1 // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 #include <string.h>
15 #include "esp_types.h"
16 #include "esp_attr.h"
17 #include "esp_intr_alloc.h"
18 #include "esp_log.h"
19 #include "esp_err.h"
20 #include "malloc.h"
21 #include "esp_osal/esp_osal.h"
22 #include "esp_osal/semphr.h"
23 #include "ringbuf.h"
24 #include "hal/uart_hal.h"
25 #include "hal/gpio_hal.h"
26 #include "soc/uart_periph.h"
27 #include "soc/rtc_cntl_reg.h"
28 #include "driver/uart.h"
29 #include "driver/gpio.h"
30 #include "driver/uart_select.h"
31 #include "driver/periph_ctrl.h"
32 #include "sdkconfig.h"
33 #include "esp_rom_gpio.h"
34
35 #if CONFIG_IDF_TARGET_ESP32
36 #include "esp32/clk.h"
37 #elif CONFIG_IDF_TARGET_ESP32S2
38 #include "esp32s2/clk.h"
39 #elif CONFIG_IDF_TARGET_ESP32S3
40 #include "esp32s3/clk.h"
41 #elif CONFIG_IDF_TARGET_ESP32C3
42 #include "esp32c3/clk.h"
43 #endif
44
45 #ifdef CONFIG_UART_ISR_IN_IRAM
46 #define UART_ISR_ATTR IRAM_ATTR
47 #else
48 #define UART_ISR_ATTR
49 #endif
50
51 #define XOFF (0x13)
52 #define XON (0x11)
53
54 static const char* UART_TAG = "uart";
55 #define UART_CHECK(a, str, ret_val) \
56 if (!(a)) { \
57 ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
58 return (ret_val); \
59 }
60
61 #define UART_EMPTY_THRESH_DEFAULT (10)
62 #define UART_FULL_THRESH_DEFAULT (120)
63 #define UART_TOUT_THRESH_DEFAULT (10)
64 #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
65 #define UART_TX_IDLE_NUM_DEFAULT (0)
66 #define UART_PATTERN_DET_QLEN_DEFAULT (10)
67 #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
68
69 #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
70 | (UART_INTR_RXFIFO_TOUT) \
71 | (UART_INTR_RXFIFO_OVF) \
72 | (UART_INTR_BRK_DET) \
73 | (UART_INTR_PARITY_ERR))
74
75 #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
76 #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
77 #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
78 #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
79
80
81 // Check actual UART mode set
82 #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
83
84 #define UART_CONTEX_INIT_DEF(uart_num) {\
85 .hal.dev = UART_LL_GET_HW(uart_num),\
86 .spinlock = portMUX_INITIALIZER_UNLOCKED,\
87 .hw_enabled = false,\
88 }
89
90 #if SOC_UART_SUPPORT_RTC_CLK
91 #define RTC_ENABLED(uart_num) (BIT(uart_num))
92 #endif
93
94 typedef struct {
95 uart_event_type_t type; /*!< UART TX data type */
96 struct {
97 int brk_len;
98 size_t size;
99 uint8_t data[0];
100 } tx_data;
101 } uart_tx_data_t;
102
103 typedef struct {
104 int wr;
105 int rd;
106 int len;
107 int* data;
108 } uart_pat_rb_t;
109
110 typedef struct {
111 uart_port_t uart_num; /*!< UART port number*/
112 int queue_size; /*!< UART event queue size*/
113 QueueHandle_t xQueueUart; /*!< UART queue handler*/
114 intr_handle_t intr_handle; /*!< UART interrupt handle*/
115 uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
116 bool coll_det_flg; /*!< UART collision detection flag */
117 bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
118
119 //rx parameters
120 int rx_buffered_len; /*!< UART cached data length */
121 SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
122 int rx_buf_size; /*!< RX ring buffer size */
123 RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
124 bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
125 uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
126 uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
127 uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
128 uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
129 uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
130 uart_pat_rb_t rx_pattern_pos;
131
132 //tx parameters
133 SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
134 SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
135 SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
136 SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
137 int tx_buf_size; /*!< TX ring buffer size */
138 RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
139 bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
140 uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
141 uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
142 uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
143 uint32_t tx_len_cur;
144 uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
145 uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
146 uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
147 uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
148 } uart_obj_t;
149
150 typedef struct {
151 uart_hal_context_t hal; /*!< UART hal context*/
152 portMUX_TYPE spinlock;
153 bool hw_enabled;
154 } uart_context_t;
155
156 static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
157
158 static uart_context_t uart_context[UART_NUM_MAX] = {
159 UART_CONTEX_INIT_DEF(UART_NUM_0),
160 UART_CONTEX_INIT_DEF(UART_NUM_1),
161 #if UART_NUM_MAX > 2
162 UART_CONTEX_INIT_DEF(UART_NUM_2),
163 #endif
164 };
165
166 static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
167
168 #if SOC_UART_SUPPORT_RTC_CLK
169
170 static uint8_t rtc_enabled = 0;
171 static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
172
rtc_clk_enable(uart_port_t uart_num)173 static void rtc_clk_enable(uart_port_t uart_num)
174 {
175 portENTER_CRITICAL(&rtc_num_spinlock);
176 if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
177 rtc_enabled |= RTC_ENABLED(uart_num);
178 }
179 SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
180 portEXIT_CRITICAL(&rtc_num_spinlock);
181 }
182
rtc_clk_disable(uart_port_t uart_num)183 static void rtc_clk_disable(uart_port_t uart_num)
184 {
185 assert(rtc_enabled & RTC_ENABLED(uart_num));
186
187 portENTER_CRITICAL(&rtc_num_spinlock);
188 rtc_enabled &= ~RTC_ENABLED(uart_num);
189 if (rtc_enabled == 0) {
190 CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
191 }
192 portEXIT_CRITICAL(&rtc_num_spinlock);
193 }
194 #endif
195
uart_module_enable(uart_port_t uart_num)196 static void uart_module_enable(uart_port_t uart_num)
197 {
198 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
199 if (uart_context[uart_num].hw_enabled != true) {
200 periph_module_enable(uart_periph_signal[uart_num].module);
201 if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
202 // Workaround for ESP32C3: enable core reset
203 // before enabling uart module clock
204 // to prevent uart output garbage value.
205 #if SOC_UART_REQUIRE_CORE_RESET
206 uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
207 periph_module_reset(uart_periph_signal[uart_num].module);
208 uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
209 #else
210 periph_module_reset(uart_periph_signal[uart_num].module);
211 #endif
212 }
213 uart_context[uart_num].hw_enabled = true;
214 }
215 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
216 }
217
uart_module_disable(uart_port_t uart_num)218 static void uart_module_disable(uart_port_t uart_num)
219 {
220 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
221 if (uart_context[uart_num].hw_enabled != false) {
222 if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
223 periph_module_disable(uart_periph_signal[uart_num].module);
224 }
225 uart_context[uart_num].hw_enabled = false;
226 }
227 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
228 }
229
uart_set_word_length(uart_port_t uart_num,uart_word_length_t data_bit)230 esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
231 {
232 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
233 UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
234 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
235 uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
236 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
237 return ESP_OK;
238 }
239
uart_get_word_length(uart_port_t uart_num,uart_word_length_t * data_bit)240 esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
241 {
242 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
243 uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
244 return ESP_OK;
245 }
246
uart_set_stop_bits(uart_port_t uart_num,uart_stop_bits_t stop_bit)247 esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
248 {
249 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
250 UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
251 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
252 uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
253 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
254 return ESP_OK;
255 }
256
uart_get_stop_bits(uart_port_t uart_num,uart_stop_bits_t * stop_bit)257 esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
258 {
259 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
260 uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
261 return ESP_OK;
262 }
263
uart_set_parity(uart_port_t uart_num,uart_parity_t parity_mode)264 esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
265 {
266 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
267 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
268 uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
269 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
270 return ESP_OK;
271 }
272
uart_get_parity(uart_port_t uart_num,uart_parity_t * parity_mode)273 esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
274 {
275 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
276 uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
277 return ESP_OK;
278 }
279
uart_set_baudrate(uart_port_t uart_num,uint32_t baud_rate)280 esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
281 {
282 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
283 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
284 uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
285 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
286 return ESP_OK;
287 }
288
uart_get_baudrate(uart_port_t uart_num,uint32_t * baudrate)289 esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
290 {
291 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
292 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
293 uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
294 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
295 return ESP_OK;
296 }
297
uart_set_line_inverse(uart_port_t uart_num,uint32_t inverse_mask)298 esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
299 {
300 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
301 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
302 uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
303 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
304 return ESP_OK;
305 }
306
uart_set_sw_flow_ctrl(uart_port_t uart_num,bool enable,uint8_t rx_thresh_xon,uint8_t rx_thresh_xoff)307 esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
308 {
309 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
310 UART_CHECK((rx_thresh_xon < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
311 UART_CHECK((rx_thresh_xoff < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
312 uart_sw_flowctrl_t sw_flow_ctl = {
313 .xon_char = XON,
314 .xoff_char = XOFF,
315 .xon_thrd = rx_thresh_xon,
316 .xoff_thrd = rx_thresh_xoff,
317 };
318 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
319 uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
320 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
321 return ESP_OK;
322 }
323
uart_set_hw_flow_ctrl(uart_port_t uart_num,uart_hw_flowcontrol_t flow_ctrl,uint8_t rx_thresh)324 esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
325 {
326 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
327 UART_CHECK((rx_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
328 UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
329 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
330 uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
331 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
332 return ESP_OK;
333 }
334
uart_get_hw_flow_ctrl(uart_port_t uart_num,uart_hw_flowcontrol_t * flow_ctrl)335 esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
336 {
337 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
338 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
339 uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
340 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
341 return ESP_OK;
342 }
343
uart_clear_intr_status(uart_port_t uart_num,uint32_t clr_mask)344 esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
345 {
346 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
347 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
348 return ESP_OK;
349 }
350
uart_enable_intr_mask(uart_port_t uart_num,uint32_t enable_mask)351 esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
352 {
353 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
354 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
355 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
356 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
357 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
358 return ESP_OK;
359 }
360
uart_disable_intr_mask(uart_port_t uart_num,uint32_t disable_mask)361 esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
362 {
363 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
364 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
365 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
366 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
367 return ESP_OK;
368 }
369
uart_pattern_link_free(uart_port_t uart_num)370 static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
371 {
372 int* pdata = NULL;
373 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
374 if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
375 pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
376 p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
377 p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
378 p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
379 }
380 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
381 free(pdata);
382 return ESP_OK;
383 }
384
uart_pattern_enqueue(uart_port_t uart_num,int pos)385 static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
386 {
387 esp_err_t ret = ESP_OK;
388 uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
389 int next = p_pos->wr + 1;
390 if (next >= p_pos->len) {
391 next = 0;
392 }
393 if (next == p_pos->rd) {
394 ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
395 ret = ESP_FAIL;
396 } else {
397 p_pos->data[p_pos->wr] = pos;
398 p_pos->wr = next;
399 ret = ESP_OK;
400 }
401 return ret;
402 }
403
uart_pattern_dequeue(uart_port_t uart_num)404 static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
405 {
406 if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
407 return ESP_ERR_INVALID_STATE;
408 } else {
409 esp_err_t ret = ESP_OK;
410 uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
411 if (p_pos->rd == p_pos->wr) {
412 ret = ESP_FAIL;
413 } else {
414 p_pos->rd++;
415 }
416 if (p_pos->rd >= p_pos->len) {
417 p_pos->rd = 0;
418 }
419 return ret;
420 }
421 }
422
uart_pattern_queue_update(uart_port_t uart_num,int diff_len)423 static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
424 {
425 uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
426 int rd = p_pos->rd;
427 while(rd != p_pos->wr) {
428 p_pos->data[rd] -= diff_len;
429 int rd_rec = rd;
430 rd ++;
431 if (rd >= p_pos->len) {
432 rd = 0;
433 }
434 if (p_pos->data[rd_rec] < 0) {
435 p_pos->rd = rd;
436 }
437 }
438 return ESP_OK;
439 }
440
uart_pattern_pop_pos(uart_port_t uart_num)441 int uart_pattern_pop_pos(uart_port_t uart_num)
442 {
443 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
444 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
445 uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
446 int pos = -1;
447 if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
448 pos = pat_pos->data[pat_pos->rd];
449 uart_pattern_dequeue(uart_num);
450 }
451 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
452 return pos;
453 }
454
uart_pattern_get_pos(uart_port_t uart_num)455 int uart_pattern_get_pos(uart_port_t uart_num)
456 {
457 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
458 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
459 uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
460 int pos = -1;
461 if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
462 pos = pat_pos->data[pat_pos->rd];
463 }
464 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
465 return pos;
466 }
467
uart_pattern_queue_reset(uart_port_t uart_num,int queue_length)468 esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
469 {
470 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
471 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
472
473 int* pdata = (int*) malloc(queue_length * sizeof(int));
474 if(pdata == NULL) {
475 return ESP_ERR_NO_MEM;
476 }
477 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
478 int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
479 p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
480 p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
481 p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
482 p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
483 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
484 free(ptmp);
485 return ESP_OK;
486 }
487
488 #if CONFIG_IDF_TARGET_ESP32
uart_enable_pattern_det_intr(uart_port_t uart_num,char pattern_chr,uint8_t chr_num,int chr_tout,int post_idle,int pre_idle)489 esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
490 {
491 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
492 UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
493 UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
494 UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
495 uart_at_cmd_t at_cmd = {0};
496 at_cmd.cmd_char = pattern_chr;
497 at_cmd.char_num = chr_num;
498 at_cmd.gap_tout = chr_tout;
499 at_cmd.pre_idle = pre_idle;
500 at_cmd.post_idle = post_idle;
501 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
502 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
503 uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
504 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
505 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
506 return ESP_OK;
507 }
508 #endif
509
uart_enable_pattern_det_baud_intr(uart_port_t uart_num,char pattern_chr,uint8_t chr_num,int chr_tout,int post_idle,int pre_idle)510 esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
511 {
512 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
513 UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
514 UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
515 UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
516 uart_at_cmd_t at_cmd = {0};
517 at_cmd.cmd_char = pattern_chr;
518 at_cmd.char_num = chr_num;
519
520 #if CONFIG_IDF_TARGET_ESP32
521 int apb_clk_freq = 0;
522 uint32_t uart_baud = 0;
523 uint32_t uart_div = 0;
524 uart_get_baudrate(uart_num, &uart_baud);
525 apb_clk_freq = esp_clk_apb_freq();
526 uart_div = apb_clk_freq / uart_baud;
527
528 at_cmd.gap_tout = chr_tout * uart_div;
529 at_cmd.pre_idle = pre_idle * uart_div;
530 at_cmd.post_idle = post_idle * uart_div;
531 #elif CONFIG_IDF_TARGET_ESP32S2
532 at_cmd.gap_tout = chr_tout;
533 at_cmd.pre_idle = pre_idle;
534 at_cmd.post_idle = post_idle;
535 #endif
536 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
537 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
538 uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
539 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
540 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
541 return ESP_OK;
542 }
543
544
uart_disable_pattern_det_intr(uart_port_t uart_num)545 esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
546 {
547 return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
548 }
549
uart_enable_rx_intr(uart_port_t uart_num)550 esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
551 {
552 return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
553 }
554
uart_disable_rx_intr(uart_port_t uart_num)555 esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
556 {
557 return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
558 }
559
uart_disable_tx_intr(uart_port_t uart_num)560 esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
561 {
562 return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
563 }
564
uart_enable_tx_intr(uart_port_t uart_num,int enable,int thresh)565 esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
566 {
567 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
568 UART_CHECK((thresh < SOC_UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
569 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
570 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
571 uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
572 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
573 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
574 return ESP_OK;
575 }
576
uart_isr_register(uart_port_t uart_num,void (* fn)(void *),void * arg,int intr_alloc_flags,uart_isr_handle_t * handle)577 esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
578 {
579 int ret;
580 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
581 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
582 ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
583 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
584 return ret;
585 }
586
uart_isr_free(uart_port_t uart_num)587 esp_err_t uart_isr_free(uart_port_t uart_num)
588 {
589 esp_err_t ret;
590 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
591 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
592 UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
593 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
594 ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
595 p_uart_obj[uart_num]->intr_handle=NULL;
596 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
597 return ret;
598 }
599
600 //internal signal can be output to multiple GPIO pads
601 //only one GPIO pad can connect with input signal
uart_set_pin(uart_port_t uart_num,int tx_io_num,int rx_io_num,int rts_io_num,int cts_io_num)602 esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
603 {
604 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
605 UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
606 UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
607 UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
608 UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
609
610 if(tx_io_num >= 0) {
611 gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
612 gpio_set_level(tx_io_num, 1);
613 esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
614 }
615 if(rx_io_num >= 0) {
616 gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
617 gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
618 gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
619 esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
620 }
621 if(rts_io_num >= 0) {
622 gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
623 gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
624 esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
625 }
626 if(cts_io_num >= 0) {
627 gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
628 gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
629 gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
630 esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
631 }
632 return ESP_OK;
633 }
634
uart_set_rts(uart_port_t uart_num,int level)635 esp_err_t uart_set_rts(uart_port_t uart_num, int level)
636 {
637 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
638 UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
639 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
640 uart_hal_set_rts(&(uart_context[uart_num].hal), level);
641 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
642 return ESP_OK;
643 }
644
uart_set_dtr(uart_port_t uart_num,int level)645 esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
646 {
647 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
648 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
649 uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
650 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
651 return ESP_OK;
652 }
653
uart_set_tx_idle_num(uart_port_t uart_num,uint16_t idle_num)654 esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
655 {
656 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
657 UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
658 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
659 uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
660 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
661 return ESP_OK;
662 }
663
uart_param_config(uart_port_t uart_num,const uart_config_t * uart_config)664 esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
665 {
666 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
667 UART_CHECK((uart_config), "param null", ESP_FAIL);
668 UART_CHECK((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
669 UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
670 UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
671 uart_module_enable(uart_num);
672 #if SOC_UART_SUPPORT_RTC_CLK
673 if (uart_config->source_clk == UART_SCLK_RTC) {
674 rtc_clk_enable(uart_num);
675 }
676 #endif
677 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
678 uart_hal_init(&(uart_context[uart_num].hal), uart_num);
679 uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
680 uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
681 uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
682 uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
683 uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
684 uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
685 uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
686 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
687 uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
688 uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
689 return ESP_OK;
690 }
691
uart_intr_config(uart_port_t uart_num,const uart_intr_config_t * intr_conf)692 esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
693 {
694 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
695 UART_CHECK((intr_conf), "param null", ESP_FAIL);
696 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
697 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
698 if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
699 uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
700 } else {
701 //Disable rx_tout intr
702 uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
703 }
704 if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
705 uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
706 }
707 if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
708 uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
709 }
710 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
711 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
712 return ESP_OK;
713 }
714
uart_find_pattern_from_last(uint8_t * buf,int length,uint8_t pat_chr,uint8_t pat_num)715 static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
716 {
717 int cnt = 0;
718 int len = length;
719 while (len >= 0) {
720 if (buf[len] == pat_chr) {
721 cnt++;
722 } else {
723 cnt = 0;
724 }
725 if (cnt >= pat_num) {
726 break;
727 }
728 len --;
729 }
730 return len;
731 }
732
733 //internal isr handler for default driver code.
uart_rx_intr_handler_default(void * param)734 static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
735 {
736 uart_obj_t *p_uart = (uart_obj_t*) param;
737 uint8_t uart_num = p_uart->uart_num;
738 int rx_fifo_len = 0;
739 uint32_t uart_intr_status = 0;
740 uart_event_t uart_event;
741 portBASE_TYPE HPTaskAwoken = 0;
742 static uint8_t pat_flg = 0;
743 while(1) {
744 // The `continue statement` may cause the interrupt to loop infinitely
745 // we exit the interrupt here
746 uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
747 //Exit form while loop
748 if(uart_intr_status == 0){
749 break;
750 }
751 uart_event.type = UART_EVENT_MAX;
752 if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
753 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
754 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
755 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
756 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
757 if(p_uart->tx_waiting_brk) {
758 continue;
759 }
760 //TX semaphore will only be used when tx_buf_size is zero.
761 if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
762 p_uart->tx_waiting_fifo = false;
763 xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
764 } else {
765 //We don't use TX ring buffer, because the size is zero.
766 if(p_uart->tx_buf_size == 0) {
767 continue;
768 }
769 bool en_tx_flg = false;
770 uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
771 //We need to put a loop here, in case all the buffer items are very short.
772 //That would cause a watch_dog reset because empty interrupt happens so often.
773 //Although this is a loop in ISR, this loop will execute at most 128 turns.
774 while(tx_fifo_rem) {
775 if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
776 size_t size;
777 p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
778 if(p_uart->tx_head) {
779 //The first item is the data description
780 //Get the first item to get the data information
781 if(p_uart->tx_len_tot == 0) {
782 p_uart->tx_ptr = NULL;
783 p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
784 if(p_uart->tx_head->type == UART_DATA_BREAK) {
785 p_uart->tx_brk_flg = 1;
786 p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
787 }
788 //We have saved the data description from the 1st item, return buffer.
789 vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
790 } else if(p_uart->tx_ptr == NULL) {
791 //Update the TX item pointer, we will need this to return item to buffer.
792 p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
793 en_tx_flg = true;
794 p_uart->tx_len_cur = size;
795 }
796 } else {
797 //Can not get data from ring buffer, return;
798 break;
799 }
800 }
801 if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
802 //To fill the TX FIFO.
803 uint32_t send_len = 0;
804 // Set RS485 RTS pin before transmission if the half duplex mode is enabled
805 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
806 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
807 uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
808 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
809 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
810 }
811 uart_hal_write_txfifo(&(uart_context[uart_num].hal),
812 (const uint8_t *)p_uart->tx_ptr,
813 (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
814 &send_len);
815 p_uart->tx_ptr += send_len;
816 p_uart->tx_len_tot -= send_len;
817 p_uart->tx_len_cur -= send_len;
818 tx_fifo_rem -= send_len;
819 if (p_uart->tx_len_cur == 0) {
820 //Return item to ring buffer.
821 vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
822 p_uart->tx_head = NULL;
823 p_uart->tx_ptr = NULL;
824 //Sending item done, now we need to send break if there is a record.
825 //Set TX break signal after FIFO is empty
826 if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
827 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
828 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
829 uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
830 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
831 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
832 p_uart->tx_waiting_brk = 1;
833 //do not enable TX empty interrupt
834 en_tx_flg = false;
835 } else {
836 //enable TX empty interrupt
837 en_tx_flg = true;
838 }
839 } else {
840 //enable TX empty interrupt
841 en_tx_flg = true;
842 }
843 }
844 }
845 if (en_tx_flg) {
846 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
847 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
848 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
849 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
850 }
851 }
852 }
853 else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
854 || (uart_intr_status & UART_INTR_RXFIFO_FULL)
855 || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
856 ) {
857 if(pat_flg == 1) {
858 uart_intr_status |= UART_INTR_CMD_CHAR_DET;
859 pat_flg = 0;
860 }
861 if (p_uart->rx_buffer_full_flg == false) {
862 rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
863 if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
864 rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
865 }
866 uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
867 uint8_t pat_chr = 0;
868 uint8_t pat_num = 0;
869 int pat_idx = -1;
870 uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
871
872 //Get the buffer from the FIFO
873 if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
874 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
875 uart_event.type = UART_PATTERN_DET;
876 uart_event.size = rx_fifo_len;
877 pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
878 } else {
879 //After Copying the Data From FIFO ,Clear intr_status
880 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
881 uart_event.type = UART_DATA;
882 uart_event.size = rx_fifo_len;
883 uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
884 UART_ENTER_CRITICAL_ISR(&uart_selectlock);
885 if (p_uart->uart_select_notif_callback) {
886 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
887 }
888 UART_EXIT_CRITICAL_ISR(&uart_selectlock);
889 }
890 p_uart->rx_stash_len = rx_fifo_len;
891 //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
892 //Mainly for applications that uses flow control or small ring buffer.
893 if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
894 p_uart->rx_buffer_full_flg = true;
895 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
896 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
897 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
898 if (uart_event.type == UART_PATTERN_DET) {
899 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
900 if (rx_fifo_len < pat_num) {
901 //some of the characters are read out in last interrupt
902 uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
903 } else {
904 uart_pattern_enqueue(uart_num,
905 pat_idx <= -1 ?
906 //can not find the pattern in buffer,
907 p_uart->rx_buffered_len + p_uart->rx_stash_len :
908 // find the pattern in buffer
909 p_uart->rx_buffered_len + pat_idx);
910 }
911 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
912 if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
913 ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
914 }
915 }
916 uart_event.type = UART_BUFFER_FULL;
917 } else {
918 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
919 if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
920 if (rx_fifo_len < pat_num) {
921 //some of the characters are read out in last interrupt
922 uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
923 } else if(pat_idx >= 0) {
924 // find the pattern in stash buffer.
925 uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
926 }
927 }
928 p_uart->rx_buffered_len += p_uart->rx_stash_len;
929 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
930 }
931 } else {
932 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
933 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
934 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
935 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
936 if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
937 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
938 uart_event.type = UART_PATTERN_DET;
939 uart_event.size = rx_fifo_len;
940 pat_flg = 1;
941 }
942 }
943 } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
944 // When fifo overflows, we reset the fifo.
945 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
946 uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
947 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
948 UART_ENTER_CRITICAL_ISR(&uart_selectlock);
949 if (p_uart->uart_select_notif_callback) {
950 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
951 }
952 UART_EXIT_CRITICAL_ISR(&uart_selectlock);
953 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
954 uart_event.type = UART_FIFO_OVF;
955 } else if(uart_intr_status & UART_INTR_BRK_DET) {
956 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
957 uart_event.type = UART_BREAK;
958 } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
959 UART_ENTER_CRITICAL_ISR(&uart_selectlock);
960 if (p_uart->uart_select_notif_callback) {
961 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
962 }
963 UART_EXIT_CRITICAL_ISR(&uart_selectlock);
964 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
965 uart_event.type = UART_FRAME_ERR;
966 } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
967 UART_ENTER_CRITICAL_ISR(&uart_selectlock);
968 if (p_uart->uart_select_notif_callback) {
969 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
970 }
971 UART_EXIT_CRITICAL_ISR(&uart_selectlock);
972 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
973 uart_event.type = UART_PARITY_ERR;
974 } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
975 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
976 uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
977 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
978 if(p_uart->tx_brk_flg == 1) {
979 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
980 }
981 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
982 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
983 if(p_uart->tx_brk_flg == 1) {
984 p_uart->tx_brk_flg = 0;
985 p_uart->tx_waiting_brk = 0;
986 } else {
987 xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
988 }
989 } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
990 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
991 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
992 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
993 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
994 } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
995 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
996 uart_event.type = UART_PATTERN_DET;
997 } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
998 || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
999 || (uart_intr_status & UART_INTR_RS485_CLASH)) {
1000 // RS485 collision or frame error interrupt triggered
1001 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
1002 uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
1003 // Set collision detection flag
1004 p_uart_obj[uart_num]->coll_det_flg = true;
1005 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
1006 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
1007 uart_event.type = UART_EVENT_MAX;
1008 } else if(uart_intr_status & UART_INTR_TX_DONE) {
1009 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
1010 // The TX_DONE interrupt is triggered but transmit is active
1011 // then postpone interrupt processing for next interrupt
1012 uart_event.type = UART_EVENT_MAX;
1013 } else {
1014 // Workaround for RS485: If the RS485 half duplex mode is active
1015 // and transmitter is in idle state then reset received buffer and reset RTS pin
1016 // skip this behavior for other UART modes
1017 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
1018 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1019 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
1020 uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
1021 uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
1022 }
1023 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
1024 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1025 xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
1026 }
1027 } else {
1028 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
1029 uart_event.type = UART_EVENT_MAX;
1030 }
1031
1032 if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
1033 if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
1034 ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
1035 }
1036 }
1037 }
1038 if(HPTaskAwoken == pdTRUE) {
1039 portYIELD_FROM_ISR();
1040 }
1041 }
1042
1043 /**************************************************************/
uart_wait_tx_done(uart_port_t uart_num,TickType_t ticks_to_wait)1044 esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
1045 {
1046 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1047 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
1048 BaseType_t res;
1049 portTickType ticks_start = xTaskGetTickCount();
1050 //Take tx_mux
1051 res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
1052 if(res == pdFALSE) {
1053 return ESP_ERR_TIMEOUT;
1054 }
1055 xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
1056 if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
1057 xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
1058 return ESP_OK;
1059 }
1060 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1061 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1062 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1063 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1064
1065 TickType_t ticks_end = xTaskGetTickCount();
1066 if (ticks_end - ticks_start > ticks_to_wait) {
1067 ticks_to_wait = 0;
1068 } else {
1069 ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
1070 }
1071 //take 2nd tx_done_sem, wait given from ISR
1072 res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
1073 if(res == pdFALSE) {
1074 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1075 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1076 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1077 xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
1078 return ESP_ERR_TIMEOUT;
1079 }
1080 xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
1081 return ESP_OK;
1082 }
1083
uart_tx_chars(uart_port_t uart_num,const char * buffer,uint32_t len)1084 int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
1085 {
1086 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
1087 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
1088 UART_CHECK(buffer, "buffer null", (-1));
1089 if(len == 0) {
1090 return 0;
1091 }
1092 int tx_len = 0;
1093 xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
1094 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
1095 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1096 uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
1097 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1098 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1099 }
1100 uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
1101 xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
1102 return tx_len;
1103 }
1104
uart_tx_all(uart_port_t uart_num,const char * src,size_t size,bool brk_en,int brk_len)1105 static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
1106 {
1107 if(size == 0) {
1108 return 0;
1109 }
1110 size_t original_size = size;
1111
1112 //lock for uart_tx
1113 xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
1114 p_uart_obj[uart_num]->coll_det_flg = false;
1115 if(p_uart_obj[uart_num]->tx_buf_size > 0) {
1116 size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
1117 int offset = 0;
1118 uart_tx_data_t evt;
1119 evt.tx_data.size = size;
1120 evt.tx_data.brk_len = brk_len;
1121 if(brk_en) {
1122 evt.type = UART_DATA_BREAK;
1123 } else {
1124 evt.type = UART_DATA;
1125 }
1126 xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
1127 while(size > 0) {
1128 size_t send_size = size > max_size / 2 ? max_size / 2 : size;
1129 xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
1130 size -= send_size;
1131 offset += send_size;
1132 uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
1133 }
1134 } else {
1135 while(size) {
1136 //semaphore for tx_fifo available
1137 if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
1138 uint32_t sent = 0;
1139 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
1140 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1141 uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
1142 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
1143 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1144 }
1145 uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
1146 if(sent < size) {
1147 p_uart_obj[uart_num]->tx_waiting_fifo = true;
1148 uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
1149 }
1150 size -= sent;
1151 src += sent;
1152 }
1153 }
1154 if(brk_en) {
1155 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
1156 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1157 uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
1158 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
1159 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1160 xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
1161 }
1162 xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
1163 }
1164 xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
1165 return original_size;
1166 }
1167
uart_write_bytes(uart_port_t uart_num,const void * src,size_t size)1168 int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
1169 {
1170 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
1171 UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
1172 UART_CHECK(src, "buffer null", (-1));
1173 return uart_tx_all(uart_num, src, size, 0, 0);
1174 }
1175
uart_write_bytes_with_break(uart_port_t uart_num,const void * src,size_t size,int brk_len)1176 int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
1177 {
1178 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
1179 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
1180 UART_CHECK((size > 0), "uart size error", (-1));
1181 UART_CHECK((src), "uart data null", (-1));
1182 UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
1183 return uart_tx_all(uart_num, src, size, 1, brk_len);
1184 }
1185
uart_check_buf_full(uart_port_t uart_num)1186 static bool uart_check_buf_full(uart_port_t uart_num)
1187 {
1188 if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
1189 BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
1190 if(res == pdTRUE) {
1191 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1192 p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
1193 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
1194 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1195 uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
1196 return true;
1197 }
1198 }
1199 return false;
1200 }
1201
uart_read_bytes(uart_port_t uart_num,void * buf,uint32_t length,TickType_t ticks_to_wait)1202 int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
1203 {
1204 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
1205 UART_CHECK((buf), "uart data null", (-1));
1206 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
1207 uint8_t* data = NULL;
1208 size_t size;
1209 size_t copy_len = 0;
1210 int len_tmp;
1211 if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
1212 return -1;
1213 }
1214 while(length) {
1215 if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
1216 data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
1217 if(data) {
1218 p_uart_obj[uart_num]->rx_head_ptr = data;
1219 p_uart_obj[uart_num]->rx_ptr = data;
1220 p_uart_obj[uart_num]->rx_cur_remain = size;
1221 } else {
1222 //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
1223 //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
1224 //to solve the possible asynchronous issues.
1225 if(uart_check_buf_full(uart_num)) {
1226 //This condition will never be true if `uart_read_bytes`
1227 //and `uart_rx_intr_handler_default` are scheduled on the same core.
1228 continue;
1229 } else {
1230 xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
1231 return copy_len;
1232 }
1233 }
1234 }
1235 if(p_uart_obj[uart_num]->rx_cur_remain > length) {
1236 len_tmp = length;
1237 } else {
1238 len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
1239 }
1240 memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
1241 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1242 p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
1243 uart_pattern_queue_update(uart_num, len_tmp);
1244 p_uart_obj[uart_num]->rx_ptr += len_tmp;
1245 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1246 p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
1247 copy_len += len_tmp;
1248 length -= len_tmp;
1249 if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
1250 vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
1251 p_uart_obj[uart_num]->rx_head_ptr = NULL;
1252 p_uart_obj[uart_num]->rx_ptr = NULL;
1253 uart_check_buf_full(uart_num);
1254 }
1255 }
1256
1257 xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
1258 return copy_len;
1259 }
1260
uart_get_buffered_data_len(uart_port_t uart_num,size_t * size)1261 esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
1262 {
1263 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1264 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
1265 *size = p_uart_obj[uart_num]->rx_buffered_len;
1266 return ESP_OK;
1267 }
1268
1269 esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
1270
uart_disable_intr_mask_and_return_prev(uart_port_t uart_num,uint32_t disable_mask,uint32_t * prev_mask)1271 static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t* prev_mask)
1272 {
1273 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1274 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1275 *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
1276 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
1277 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1278 return ESP_OK;
1279 }
1280
uart_flush_input(uart_port_t uart_num)1281 esp_err_t uart_flush_input(uart_port_t uart_num)
1282 {
1283 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1284 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
1285 uart_obj_t* p_uart = p_uart_obj[uart_num];
1286 uint8_t* data;
1287 size_t size;
1288 uint32_t prev_mask;
1289
1290 //rx sem protect the ring buffer read related functions
1291 xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
1292 uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT, &prev_mask);
1293 while(true) {
1294 if(p_uart->rx_head_ptr) {
1295 vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
1296 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1297 p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
1298 uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
1299 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1300 p_uart->rx_ptr = NULL;
1301 p_uart->rx_cur_remain = 0;
1302 p_uart->rx_head_ptr = NULL;
1303 }
1304 data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
1305 if(data == NULL) {
1306 if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
1307 ESP_LOGE(UART_TAG, "rx_buffered_len error");
1308 p_uart_obj[uart_num]->rx_buffered_len = 0;
1309 }
1310 //We also need to clear the `rx_buffer_full_flg` here.
1311 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1312 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
1313 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1314 break;
1315 }
1316 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1317 p_uart_obj[uart_num]->rx_buffered_len -= size;
1318 uart_pattern_queue_update(uart_num, size);
1319 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1320 vRingbufferReturnItem(p_uart->rx_ring_buf, data);
1321 if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
1322 BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
1323 if(res == pdTRUE) {
1324 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1325 p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
1326 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
1327 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1328 }
1329 }
1330 }
1331 p_uart->rx_ptr = NULL;
1332 p_uart->rx_cur_remain = 0;
1333 p_uart->rx_head_ptr = NULL;
1334 uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
1335 uart_enable_intr_mask(uart_num, prev_mask);
1336 xSemaphoreGive(p_uart->rx_mux);
1337 return ESP_OK;
1338 }
1339
uart_driver_install(uart_port_t uart_num,int rx_buffer_size,int tx_buffer_size,int queue_size,QueueHandle_t * uart_queue,int intr_alloc_flags)1340 esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
1341 {
1342 esp_err_t r;
1343 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1344 UART_CHECK((rx_buffer_size > SOC_UART_FIFO_LEN), "uart rx buffer length error", ESP_FAIL);
1345 UART_CHECK((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error", ESP_FAIL);
1346 #if CONFIG_UART_ISR_IN_IRAM
1347 if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
1348 ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
1349 intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
1350 }
1351 #else
1352 if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
1353 ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
1354 intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
1355 }
1356 #endif
1357
1358 if(p_uart_obj[uart_num] == NULL) {
1359 p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
1360 if(p_uart_obj[uart_num] == NULL) {
1361 ESP_LOGE(UART_TAG, "UART driver malloc error");
1362 return ESP_FAIL;
1363 }
1364 p_uart_obj[uart_num]->uart_num = uart_num;
1365 p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
1366 p_uart_obj[uart_num]->coll_det_flg = false;
1367 p_uart_obj[uart_num]->rx_always_timeout_flg = false;
1368 p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
1369 xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
1370 p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
1371 p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
1372 p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
1373 p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
1374 p_uart_obj[uart_num]->queue_size = queue_size;
1375 p_uart_obj[uart_num]->tx_ptr = NULL;
1376 p_uart_obj[uart_num]->tx_head = NULL;
1377 p_uart_obj[uart_num]->tx_len_tot = 0;
1378 p_uart_obj[uart_num]->tx_brk_flg = 0;
1379 p_uart_obj[uart_num]->tx_brk_len = 0;
1380 p_uart_obj[uart_num]->tx_waiting_brk = 0;
1381 p_uart_obj[uart_num]->rx_buffered_len = 0;
1382 uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
1383
1384 if(uart_queue) {
1385 p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
1386 *uart_queue = p_uart_obj[uart_num]->xQueueUart;
1387 //ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));//pjw mask
1388 } else {
1389 p_uart_obj[uart_num]->xQueueUart = NULL;
1390 }
1391 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
1392 p_uart_obj[uart_num]->tx_waiting_fifo = false;
1393 p_uart_obj[uart_num]->rx_ptr = NULL;
1394 p_uart_obj[uart_num]->rx_cur_remain = 0;
1395 p_uart_obj[uart_num]->rx_head_ptr = NULL;
1396 p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
1397 if(tx_buffer_size > 0) {
1398 p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
1399 p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
1400 } else {
1401 p_uart_obj[uart_num]->tx_ring_buf = NULL;
1402 p_uart_obj[uart_num]->tx_buf_size = 0;
1403 }
1404 p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
1405 } else {
1406 ESP_LOGE(UART_TAG, "UART driver already installed");
1407 return ESP_FAIL;
1408 }
1409
1410 uart_intr_config_t uart_intr = {
1411 .intr_enable_mask = UART_INTR_CONFIG_FLAG,
1412 .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
1413 .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
1414 .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
1415 };
1416 uart_module_enable(uart_num);
1417 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
1418 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
1419 r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
1420 if (r!=ESP_OK) goto err;
1421 r=uart_intr_config(uart_num, &uart_intr);
1422 if (r!=ESP_OK) goto err;
1423 return r;
1424
1425 err:
1426 uart_driver_delete(uart_num);
1427 return r;
1428 }
1429
1430 //Make sure no other tasks are still using UART before you call this function
uart_driver_delete(uart_port_t uart_num)1431 esp_err_t uart_driver_delete(uart_port_t uart_num)
1432 {
1433 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
1434 if(p_uart_obj[uart_num] == NULL) {
1435 ESP_LOGI(UART_TAG, "ALREADY NULL");
1436 return ESP_OK;
1437 }
1438 esp_intr_free(p_uart_obj[uart_num]->intr_handle);
1439 uart_disable_rx_intr(uart_num);
1440 uart_disable_tx_intr(uart_num);
1441 uart_pattern_link_free(uart_num);
1442
1443 if(p_uart_obj[uart_num]->tx_fifo_sem) {
1444 vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
1445 p_uart_obj[uart_num]->tx_fifo_sem = NULL;
1446 }
1447 if(p_uart_obj[uart_num]->tx_done_sem) {
1448 vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
1449 p_uart_obj[uart_num]->tx_done_sem = NULL;
1450 }
1451 if(p_uart_obj[uart_num]->tx_brk_sem) {
1452 vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
1453 p_uart_obj[uart_num]->tx_brk_sem = NULL;
1454 }
1455 if(p_uart_obj[uart_num]->tx_mux) {
1456 vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
1457 p_uart_obj[uart_num]->tx_mux = NULL;
1458 }
1459 if(p_uart_obj[uart_num]->rx_mux) {
1460 vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
1461 p_uart_obj[uart_num]->rx_mux = NULL;
1462 }
1463 if(p_uart_obj[uart_num]->xQueueUart) {
1464 vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
1465 p_uart_obj[uart_num]->xQueueUart = NULL;
1466 }
1467 if(p_uart_obj[uart_num]->rx_ring_buf) {
1468 vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
1469 p_uart_obj[uart_num]->rx_ring_buf = NULL;
1470 }
1471 if(p_uart_obj[uart_num]->tx_ring_buf) {
1472 vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
1473 p_uart_obj[uart_num]->tx_ring_buf = NULL;
1474 }
1475
1476 heap_caps_free(p_uart_obj[uart_num]);
1477 p_uart_obj[uart_num] = NULL;
1478
1479 #if SOC_UART_SUPPORT_RTC_CLK
1480
1481 uart_sclk_t sclk = 0;
1482 uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
1483 if (sclk == UART_SCLK_RTC) {
1484 rtc_clk_disable(uart_num);
1485 }
1486 #endif
1487 uart_module_disable(uart_num);
1488 return ESP_OK;
1489 }
1490
uart_is_driver_installed(uart_port_t uart_num)1491 bool uart_is_driver_installed(uart_port_t uart_num)
1492 {
1493 return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
1494 }
1495
uart_set_select_notif_callback(uart_port_t uart_num,uart_select_notif_callback_t uart_select_notif_callback)1496 void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
1497 {
1498 if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
1499 p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
1500 }
1501 }
1502
uart_get_selectlock(void)1503 portMUX_TYPE *uart_get_selectlock(void)
1504 {
1505 return &uart_selectlock;
1506 }
1507
1508 // Set UART mode
uart_set_mode(uart_port_t uart_num,uart_mode_t mode)1509 esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
1510 {
1511 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1512 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
1513 if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
1514 || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
1515 UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
1516 "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
1517 }
1518 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1519 uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
1520 if(mode == UART_MODE_RS485_COLLISION_DETECT) {
1521 // This mode allows read while transmitting that allows collision detection
1522 p_uart_obj[uart_num]->coll_det_flg = false;
1523 // Enable collision detection interrupts
1524 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
1525 | UART_INTR_RXFIFO_FULL
1526 | UART_INTR_RS485_CLASH
1527 | UART_INTR_RS485_FRM_ERR
1528 | UART_INTR_RS485_PARITY_ERR);
1529 }
1530 p_uart_obj[uart_num]->uart_mode = mode;
1531 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1532 return ESP_OK;
1533 }
1534
uart_set_rx_full_threshold(uart_port_t uart_num,int threshold)1535 esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
1536 {
1537 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1538 UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
1539 "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
1540 if (p_uart_obj[uart_num] == NULL) {
1541 ESP_LOGE(UART_TAG, "call uart_driver_install API first");
1542 return ESP_ERR_INVALID_STATE;
1543 }
1544 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1545 if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
1546 uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
1547 }
1548 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1549 return ESP_OK;
1550 }
1551
uart_set_tx_empty_threshold(uart_port_t uart_num,int threshold)1552 esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
1553 {
1554 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1555 UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
1556 "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
1557 if (p_uart_obj[uart_num] == NULL) {
1558 ESP_LOGE(UART_TAG, "call uart_driver_install API first");
1559 return ESP_ERR_INVALID_STATE;
1560 }
1561 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1562 if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
1563 uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
1564 }
1565 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1566 return ESP_OK;
1567 }
1568
uart_set_rx_timeout(uart_port_t uart_num,const uint8_t tout_thresh)1569 esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
1570 {
1571 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1572 // get maximum timeout threshold
1573 uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
1574 if (tout_thresh > tout_max_thresh) {
1575 ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
1576 return ESP_ERR_INVALID_ARG;
1577 }
1578 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1579 uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
1580 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1581 return ESP_OK;
1582 }
1583
uart_get_collision_flag(uart_port_t uart_num,bool * collision_flag)1584 esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
1585 {
1586 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1587 UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
1588 UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
1589 UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
1590 || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
1591 "wrong mode", ESP_ERR_INVALID_ARG);
1592 *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
1593 return ESP_OK;
1594 }
1595
uart_set_wakeup_threshold(uart_port_t uart_num,int wakeup_threshold)1596 esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
1597 {
1598 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1599 UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
1600 wakeup_threshold > UART_MIN_WAKEUP_THRESH),
1601 "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
1602 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
1603 uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
1604 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
1605 return ESP_OK;
1606 }
1607
uart_get_wakeup_threshold(uart_port_t uart_num,int * out_wakeup_threshold)1608 esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
1609 {
1610 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1611 UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
1612 uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
1613 return ESP_OK;
1614 }
1615
uart_wait_tx_idle_polling(uart_port_t uart_num)1616 esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
1617 {
1618 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1619 while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
1620 return ESP_OK;
1621 }
1622
uart_set_loop_back(uart_port_t uart_num,bool loop_back_en)1623 esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
1624 {
1625 UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
1626 uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
1627 return ESP_OK;
1628 }
1629
uart_set_always_rx_timeout(uart_port_t uart_num,bool always_rx_timeout)1630 void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
1631 {
1632 uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
1633 if (rx_tout) {
1634 p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
1635 } else {
1636 p_uart_obj[uart_num]->rx_always_timeout_flg = false;
1637 }
1638 }
1639