 				 T_CLK_PRE_CNT(clk_pre));
505 		inno_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
506 				 T_WAKEUP_CNT_HI(wakeup >> 8));
507 		inno_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
508 				 T_WAKEUP_CNT_LO(wakeup));
509 		inno_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
510 				 T_TA_GO_CNT(ta_go));
511 		inno_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
512 				 T_TA_SURE_CNT(ta_sure));
513 		inno_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
514 				 T_TA_WAIT_CNT(ta_wait));
515 	}
516 }
517 
inno_mipi_dphy_pll_round_rate(struct inno_mipi_dphy * inno,unsigned long prate,unsigned long rate,u8 * prediv,u16 * fbdiv)518 static unsigned long inno_mipi_dphy_pll_round_rate(struct inno_mipi_dphy *inno,
519 						   unsigned long prate,
520 						   unsigned long rate,
521 						   u8 *prediv, u16 *fbdiv)
522 {
523 	const struct inno_mipi_dphy_timing *timings;
524 	unsigned int num_timings;
525 	unsigned long best_freq = 0;
526 	unsigned int fin, fout, max_fout;
527 	u8 min_prediv, max_prediv;
528 	u8 _prediv, best_prediv = 1;
529 	u16 _fbdiv, best_fbdiv = 1;
530 	u32 min_delta = UINT_MAX;
531 
532 	timings = inno_mipi_dphy_timing_table;
533 	num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
534 
535 	/*
536 	 * The PLL output frequency can be calculated using a simple formula:
537 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
538 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
539 	 */
540 	fin = prate / USEC_PER_SEC;
541 	fout = 2 * (rate / USEC_PER_SEC);
542 	max_fout = 2 * timings[num_timings - 1].max_lane_mbps;
543 	if (fout > max_fout)
544 		fout = max_fout;
545 
546 	/* constraint: 5Mhz < Fref / prediv < 40MHz */
547 	min_prediv = DIV_ROUND_UP(fin, 40);
548 	max_prediv = fin / 5;
549 
550 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
551 		u32 delta, tmp;
552 
553 		_fbdiv = fout * _prediv / fin;
554 		/*
555 		 * The all possible settings of feedback divider are
556 		 * 12, 13, 14, 16, ~ 511
557 		 */
558 		if ((_fbdiv == 15) || (_fbdiv < 12) || (_fbdiv > 511))
559 			continue;
560 
561 		tmp = _fbdiv * fin / _prediv;
562 		delta = abs(fout - tmp);
563 		if (delta < min_delta) {
564 			best_prediv = _prediv;
565 			best_fbdiv = _fbdiv;
566 			min_delta = delta;
567 			best_freq = tmp * USEC_PER_SEC;
568 		}
569 	}
570 
571 	if (best_freq) {
572 		*prediv = best_prediv;
573 		*fbdiv = best_fbdiv;
574 	}
575 
576 	return best_freq / 2;
577 }
578 
inno_mipi_dphy_power_on(struct phy * phy)579 static int inno_mipi_dphy_power_on(struct phy *phy)
580 {
581 	struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
582 
583 	clk_prepare_enable(inno->pclk);
584 	pm_runtime_get_sync(inno->dev);
585 	inno_mipi_dphy_bandgap_power_enable(inno);
586 	inno_mipi_dphy_power_work_enable(inno);
587 	inno_mipi_dphy_pll_enable(inno);
588 	inno_mipi_dphy_lane_enable(inno);
589 	inno_mipi_dphy_reset(inno);
590 	inno_mipi_dphy_timing_init(inno);
591 	udelay(1);
592 
593 	return 0;
594 }
595 
inno_mipi_dphy_power_off(struct phy * phy)596 static int inno_mipi_dphy_power_off(struct phy *phy)
597 {
598 	struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
599 
600 	inno_mipi_dphy_lane_disable(inno);
601 	inno_mipi_dphy_pll_disable(inno);
602 	inno_mipi_dphy_power_work_disable(inno);
603 	inno_mipi_dphy_bandgap_power_disable(inno);
604 	pm_runtime_put(inno->dev);
605 	clk_disable_unprepare(inno->pclk);
606 
607 	return 0;
608 }
609 
610 static const struct phy_ops inno_mipi_dphy_ops = {
611 	.power_on  = inno_mipi_dphy_power_on,
612 	.power_off = inno_mipi_dphy_power_off,
613 	.owner	   = THIS_MODULE,
614 };
615 
inno_mipi_dphy_pll_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)616 static long inno_mipi_dphy_pll_clk_round_rate(struct clk_hw *hw,
617 					      unsigned long rate,
618 					      unsigned long *prate)
619 {
620 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
621 	unsigned long fin = *prate;
622 	unsigned long fout;
623 	u16 fbdiv = 1;
624 	u8 prediv = 1;
625 
626 	fout = inno_mipi_dphy_pll_round_rate(inno, fin, rate,
627 					     &prediv, &fbdiv);
628 
629 	dev_dbg(inno->dev, "%s: fin=%lu, req_rate=%lu\n",
630 		__func__, *prate, rate);
631 	dev_dbg(inno->dev, "%s: fout=%lu, prediv=%u, fbdiv=%u\n",
632 		__func__, fout, prediv, fbdiv);
633 
634 	inno->pll.prediv = prediv;
635 	inno->pll.fbdiv = fbdiv;
636 
637 	return fout;
638 }
639 
inno_mipi_dphy_pll_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)640 static int inno_mipi_dphy_pll_clk_set_rate(struct clk_hw *hw,
641 					   unsigned long rate,
642 					   unsigned long parent_rate)
643 {
644 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
645 
646 	dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, rate);
647 
648 	inno->lane_rate = rate;
649 
650 	return 0;
651 }
652 
653 static unsigned long
inno_mipi_dphy_pll_clk_recalc_rate(struct clk_hw * hw,unsigned long prate)654 inno_mipi_dphy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
655 {
656 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
657 
658 	dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, inno->lane_rate);
659 
660 	return inno->lane_rate;
661 }
662 
663 static const struct clk_ops inno_mipi_dphy_pll_clk_ops = {
664 	.round_rate = inno_mipi_dphy_pll_clk_round_rate,
665 	.set_rate = inno_mipi_dphy_pll_clk_set_rate,
666 	.recalc_rate = inno_mipi_dphy_pll_clk_recalc_rate,
667 };
668 
inno_mipi_dphy_pll_register(struct inno_mipi_dphy * inno)669 static int inno_mipi_dphy_pll_register(struct inno_mipi_dphy *inno)
670 {
671 	struct device *dev = inno->dev;
672 	struct device_node *np = dev->of_node;
673 	struct clk *clk;
674 	const char *parent_name;
675 	struct clk_init_data init = {};
676 	int ret;
677 
678 	parent_name = __clk_get_name(inno->ref_clk);
679 
680 	ret = of_property_read_string(np, "clock-output-names", &init.name);
681 	if (ret < 0) {
682 		dev_err(dev, "Missing clock-output-names property: %d\n", ret);
683 		return ret;
684 	}
685 
686 	init.ops = &inno_mipi_dphy_pll_clk_ops;
687 	init.parent_names = (const char * const *)&parent_name;
688 	init.num_parents = 1;
689 	init.flags = 0;
690 
691 	inno->pll.hw.init = &init;
692 	clk = devm_clk_register(dev, &inno->pll.hw);
693 	if (IS_ERR(clk)) {
694 		ret = PTR_ERR(clk);
695 		dev_err(dev, "failed to register PLL: %d\n", ret);
696 		return ret;
697 	}
698 
699 	return of_clk_add_provider(np, of_clk_src_simple_get, clk);
700 }
701 
inno_mipi_dphy_pll_unregister(struct inno_mipi_dphy * inno)702 static void inno_mipi_dphy_pll_unregister(struct inno_mipi_dphy *inno)
703 {
704 	of_clk_del_provider(inno->dev->of_node);
705 }
706 
inno_mipi_dphy_parse_dt(struct inno_mipi_dphy * inno)707 static int inno_mipi_dphy_parse_dt(struct inno_mipi_dphy *inno)
708 {
709 	struct device *dev = inno->dev;
710 
711 	if (of_property_read_u32(dev->of_node, "inno,lanes", &inno->lanes))
712 		inno->lanes = 4;
713 
714 	return 0;
715 }
716 
717 static const struct regmap_config inno_mipi_dphy_regmap_config = {
718 	.reg_bits = 32,
719 	.val_bits = 32,
720 	.reg_stride = 4,
721 	.max_register = 0x3ac,
722 };
723 
inno_mipi_dphy_probe(struct platform_device * pdev)724 static int inno_mipi_dphy_probe(struct platform_device *pdev)
725 {
726 	struct device *dev = &pdev->dev;
727 	struct inno_mipi_dphy *inno;
728 	struct phy_provider *phy_provider;
729 	struct phy *phy;
730 	struct resource *res;
731 	void __iomem *regs;
732 	int ret;
733 
734 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
735 	if (!inno)
736 		return -ENOMEM;
737 
738 	inno->dev = dev;
739 	platform_set_drvdata(pdev, inno);
740 
741 	ret = inno_mipi_dphy_parse_dt(inno);
742 	if (ret) {
743 		dev_err(dev, "failed to parse DT\n");
744 		return ret;
745 	}
746 
747 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
748 	regs = devm_ioremap_resource(dev, res);
749 	if (IS_ERR(regs))
750 		return PTR_ERR(regs);
751 
752 	inno->regmap = devm_regmap_init_mmio(dev, regs,
753 					     &inno_mipi_dphy_regmap_config);
754 	if (IS_ERR(inno->regmap)) {
755 		ret = PTR_ERR(inno->regmap);
756 		dev_err(dev, "failed to init regmap: %d\n", ret);
757 		return ret;
758 	}
759 
760 	inno->ref_clk = devm_clk_get(dev, "ref");
761 	if (IS_ERR(inno->ref_clk)) {
762 		dev_err(dev, "failed to get reference clock\n");
763 		return PTR_ERR(inno->ref_clk);
764 	}
765 
766 	inno->pclk = devm_clk_get(dev, "pclk");
767 	if (IS_ERR(inno->pclk)) {
768 		dev_err(dev, "failed to get pclk\n");
769 		return PTR_ERR(inno->pclk);
770 	}
771 
772 	inno->rst = devm_reset_control_get(dev, "apb");
773 	if (IS_ERR(inno->rst)) {
774 		dev_err(dev, "failed to get system reset control\n");
775 		return PTR_ERR(inno->rst);
776 	}
777 
778 	inno->grf = syscon_regmap_lookup_by_phandle(dev->of_node,
779 						    "rockchip,grf");
780 	if (IS_ERR(inno->grf)) {
781 		dev_err(dev, "failed to get grf regmap\n");
782 		return PTR_ERR(inno->grf);
783 	}
784 
785 	phy = devm_phy_create(dev, NULL, &inno_mipi_dphy_ops);
786 	if (IS_ERR(phy)) {
787 		dev_err(dev, "failed to create MIPI D-PHY\n");
788 		return PTR_ERR(phy);
789 	}
790 
791 	phy_set_drvdata(phy, inno);
792 
793 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
794 	if (IS_ERR(phy_provider)) {
795 		dev_err(dev, "failed to register phy provider\n");
796 		return PTR_ERR(phy_provider);
797 	}
798 
799 	ret = inno_mipi_dphy_pll_register(inno);
800 	if (ret)
801 		return ret;
802 
803 	pm_runtime_enable(dev);
804 
805 	return 0;
806 }
807 
inno_mipi_dphy_remove(struct platform_device * pdev)808 static int inno_mipi_dphy_remove(struct platform_device *pdev)
809 {
810 	struct inno_mipi_dphy *inno = platform_get_drvdata(pdev);
811 
812 	inno_mipi_dphy_pll_unregister(inno);
813 	pm_runtime_disable(inno->dev);
814 
815 	return 0;
816 }
817 
818 static const struct of_device_id inno_mipi_dphy_of_match[] = {
819 	{ .compatible = "rockchip,rk1808-mipi-dphy", },
820 	{ .compatible = "rockchip,rk3568-mipi-dphy", },
821 	{ .compatible = "rockchip,rv1126-mipi-dphy", },
822 	{}
823 };
824 MODULE_DEVICE_TABLE(of, inno_mipi_dphy_of_match);
825 
826 static struct platform_driver inno_mipi_dphy_driver = {
827 	.driver = {
828 		.name = "inno-mipi-dphy",
829 		.of_match_table	= of_match_ptr(inno_mipi_dphy_of_match),
830 	},
831 	.probe	= inno_mipi_dphy_probe,
832 	.remove = inno_mipi_dphy_remove,
833 };
834 
835 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
inno_mipi_dphy_driver_init(void)836 static int __init inno_mipi_dphy_driver_init(void)
837 {
838 	return platform_driver_register(&inno_mipi_dphy_driver);
839 }
840 fs_initcall(inno_mipi_dphy_driver_init);
841 
inno_mipi_dphy_driver_exit(void)842 static void __exit inno_mipi_dphy_driver_exit(void)
843 {
844 	platform_driver_unregister(&inno_mipi_dphy_driver);
845 }
846 module_exit(inno_mipi_dphy_driver_exit);
847 #else
848 module_platform_driver(inno_mipi_dphy_driver);
849 #endif
850 
851 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
852 MODULE_DESCRIPTION("Innosilicon MIPI D-PHY Driver");
853 MODULE_LICENSE("GPL v2");
854