• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <trace/events/power.h>
13 #include <linux/compat.h>
14 #include <linux/efi.h>
15 #include <linux/elf.h>
16 #include <linux/export.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/lockdep.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/nospec.h>
26 #include <linux/stddef.h>
27 #include <linux/sysctl.h>
28 #include <linux/unistd.h>
29 #include <linux/user.h>
30 #include <linux/delay.h>
31 #include <linux/reboot.h>
32 #include <linux/interrupt.h>
33 #include <linux/init.h>
34 #include <linux/cpu.h>
35 #include <linux/elfcore.h>
36 #include <linux/pm.h>
37 #include <linux/tick.h>
38 #include <linux/utsname.h>
39 #include <linux/uaccess.h>
40 #include <linux/random.h>
41 #include <linux/hw_breakpoint.h>
42 #include <linux/personality.h>
43 #include <linux/notifier.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
74 
__cpu_do_idle(void)75 static void noinstr __cpu_do_idle(void)
76 {
77     dsb(sy);
78     wfi();
79 }
80 
__cpu_do_idle_irqprio(void)81 static void noinstr __cpu_do_idle_irqprio(void)
82 {
83     unsigned long pmr;
84     unsigned long daif_bits;
85 
86     daif_bits = read_sysreg(daif);
87     write_sysreg(daif_bits | PSR_I_BIT, daif);
88 
89     /*
90      * Unmask PMR before going idle to make sure interrupts can
91      * be raised.
92      */
93     pmr = gic_read_pmr();
94     gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
95 
96     __cpu_do_idle();
97 
98     gic_write_pmr(pmr);
99     write_sysreg(daif_bits, daif);
100 }
101 
102 /*
103  *    cpu_do_idle()
104  *
105  *    Idle the processor (wait for interrupt).
106  *
107  *    If the CPU supports priority masking we must do additional work to
108  *    ensure that interrupts are not masked at the PMR (because the core will
109  *    not wake up if we block the wake up signal in the interrupt controller).
110  */
cpu_do_idle(void)111 void noinstr cpu_do_idle(void)
112 {
113     if (system_uses_irq_prio_masking()) {
114         __cpu_do_idle_irqprio();
115     } else {
116         __cpu_do_idle();
117     }
118 }
119 
120 /*
121  * This is our default idle handler.
122  */
arch_cpu_idle(void)123 void noinstr arch_cpu_idle(void)
124 {
125     /*
126      * This should do all the clock switching and wait for interrupt
127      * tricks
128      */
129     cpu_do_idle();
130     raw_local_irq_enable();
131 }
132 
133 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)134 void arch_cpu_idle_dead(void)
135 {
136     cpu_die();
137 }
138 #endif
139 
140 /*
141  * Called by kexec, immediately prior to machine_kexec().
142  *
143  * This must completely disable all secondary CPUs; simply causing those CPUs
144  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
145  * kexec'd kernel to use any and all RAM as it sees fit, without having to
146  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
147  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
148  */
machine_shutdown(void)149 void machine_shutdown(void)
150 {
151     smp_shutdown_nonboot_cpus(reboot_cpu);
152 }
153 
154 /*
155  * Halting simply requires that the secondary CPUs stop performing any
156  * activity (executing tasks, handling interrupts). smp_send_stop()
157  * achieves this.
158  */
machine_halt(void)159 void machine_halt(void)
160 {
161     local_irq_disable();
162     smp_send_stop();
163     while (1) {
164         ;
165     }
166 }
167 
168 /*
169  * Power-off simply requires that the secondary CPUs stop performing any
170  * activity (executing tasks, handling interrupts). smp_send_stop()
171  * achieves this. When the system power is turned off, it will take all CPUs
172  * with it.
173  */
machine_power_off(void)174 void machine_power_off(void)
175 {
176     local_irq_disable();
177     smp_send_stop();
178     if (pm_power_off) {
179         pm_power_off();
180     }
181 }
182 
183 /*
184  * Restart requires that the secondary CPUs stop performing any activity
185  * while the primary CPU resets the system. Systems with multiple CPUs must
186  * provide a HW restart implementation, to ensure that all CPUs reset at once.
187  * This is required so that any code running after reset on the primary CPU
188  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
189  * executing pre-reset code, and using RAM that the primary CPU's code wishes
190  * to use. Implementing such co-ordination would be essentially impossible.
191  */
machine_restart(char * cmd)192 void machine_restart(char *cmd)
193 {
194     /* Disable interrupts first */
195     local_irq_disable();
196     smp_send_stop();
197 
198     do_kernel_pre_restart(cmd);
199 
200     /*
201      * UpdateCapsule() depends on the system being reset via
202      * ResetSystem().
203      */
204     if (efi_enabled(EFI_RUNTIME_SERVICES)) {
205         efi_reboot(reboot_mode, NULL);
206     }
207 
208     /* Now call the architecture specific reboot code. */
209     if (arm_pm_restart) {
210         arm_pm_restart(reboot_mode, cmd);
211     } else {
212         do_kernel_restart(cmd);
213     }
214 
215     /*
216      * Whoops - the architecture was unable to reboot.
217      */
218     printk("Reboot failed -- System halted\n");
219     while (1) {
220         ;
221     }
222 }
223 
224 #define bstr(suffix, str) [PSR_BTYPE_##suffix >> PSR_BTYPE_SHIFT] = (str)
225 static const char *const btypes[] = {bstr(NONE, "--"), bstr(JC, "jc"), bstr(C, "-c"), bstr(J, "j-")};
226 #undef bstr
227 
print_pstate(struct pt_regs * regs)228 static void print_pstate(struct pt_regs *regs)
229 {
230     u64 pstate = regs->pstate;
231 
232     if (compat_user_mode(regs)) {
233         printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", pstate, pstate & PSR_AA32_N_BIT ? 'N' : 'n',
234                pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', pstate & PSR_AA32_C_BIT ? 'C' : 'c',
235                pstate & PSR_AA32_V_BIT ? 'V' : 'v', pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
236                pstate & PSR_AA32_T_BIT ? "T32" : "A32", pstate & PSR_AA32_E_BIT ? "BE" : "LE",
237                pstate & PSR_AA32_A_BIT ? 'A' : 'a', pstate & PSR_AA32_I_BIT ? 'I' : 'i',
238                pstate & PSR_AA32_F_BIT ? 'F' : 'f');
239     } else {
240         const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> PSR_BTYPE_SHIFT];
241 
242         printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n", pstate,
243                pstate & PSR_N_BIT ? 'N' : 'n', pstate & PSR_Z_BIT ? 'Z' : 'z', pstate & PSR_C_BIT ? 'C' : 'c',
244                pstate & PSR_V_BIT ? 'V' : 'v', pstate & PSR_D_BIT ? 'D' : 'd', pstate & PSR_A_BIT ? 'A' : 'a',
245                pstate & PSR_I_BIT ? 'I' : 'i', pstate & PSR_F_BIT ? 'F' : 'f', pstate & PSR_PAN_BIT ? '+' : '-',
246                pstate & PSR_UAO_BIT ? '+' : '-', pstate & PSR_TCO_BIT ? '+' : '-', btype_str);
247     }
248 }
249 
__show_regs(struct pt_regs * regs)250 void __show_regs(struct pt_regs *regs)
251 {
252     int i, top_reg;
253     u64 lr, sp;
254 
255     if (compat_user_mode(regs)) {
256         lr = regs->compat_lr;
257         sp = regs->compat_sp;
258         top_reg = 0x0c;
259     } else {
260         lr = regs->regs[0x1e];
261         sp = regs->sp;
262         top_reg = 0x1d;
263     }
264 
265     show_regs_print_info(KERN_DEFAULT);
266     print_pstate(regs);
267 
268     if (!user_mode(regs)) {
269         printk("pc : %pS\n", (void *)regs->pc);
270         printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
271     } else {
272         printk("pc : %016llx\n", regs->pc);
273         printk("lr : %016llx\n", lr);
274     }
275 
276     printk("sp : %016llx\n", sp);
277 
278     if (system_uses_irq_prio_masking()) {
279         printk("pmr_save: %08llx\n", regs->pmr_save);
280     }
281 
282     i = top_reg;
283 
284     while (i >= 0) {
285         printk("x%-2d: %016llx ", i, regs->regs[i]);
286         i--;
287 
288         if (i % 0x02 == 0) {
289             pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
290             i--;
291         }
292 
293         pr_cont("\n");
294     }
295 }
296 
show_regs(struct pt_regs * regs)297 void show_regs(struct pt_regs *regs)
298 {
299     __show_regs(regs);
300     dump_backtrace(regs, NULL, KERN_DEFAULT);
301 }
302 
tls_thread_flush(void)303 static void tls_thread_flush(void)
304 {
305     write_sysreg(0, tpidr_el0);
306 
307     if (is_compat_task()) {
308         current->thread.uw.tp_value = 0;
309 
310         /*
311          * We need to ensure ordering between the shadow state and the
312          * hardware state, so that we don't corrupt the hardware state
313          * with a stale shadow state during context switch.
314          */
315         barrier();
316         write_sysreg(0, tpidrro_el0);
317     }
318 }
319 
flush_tagged_addr_state(void)320 static void flush_tagged_addr_state(void)
321 {
322     if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) {
323         clear_thread_flag(TIF_TAGGED_ADDR);
324     }
325 }
326 
flush_thread(void)327 void flush_thread(void)
328 {
329     fpsimd_flush_thread();
330     tls_thread_flush();
331     flush_ptrace_hw_breakpoint(current);
332     flush_tagged_addr_state();
333     flush_mte_state();
334 }
335 
release_thread(struct task_struct * dead_task)336 void release_thread(struct task_struct *dead_task)
337 {
338 }
339 
arch_release_task_struct(struct task_struct * tsk)340 void arch_release_task_struct(struct task_struct *tsk)
341 {
342     fpsimd_release_task(tsk);
343 }
344 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)345 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
346 {
347     if (current->mm) {
348         fpsimd_preserve_current_state();
349     }
350     *dst = *src;
351 
352     /* We rely on the above assignment to initialize dst's thread_flags: */
353     BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
354 
355     /*
356      * Detach src's sve_state (if any) from dst so that it does not
357      * get erroneously used or freed prematurely.  dst's sve_state
358      * will be allocated on demand later on if dst uses SVE.
359      * For consistency, also clear TIF_SVE here: this could be done
360      * later in copy_process(), but to avoid tripping up future
361      * maintainers it is best not to leave TIF_SVE and sve_state in
362      * an inconsistent state, even temporarily.
363      */
364     dst->thread.sve_state = NULL;
365     clear_tsk_thread_flag(dst, TIF_SVE);
366 
367     /* clear any pending asynchronous tag fault raised by the parent */
368     clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
369 
370     return 0;
371 }
372 
373 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
374 
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,unsigned long tls)375 int copy_thread(unsigned long clone_flags, unsigned long stack_start, unsigned long stk_sz, struct task_struct *p,
376                 unsigned long tls)
377 {
378     struct pt_regs *childregs = task_pt_regs(p);
379 
380     memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
381 
382     /*
383      * In case p was allocated the same task_struct pointer as some
384      * other recently-exited task, make sure p is disassociated from
385      * any cpu that may have run that now-exited task recently.
386      * Otherwise we could erroneously skip reloading the FPSIMD
387      * registers for p.
388      */
389     fpsimd_flush_task_state(p);
390 
391     ptrauth_thread_init_kernel(p);
392 
393     if (likely(!(p->flags & PF_KTHREAD))) {
394         *childregs = *current_pt_regs();
395         childregs->regs[0] = 0;
396 
397         /*
398          * Read the current TLS pointer from tpidr_el0 as it may be
399          * out-of-sync with the saved value.
400          */
401         *task_user_tls(p) = read_sysreg(tpidr_el0);
402 
403         if (stack_start) {
404             if (is_compat_thread(task_thread_info(p))) {
405                 childregs->compat_sp = stack_start;
406             } else {
407                 childregs->sp = stack_start;
408             }
409         }
410 
411         /*
412          * If a TLS pointer was passed to clone, use it for the new
413          * thread.
414          */
415         if (clone_flags & CLONE_SETTLS) {
416             p->thread.uw.tp_value = tls;
417         }
418     } else {
419         memset(childregs, 0, sizeof(struct pt_regs));
420 
421         childregs->pstate = PSR_MODE_EL1h;
422         if (IS_ENABLED(CONFIG_ARM64_UAO) && cpus_have_const_cap(ARM64_HAS_UAO)) {
423             childregs->pstate |= PSR_UAO_BIT;
424         }
425 
426         spectre_v4_enable_task_mitigation(p);
427 
428         if (system_uses_irq_prio_masking()) {
429             childregs->pmr_save = GIC_PRIO_IRQON;
430         }
431 
432         p->thread.cpu_context.x19 = stack_start;
433         p->thread.cpu_context.x20 = stk_sz;
434     }
435     p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
436     p->thread.cpu_context.sp = (unsigned long)childregs;
437 
438     ptrace_hw_copy_thread(p);
439 
440     return 0;
441 }
442 
tls_preserve_current_state(void)443 void tls_preserve_current_state(void)
444 {
445     *task_user_tls(current) = read_sysreg(tpidr_el0);
446 }
447 
tls_thread_switch(struct task_struct * next)448 static void tls_thread_switch(struct task_struct *next)
449 {
450     tls_preserve_current_state();
451 
452     if (is_compat_thread(task_thread_info(next))) {
453         write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
454     } else if (!arm64_kernel_unmapped_at_el0()) {
455         write_sysreg(0, tpidrro_el0);
456     }
457 
458     write_sysreg(*task_user_tls(next), tpidr_el0);
459 }
460 
461 /* Restore the UAO state depending on next's addr_limit */
uao_thread_switch(struct task_struct * next)462 void uao_thread_switch(struct task_struct *next)
463 {
464     if (IS_ENABLED(CONFIG_ARM64_UAO)) {
465         if (task_thread_info(next)->addr_limit == KERNEL_DS) {
466             asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
467         } else {
468             asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
469         }
470     }
471 }
472 
473 /*
474  * Force SSBS state on context-switch, since it may be lost after migrating
475  * from a CPU which treats the bit as RES0 in a heterogeneous system.
476  */
ssbs_thread_switch(struct task_struct * next)477 static void ssbs_thread_switch(struct task_struct *next)
478 {
479     /*
480      * Nothing to do for kernel threads, but 'regs' may be junk
481      * (e.g. idle task) so check the flags and bail early.
482      */
483     if (unlikely(next->flags & PF_KTHREAD)) {
484         return;
485     }
486 
487     /*
488      * If all CPUs implement the SSBS extension, then we just need to
489      * context-switch the PSTATE field.
490      */
491     if (cpus_have_const_cap(ARM64_SSBS)) {
492         return;
493     }
494 
495     spectre_v4_enable_task_mitigation(next);
496 }
497 
498 /*
499  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
500  * shadow copy so that we can restore this upon entry from userspace.
501  *
502  * This is *only* for exception entry from EL0, and is not valid until we
503  * __switch_to() a user task.
504  */
505 DEFINE_PER_CPU(struct task_struct *, __entry_task);
506 
entry_task_switch(struct task_struct * next)507 static void entry_task_switch(struct task_struct *next)
508 {
509     __this_cpu_write(__entry_task, next);
510 }
511 
512 /*
513  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
514  * Assuming the virtual counter is enabled at the beginning of times:
515  *
516  * - disable access when switching from a 64bit task to a 32bit task
517  * - enable access when switching from a 32bit task to a 64bit task
518  */
erratum_1418040_thread_switch(struct task_struct * next)519 static void erratum_1418040_thread_switch(struct task_struct *next)
520 {
521     if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
522         !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
523         return;
524 
525     if (is_compat_thread(task_thread_info(next)))
526         sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
527     else
528         sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
529     }
530 
erratum_1418040_new_exec(void)531 static void erratum_1418040_new_exec(void)
532 {
533     preempt_disable();
534     erratum_1418040_thread_switch(current);
535     preempt_enable();
536 }
537 
538 /*
539  * Thread switching.
540  */
__switch_to(struct task_struct * prev,struct task_struct * next)541 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
542 {
543     struct task_struct *last;
544 
545     fpsimd_thread_switch(next);
546     tls_thread_switch(next);
547     hw_breakpoint_thread_switch(next);
548     contextidr_thread_switch(next);
549     entry_task_switch(next);
550     uao_thread_switch(next);
551     ssbs_thread_switch(next);
552     erratum_1418040_thread_switch(next);
553 
554     /*
555      * Complete any pending TLB or cache maintenance on this CPU in case
556      * the thread migrates to a different CPU.
557      * This full barrier is also required by the membarrier system
558      * call.
559      */
560     dsb(ish);
561 
562     /*
563      * MTE thread switching must happen after the DSB above to ensure that
564      * any asynchronous tag check faults have been logged in the TFSR*_EL1
565      * registers.
566      */
567     mte_thread_switch(next);
568 
569     /* the actual thread switch */
570     last = cpu_switch_to(prev, next);
571 
572     return last;
573 }
574 
get_wchan(struct task_struct * p)575 unsigned long get_wchan(struct task_struct *p)
576 {
577     struct stackframe frame;
578     unsigned long stack_page, ret = 0;
579     int count = 0;
580     if (!p || p == current || p->state == TASK_RUNNING) {
581         return 0;
582     }
583 
584     stack_page = (unsigned long)try_get_task_stack(p);
585     if (!stack_page) {
586         return 0;
587     }
588 
589     start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
590 
591     do {
592         if (unwind_frame(p, &frame)) {
593             goto out;
594         }
595         if (!in_sched_functions(frame.pc)) {
596             ret = frame.pc;
597             goto out;
598         }
599     } while (count++ < 0x10);
600 
601 out:
602     put_task_stack(p);
603     return ret;
604 }
605 
arch_align_stack(unsigned long sp)606 unsigned long arch_align_stack(unsigned long sp)
607 {
608     if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) {
609         sp -= get_random_int() & ~PAGE_MASK;
610     }
611     return sp & ~0xf;
612 }
613 
614 /*
615  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
616  */
arch_setup_new_exec(void)617 void arch_setup_new_exec(void)
618 {
619     current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
620 
621     ptrauth_thread_init_user(current);
622     erratum_1418040_new_exec();
623 
624     if (task_spec_ssb_noexec(current)) {
625         arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, PR_SPEC_ENABLE);
626     }
627 }
628 
629 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
630 /*
631  * Control the relaxed ABI allowing tagged user addresses into the kernel.
632  */
633 static unsigned int tagged_addr_disabled;
634 
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)635 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
636 {
637     unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
638     struct thread_info *ti = task_thread_info(task);
639 
640     if (is_compat_thread(ti)) {
641         return -EINVAL;
642     }
643 
644     if (system_supports_mte()) {
645         valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
646     }
647 
648     if (arg & ~valid_mask) {
649         return -EINVAL;
650     }
651 
652     /*
653      * Do not allow the enabling of the tagged address ABI if globally
654      * disabled via sysctl abi.tagged_addr_disabled.
655      */
656     if ((arg & PR_TAGGED_ADDR_ENABLE) && tagged_addr_disabled) {
657         return -EINVAL;
658     }
659 
660     if (set_mte_ctrl(task, arg) != 0) {
661         return -EINVAL;
662     }
663 
664     update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
665 
666     return 0;
667 }
668 
get_tagged_addr_ctrl(struct task_struct * task)669 long get_tagged_addr_ctrl(struct task_struct *task)
670 {
671     long ret = 0;
672     struct thread_info *ti = task_thread_info(task);
673 
674     if (is_compat_thread(ti)) {
675         return -EINVAL;
676     }
677 
678     if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) {
679         ret = PR_TAGGED_ADDR_ENABLE;
680     }
681 
682     ret |= get_mte_ctrl(task);
683 
684     return ret;
685 }
686 
687 /*
688  * Global sysctl to disable the tagged user addresses support. This control
689  * only prevents the tagged address ABI enabling via prctl() and does not
690  * disable it for tasks that already opted in to the relaxed ABI.
691  */
692 
693 static struct ctl_table tagged_addr_sysctl_table[] = {
694     {
695         .procname = "tagged_addr_disabled",
696         .mode = 0644,
697         .data = &tagged_addr_disabled,
698         .maxlen = sizeof(int),
699         .proc_handler = proc_dointvec_minmax,
700         .extra1 = SYSCTL_ZERO,
701         .extra2 = SYSCTL_ONE,
702     },
703     {}
704 };
705 
tagged_addr_init(void)706 static int __init tagged_addr_init(void)
707 {
708     if (!register_sysctl("abi", tagged_addr_sysctl_table)) {
709         return -EINVAL;
710     }
711     return 0;
712 }
713 
714 core_initcall(tagged_addr_init);
715 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
716 
arm64_preempt_schedule_irq(void)717 asmlinkage void __sched arm64_preempt_schedule_irq(void)
718 {
719     lockdep_assert_irqs_disabled();
720 
721     /*
722      * Preempting a task from an IRQ means we leave copies of PSTATE
723      * on the stack. cpufeature's enable calls may modify PSTATE, but
724      * resuming one of these preempted tasks would undo those changes.
725      *
726      * Only allow a task to be preempted once cpufeatures have been
727      * enabled.
728      */
729     if (system_capabilities_finalized()) {
730         preempt_schedule_irq();
731     }
732 }
733 
734 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)735 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, bool has_interp, bool is_interp)
736 {
737     /*
738      * For dynamically linked executables the interpreter is
739      * responsible for setting PROT_BTI on everything except
740      * itself.
741      */
742     if (is_interp != has_interp) {
743         return prot;
744     }
745 
746     if (!(state->flags & ARM64_ELF_BTI)) {
747         return prot;
748     }
749 
750     if (prot & PROT_EXEC) {
751         prot |= PROT_BTI;
752     }
753 
754     return prot;
755 }
756 #endif
757