1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25
26 struct cqhci_slot {
27 struct mmc_request *mrq;
28 unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
30 #define CQHCI_COMPLETED BIT(1)
31 #define CQHCI_HOST_CRC BIT(2)
32 #define CQHCI_HOST_TIMEOUT BIT(3)
33 #define CQHCI_HOST_OTHER BIT(4)
34 };
35
get_desc(struct cqhci_host * cq_host,u8 tag)36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40
get_link_desc(struct cqhci_host * cq_host,u8 tag)41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 u8 *desc = get_desc(cq_host, tag);
44
45 return desc + cq_host->task_desc_len;
46 }
47
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)48 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
49 {
50 return cq_host->trans_desc_dma_base +
51 (cq_host->mmc->max_segs * tag *
52 cq_host->trans_desc_len);
53 }
54
get_trans_desc(struct cqhci_host * cq_host,u8 tag)55 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
56 {
57 return cq_host->trans_desc_base +
58 (cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
59 }
60
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)61 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
62 {
63 u8 *link_temp;
64 dma_addr_t trans_temp;
65
66 link_temp = get_link_desc(cq_host, tag);
67 trans_temp = get_trans_desc_dma(cq_host, tag);
68
69 memset(link_temp, 0, cq_host->link_desc_len);
70 if (cq_host->link_desc_len > 8)
71 *(link_temp + 8) = 0;
72
73 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
74 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
75 return;
76 }
77
78 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
79
80 if (cq_host->dma64) {
81 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
82
83 data_addr[0] = cpu_to_le64(trans_temp);
84 } else {
85 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
86
87 data_addr[0] = cpu_to_le32(trans_temp);
88 }
89 }
90
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)91 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
92 {
93 cqhci_writel(cq_host, set, CQHCI_ISTE);
94 cqhci_writel(cq_host, set, CQHCI_ISGE);
95 }
96
97 #define DRV_NAME "cqhci"
98
99 #define CQHCI_DUMP(f, x...) \
100 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
101
cqhci_dumpregs(struct cqhci_host * cq_host)102 static void cqhci_dumpregs(struct cqhci_host *cq_host)
103 {
104 struct mmc_host *mmc = cq_host->mmc;
105
106 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
107
108 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
109 cqhci_readl(cq_host, CQHCI_CAP),
110 cqhci_readl(cq_host, CQHCI_VER));
111 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
112 cqhci_readl(cq_host, CQHCI_CFG),
113 cqhci_readl(cq_host, CQHCI_CTL));
114 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
115 cqhci_readl(cq_host, CQHCI_IS),
116 cqhci_readl(cq_host, CQHCI_ISTE));
117 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
118 cqhci_readl(cq_host, CQHCI_ISGE),
119 cqhci_readl(cq_host, CQHCI_IC));
120 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
121 cqhci_readl(cq_host, CQHCI_TDLBA),
122 cqhci_readl(cq_host, CQHCI_TDLBAU));
123 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
124 cqhci_readl(cq_host, CQHCI_TDBR),
125 cqhci_readl(cq_host, CQHCI_TCN));
126 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
127 cqhci_readl(cq_host, CQHCI_DQS),
128 cqhci_readl(cq_host, CQHCI_DPT));
129 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
130 cqhci_readl(cq_host, CQHCI_TCLR),
131 cqhci_readl(cq_host, CQHCI_SSC1));
132 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
133 cqhci_readl(cq_host, CQHCI_SSC2),
134 cqhci_readl(cq_host, CQHCI_CRDCT));
135 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
136 cqhci_readl(cq_host, CQHCI_RMEM),
137 cqhci_readl(cq_host, CQHCI_TERRI));
138 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
139 cqhci_readl(cq_host, CQHCI_CRI),
140 cqhci_readl(cq_host, CQHCI_CRA));
141
142 if (cq_host->ops->dumpregs)
143 cq_host->ops->dumpregs(mmc);
144 else
145 CQHCI_DUMP(": ===========================================\n");
146 }
147
148 /*
149 * The allocated descriptor table for task, link & transfer descritors
150 * looks like:
151 * |----------|
152 * |task desc | |->|----------|
153 * |----------| | |trans desc|
154 * |link desc-|->| |----------|
155 * |----------| .
156 * . .
157 * no. of slots max-segs
158 * . |----------|
159 * |----------|
160 * The idea here is to create the [task+trans] table and mark & point the
161 * link desc to the transfer desc table on a per slot basis.
162 */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)163 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
164 {
165 int i = 0;
166
167 /* task descriptor can be 64/128 bit irrespective of arch */
168 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
169 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
170 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
171 cq_host->task_desc_len = 16;
172 } else {
173 cq_host->task_desc_len = 8;
174 }
175
176 /*
177 * 96 bits length of transfer desc instead of 128 bits which means
178 * ADMA would expect next valid descriptor at the 96th bit
179 * or 128th bit
180 */
181 if (cq_host->dma64) {
182 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
183 cq_host->trans_desc_len = 12;
184 else
185 cq_host->trans_desc_len = 16;
186 cq_host->link_desc_len = 16;
187 } else {
188 cq_host->trans_desc_len = 8;
189 cq_host->link_desc_len = 8;
190 }
191
192 /* total size of a slot: 1 task & 1 transfer (link) */
193 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
194
195 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
196
197 cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
198 cq_host->mmc->cqe_qdepth;
199
200 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
201 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
202 cq_host->slot_sz);
203
204 /*
205 * allocate a dma-mapped chunk of memory for the descriptors
206 * allocate a dma-mapped chunk of memory for link descriptors
207 * setup each link-desc memory offset per slot-number to
208 * the descriptor table.
209 */
210 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
211 cq_host->desc_size,
212 &cq_host->desc_dma_base,
213 GFP_KERNEL);
214 if (!cq_host->desc_base)
215 return -ENOMEM;
216
217 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
218 cq_host->data_size,
219 &cq_host->trans_desc_dma_base,
220 GFP_KERNEL);
221 if (!cq_host->trans_desc_base) {
222 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
223 cq_host->desc_base,
224 cq_host->desc_dma_base);
225 cq_host->desc_base = NULL;
226 cq_host->desc_dma_base = 0;
227 return -ENOMEM;
228 }
229
230 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
231 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
232 (unsigned long long)cq_host->desc_dma_base,
233 (unsigned long long)cq_host->trans_desc_dma_base);
234
235 for (; i < (cq_host->num_slots); i++)
236 setup_trans_desc(cq_host, i);
237
238 return 0;
239 }
240
__cqhci_enable(struct cqhci_host * cq_host)241 static void __cqhci_enable(struct cqhci_host *cq_host)
242 {
243 struct mmc_host *mmc = cq_host->mmc;
244 u32 cqcfg;
245
246 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
247
248 /* Configuration must not be changed while enabled */
249 if (cqcfg & CQHCI_ENABLE) {
250 cqcfg &= ~CQHCI_ENABLE;
251 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
252 }
253
254 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
255
256 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
257 cqcfg |= CQHCI_DCMD;
258
259 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
260 cqcfg |= CQHCI_TASK_DESC_SZ;
261
262 if (mmc->caps2 & MMC_CAP2_CRYPTO)
263 cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
264
265 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
266
267 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
268 CQHCI_TDLBA);
269 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
270 CQHCI_TDLBAU);
271
272 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
273
274 cqhci_set_irqs(cq_host, 0);
275
276 cqcfg |= CQHCI_ENABLE;
277
278 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
279
280 mmc->cqe_on = true;
281
282 if (cq_host->ops->enable)
283 cq_host->ops->enable(mmc);
284
285 /* Ensure all writes are done before interrupts are enabled */
286 wmb();
287
288 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
289
290 cq_host->activated = true;
291 }
292
__cqhci_disable(struct cqhci_host * cq_host)293 static void __cqhci_disable(struct cqhci_host *cq_host)
294 {
295 u32 cqcfg;
296
297 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
298 cqcfg &= ~CQHCI_ENABLE;
299 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
300
301 cq_host->mmc->cqe_on = false;
302
303 cq_host->activated = false;
304 }
305
cqhci_deactivate(struct mmc_host * mmc)306 int cqhci_deactivate(struct mmc_host *mmc)
307 {
308 struct cqhci_host *cq_host = mmc->cqe_private;
309
310 if (cq_host->enabled && cq_host->activated)
311 __cqhci_disable(cq_host);
312
313 return 0;
314 }
315 EXPORT_SYMBOL(cqhci_deactivate);
316
cqhci_resume(struct mmc_host * mmc)317 int cqhci_resume(struct mmc_host *mmc)
318 {
319 /* Re-enable is done upon first request */
320 return 0;
321 }
322 EXPORT_SYMBOL(cqhci_resume);
323
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)324 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
325 {
326 struct cqhci_host *cq_host = mmc->cqe_private;
327 int err;
328
329 if (!card->ext_csd.cmdq_en)
330 return -EINVAL;
331
332 if (cq_host->enabled)
333 return 0;
334
335 cq_host->rca = card->rca;
336
337 err = cqhci_host_alloc_tdl(cq_host);
338 if (err) {
339 pr_err("%s: Failed to enable CQE, error %d\n",
340 mmc_hostname(mmc), err);
341 return err;
342 }
343
344 __cqhci_enable(cq_host);
345
346 cq_host->enabled = true;
347
348 #ifdef DEBUG
349 cqhci_dumpregs(cq_host);
350 #endif
351 return 0;
352 }
353
354 /* CQHCI is idle and should halt immediately, so set a small timeout */
355 #define CQHCI_OFF_TIMEOUT 100
356
cqhci_read_ctl(struct cqhci_host * cq_host)357 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
358 {
359 return cqhci_readl(cq_host, CQHCI_CTL);
360 }
361
cqhci_off(struct mmc_host * mmc)362 static void cqhci_off(struct mmc_host *mmc)
363 {
364 struct cqhci_host *cq_host = mmc->cqe_private;
365 u32 reg;
366 int err;
367
368 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
369 return;
370
371 if (cq_host->ops->disable)
372 cq_host->ops->disable(mmc, false);
373
374 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
375
376 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
377 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
378 if (err < 0)
379 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
380 else
381 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
382
383 if (cq_host->ops->post_disable)
384 cq_host->ops->post_disable(mmc);
385
386 mmc->cqe_on = false;
387 }
388
cqhci_disable(struct mmc_host * mmc)389 static void cqhci_disable(struct mmc_host *mmc)
390 {
391 struct cqhci_host *cq_host = mmc->cqe_private;
392
393 if (!cq_host->enabled)
394 return;
395
396 cqhci_off(mmc);
397
398 __cqhci_disable(cq_host);
399
400 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
401 cq_host->trans_desc_base,
402 cq_host->trans_desc_dma_base);
403
404 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
405 cq_host->desc_base,
406 cq_host->desc_dma_base);
407
408 cq_host->trans_desc_base = NULL;
409 cq_host->desc_base = NULL;
410
411 cq_host->enabled = false;
412 }
413
cqhci_prep_task_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)414 static void cqhci_prep_task_desc(struct mmc_request *mrq,
415 struct cqhci_host *cq_host, int tag)
416 {
417 __le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
418 u32 req_flags = mrq->data->flags;
419 u64 desc0;
420
421 desc0 = CQHCI_VALID(1) |
422 CQHCI_END(1) |
423 CQHCI_INT(1) |
424 CQHCI_ACT(0x5) |
425 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
426 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
427 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
428 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
429 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
430 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
431 CQHCI_BLK_COUNT(mrq->data->blocks) |
432 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
433
434 task_desc[0] = cpu_to_le64(desc0);
435
436 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
437 u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
438
439 task_desc[1] = cpu_to_le64(desc1);
440
441 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
442 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
443 } else {
444 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
445 mmc_hostname(mrq->host), mrq->tag, desc0);
446 }
447 }
448
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)449 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
450 {
451 int sg_count;
452 struct mmc_data *data = mrq->data;
453
454 if (!data)
455 return -EINVAL;
456
457 sg_count = dma_map_sg(mmc_dev(host), data->sg,
458 data->sg_len,
459 (data->flags & MMC_DATA_WRITE) ?
460 DMA_TO_DEVICE : DMA_FROM_DEVICE);
461 if (!sg_count) {
462 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
463 return -ENOMEM;
464 }
465
466 return sg_count;
467 }
468
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)469 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
470 bool dma64)
471 {
472 __le32 *attr = (__le32 __force *)desc;
473
474 *attr = (CQHCI_VALID(1) |
475 CQHCI_END(end ? 1 : 0) |
476 CQHCI_INT(0) |
477 CQHCI_ACT(0x4) |
478 CQHCI_DAT_LENGTH(len));
479
480 if (dma64) {
481 __le64 *dataddr = (__le64 __force *)(desc + 4);
482
483 dataddr[0] = cpu_to_le64(addr);
484 } else {
485 __le32 *dataddr = (__le32 __force *)(desc + 4);
486
487 dataddr[0] = cpu_to_le32(addr);
488 }
489 }
490
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)491 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
492 struct cqhci_host *cq_host, int tag)
493 {
494 struct mmc_data *data = mrq->data;
495 int i, sg_count, len;
496 bool end = false;
497 bool dma64 = cq_host->dma64;
498 dma_addr_t addr;
499 u8 *desc;
500 struct scatterlist *sg;
501
502 sg_count = cqhci_dma_map(mrq->host, mrq);
503 if (sg_count < 0) {
504 pr_err("%s: %s: unable to map sg lists, %d\n",
505 mmc_hostname(mrq->host), __func__, sg_count);
506 return sg_count;
507 }
508
509 desc = get_trans_desc(cq_host, tag);
510
511 for_each_sg(data->sg, sg, sg_count, i) {
512 addr = sg_dma_address(sg);
513 len = sg_dma_len(sg);
514
515 if ((i+1) == sg_count)
516 end = true;
517 cqhci_set_tran_desc(desc, addr, len, end, dma64);
518 desc += cq_host->trans_desc_len;
519 }
520
521 return 0;
522 }
523
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)524 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
525 struct mmc_request *mrq)
526 {
527 u64 *task_desc = NULL;
528 u64 data = 0;
529 u8 resp_type;
530 u8 *desc;
531 __le64 *dataddr;
532 struct cqhci_host *cq_host = mmc->cqe_private;
533 u8 timing;
534
535 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
536 resp_type = 0x0;
537 timing = 0x1;
538 } else {
539 if (mrq->cmd->flags & MMC_RSP_R1B) {
540 resp_type = 0x3;
541 timing = 0x0;
542 } else {
543 resp_type = 0x2;
544 timing = 0x1;
545 }
546 }
547
548 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
549 memset(task_desc, 0, cq_host->task_desc_len);
550 data |= (CQHCI_VALID(1) |
551 CQHCI_END(1) |
552 CQHCI_INT(1) |
553 CQHCI_QBAR(1) |
554 CQHCI_ACT(0x5) |
555 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
556 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
557 if (cq_host->ops->update_dcmd_desc)
558 cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
559 *task_desc |= data;
560 desc = (u8 *)task_desc;
561 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
562 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
563 dataddr = (__le64 __force *)(desc + 4);
564 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
565
566 }
567
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)568 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
569 {
570 struct mmc_data *data = mrq->data;
571
572 if (data) {
573 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
574 (data->flags & MMC_DATA_READ) ?
575 DMA_FROM_DEVICE : DMA_TO_DEVICE);
576 }
577 }
578
cqhci_tag(struct mmc_request * mrq)579 static inline int cqhci_tag(struct mmc_request *mrq)
580 {
581 return mrq->cmd ? DCMD_SLOT : mrq->tag;
582 }
583
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)584 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
585 {
586 int err = 0;
587 int tag = cqhci_tag(mrq);
588 struct cqhci_host *cq_host = mmc->cqe_private;
589 unsigned long flags;
590
591 if (!cq_host->enabled) {
592 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
593 return -EINVAL;
594 }
595
596 /* First request after resume has to re-enable */
597 if (!cq_host->activated)
598 __cqhci_enable(cq_host);
599
600 if (!mmc->cqe_on) {
601 if (cq_host->ops->pre_enable)
602 cq_host->ops->pre_enable(mmc);
603
604 cqhci_writel(cq_host, 0, CQHCI_CTL);
605 mmc->cqe_on = true;
606 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
607 if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
608 pr_err("%s: cqhci: CQE failed to exit halt state\n",
609 mmc_hostname(mmc));
610 }
611 if (cq_host->ops->enable)
612 cq_host->ops->enable(mmc);
613 }
614
615 if (mrq->data) {
616 cqhci_prep_task_desc(mrq, cq_host, tag);
617
618 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
619 if (err) {
620 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
621 mmc_hostname(mmc), err);
622 return err;
623 }
624 } else {
625 cqhci_prep_dcmd_desc(mmc, mrq);
626 }
627
628 spin_lock_irqsave(&cq_host->lock, flags);
629
630 if (cq_host->recovery_halt) {
631 err = -EBUSY;
632 goto out_unlock;
633 }
634
635 cq_host->slot[tag].mrq = mrq;
636 cq_host->slot[tag].flags = 0;
637
638 cq_host->qcnt += 1;
639 /* Make sure descriptors are ready before ringing the doorbell */
640 wmb();
641 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
642 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
643 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
644 mmc_hostname(mmc), tag);
645 out_unlock:
646 spin_unlock_irqrestore(&cq_host->lock, flags);
647
648 if (err)
649 cqhci_post_req(mmc, mrq);
650
651 return err;
652 }
653
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)654 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
655 bool notify)
656 {
657 struct cqhci_host *cq_host = mmc->cqe_private;
658
659 if (!cq_host->recovery_halt) {
660 cq_host->recovery_halt = true;
661 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
662 wake_up(&cq_host->wait_queue);
663 if (notify && mrq->recovery_notifier)
664 mrq->recovery_notifier(mrq);
665 }
666 }
667
cqhci_error_flags(int error1,int error2)668 static unsigned int cqhci_error_flags(int error1, int error2)
669 {
670 int error = error1 ? error1 : error2;
671
672 switch (error) {
673 case -EILSEQ:
674 return CQHCI_HOST_CRC;
675 case -ETIMEDOUT:
676 return CQHCI_HOST_TIMEOUT;
677 default:
678 return CQHCI_HOST_OTHER;
679 }
680 }
681
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)682 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
683 int data_error)
684 {
685 struct cqhci_host *cq_host = mmc->cqe_private;
686 struct cqhci_slot *slot;
687 u32 terri;
688 u32 tdpe;
689 int tag;
690
691 spin_lock(&cq_host->lock);
692
693 terri = cqhci_readl(cq_host, CQHCI_TERRI);
694
695 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
696 mmc_hostname(mmc), status, cmd_error, data_error, terri);
697
698 /* Forget about errors when recovery has already been triggered */
699 if (cq_host->recovery_halt)
700 goto out_unlock;
701
702 if (!cq_host->qcnt) {
703 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
704 mmc_hostname(mmc), status, cmd_error, data_error,
705 terri);
706 goto out_unlock;
707 }
708
709 if (CQHCI_TERRI_C_VALID(terri)) {
710 tag = CQHCI_TERRI_C_TASK(terri);
711 slot = &cq_host->slot[tag];
712 if (slot->mrq) {
713 slot->flags = cqhci_error_flags(cmd_error, data_error);
714 cqhci_recovery_needed(mmc, slot->mrq, true);
715 }
716 }
717
718 if (CQHCI_TERRI_D_VALID(terri)) {
719 tag = CQHCI_TERRI_D_TASK(terri);
720 slot = &cq_host->slot[tag];
721 if (slot->mrq) {
722 slot->flags = cqhci_error_flags(data_error, cmd_error);
723 cqhci_recovery_needed(mmc, slot->mrq, true);
724 }
725 }
726
727 /*
728 * Handle ICCE ("Invalid Crypto Configuration Error"). This should
729 * never happen, since the block layer ensures that all crypto-enabled
730 * I/O requests have a valid keyslot before they reach the driver.
731 *
732 * Note that GCE ("General Crypto Error") is different; it already got
733 * handled above by checking TERRI.
734 */
735 if (status & CQHCI_IS_ICCE) {
736 tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
737 WARN_ONCE(1,
738 "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
739 mmc_hostname(mmc), status, tdpe);
740 while (tdpe != 0) {
741 tag = __ffs(tdpe);
742 tdpe &= ~(1 << tag);
743 slot = &cq_host->slot[tag];
744 if (!slot->mrq)
745 continue;
746 slot->flags = cqhci_error_flags(data_error, cmd_error);
747 cqhci_recovery_needed(mmc, slot->mrq, true);
748 }
749 }
750
751 if (!cq_host->recovery_halt) {
752 /*
753 * The only way to guarantee forward progress is to mark at
754 * least one task in error, so if none is indicated, pick one.
755 */
756 for (tag = 0; tag < NUM_SLOTS; tag++) {
757 slot = &cq_host->slot[tag];
758 if (!slot->mrq)
759 continue;
760 slot->flags = cqhci_error_flags(data_error, cmd_error);
761 cqhci_recovery_needed(mmc, slot->mrq, true);
762 break;
763 }
764 }
765
766 out_unlock:
767 spin_unlock(&cq_host->lock);
768 }
769
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)770 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
771 {
772 struct cqhci_host *cq_host = mmc->cqe_private;
773 struct cqhci_slot *slot = &cq_host->slot[tag];
774 struct mmc_request *mrq = slot->mrq;
775 struct mmc_data *data;
776
777 if (!mrq) {
778 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
779 mmc_hostname(mmc), tag);
780 return;
781 }
782
783 /* No completions allowed during recovery */
784 if (cq_host->recovery_halt) {
785 slot->flags |= CQHCI_COMPLETED;
786 return;
787 }
788
789 slot->mrq = NULL;
790
791 cq_host->qcnt -= 1;
792
793 data = mrq->data;
794 if (data) {
795 if (data->error)
796 data->bytes_xfered = 0;
797 else
798 data->bytes_xfered = data->blksz * data->blocks;
799 }
800
801 mmc_cqe_request_done(mmc, mrq);
802 }
803
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)804 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
805 int data_error)
806 {
807 u32 status;
808 unsigned long tag = 0, comp_status;
809 struct cqhci_host *cq_host = mmc->cqe_private;
810
811 status = cqhci_readl(cq_host, CQHCI_IS);
812 cqhci_writel(cq_host, status, CQHCI_IS);
813
814 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
815
816 if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
817 cmd_error || data_error)
818 cqhci_error_irq(mmc, status, cmd_error, data_error);
819
820 if (status & CQHCI_IS_TCC) {
821 /* read TCN and complete the request */
822 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
823 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
824 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
825 mmc_hostname(mmc), comp_status);
826
827 spin_lock(&cq_host->lock);
828
829 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
830 /* complete the corresponding mrq */
831 pr_debug("%s: cqhci: completing tag %lu\n",
832 mmc_hostname(mmc), tag);
833 cqhci_finish_mrq(mmc, tag);
834 }
835
836 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
837 cq_host->waiting_for_idle = false;
838 wake_up(&cq_host->wait_queue);
839 }
840
841 spin_unlock(&cq_host->lock);
842 }
843
844 if (status & CQHCI_IS_TCL)
845 wake_up(&cq_host->wait_queue);
846
847 if (status & CQHCI_IS_HAC)
848 wake_up(&cq_host->wait_queue);
849
850 return IRQ_HANDLED;
851 }
852 EXPORT_SYMBOL(cqhci_irq);
853
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)854 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
855 {
856 unsigned long flags;
857 bool is_idle;
858
859 spin_lock_irqsave(&cq_host->lock, flags);
860 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
861 *ret = cq_host->recovery_halt ? -EBUSY : 0;
862 cq_host->waiting_for_idle = !is_idle;
863 spin_unlock_irqrestore(&cq_host->lock, flags);
864
865 return is_idle;
866 }
867
cqhci_wait_for_idle(struct mmc_host * mmc)868 static int cqhci_wait_for_idle(struct mmc_host *mmc)
869 {
870 struct cqhci_host *cq_host = mmc->cqe_private;
871 int ret;
872
873 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
874
875 return ret;
876 }
877
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)878 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
879 bool *recovery_needed)
880 {
881 struct cqhci_host *cq_host = mmc->cqe_private;
882 int tag = cqhci_tag(mrq);
883 struct cqhci_slot *slot = &cq_host->slot[tag];
884 unsigned long flags;
885 bool timed_out;
886
887 spin_lock_irqsave(&cq_host->lock, flags);
888 timed_out = slot->mrq == mrq;
889 if (timed_out) {
890 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
891 cqhci_recovery_needed(mmc, mrq, false);
892 *recovery_needed = cq_host->recovery_halt;
893 }
894 spin_unlock_irqrestore(&cq_host->lock, flags);
895
896 if (timed_out) {
897 pr_err("%s: cqhci: timeout for tag %d\n",
898 mmc_hostname(mmc), tag);
899 cqhci_dumpregs(cq_host);
900 }
901
902 return timed_out;
903 }
904
cqhci_tasks_cleared(struct cqhci_host * cq_host)905 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
906 {
907 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
908 }
909
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)910 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
911 {
912 struct cqhci_host *cq_host = mmc->cqe_private;
913 bool ret;
914 u32 ctl;
915
916 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
917
918 ctl = cqhci_readl(cq_host, CQHCI_CTL);
919 ctl |= CQHCI_CLEAR_ALL_TASKS;
920 cqhci_writel(cq_host, ctl, CQHCI_CTL);
921
922 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
923 msecs_to_jiffies(timeout) + 1);
924
925 cqhci_set_irqs(cq_host, 0);
926
927 ret = cqhci_tasks_cleared(cq_host);
928
929 if (!ret)
930 pr_debug("%s: cqhci: Failed to clear tasks\n",
931 mmc_hostname(mmc));
932
933 return ret;
934 }
935
cqhci_halted(struct cqhci_host * cq_host)936 static bool cqhci_halted(struct cqhci_host *cq_host)
937 {
938 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
939 }
940
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)941 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
942 {
943 struct cqhci_host *cq_host = mmc->cqe_private;
944 bool ret;
945 u32 ctl;
946
947 if (cqhci_halted(cq_host))
948 return true;
949
950 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
951
952 ctl = cqhci_readl(cq_host, CQHCI_CTL);
953 ctl |= CQHCI_HALT;
954 cqhci_writel(cq_host, ctl, CQHCI_CTL);
955
956 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
957 msecs_to_jiffies(timeout) + 1);
958
959 cqhci_set_irqs(cq_host, 0);
960
961 ret = cqhci_halted(cq_host);
962
963 if (!ret)
964 pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
965
966 return ret;
967 }
968
969 /*
970 * After halting we expect to be able to use the command line. We interpret the
971 * failure to halt to mean the data lines might still be in use (and the upper
972 * layers will need to send a STOP command), so we set the timeout based on a
973 * generous command timeout.
974 */
975 #define CQHCI_START_HALT_TIMEOUT 5
976
cqhci_recovery_start(struct mmc_host * mmc)977 static void cqhci_recovery_start(struct mmc_host *mmc)
978 {
979 struct cqhci_host *cq_host = mmc->cqe_private;
980
981 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
982
983 WARN_ON(!cq_host->recovery_halt);
984
985 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
986
987 if (cq_host->ops->disable)
988 cq_host->ops->disable(mmc, true);
989
990 mmc->cqe_on = false;
991 }
992
cqhci_error_from_flags(unsigned int flags)993 static int cqhci_error_from_flags(unsigned int flags)
994 {
995 if (!flags)
996 return 0;
997
998 /* CRC errors might indicate re-tuning so prefer to report that */
999 if (flags & CQHCI_HOST_CRC)
1000 return -EILSEQ;
1001
1002 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1003 return -ETIMEDOUT;
1004
1005 return -EIO;
1006 }
1007
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)1008 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1009 {
1010 struct cqhci_slot *slot = &cq_host->slot[tag];
1011 struct mmc_request *mrq = slot->mrq;
1012 struct mmc_data *data;
1013
1014 if (!mrq)
1015 return;
1016
1017 slot->mrq = NULL;
1018
1019 cq_host->qcnt -= 1;
1020
1021 data = mrq->data;
1022 if (data) {
1023 data->bytes_xfered = 0;
1024 data->error = cqhci_error_from_flags(slot->flags);
1025 } else {
1026 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1027 }
1028
1029 mmc_cqe_request_done(cq_host->mmc, mrq);
1030 }
1031
cqhci_recover_mrqs(struct cqhci_host * cq_host)1032 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1033 {
1034 int i;
1035
1036 for (i = 0; i < cq_host->num_slots; i++)
1037 cqhci_recover_mrq(cq_host, i);
1038 }
1039
1040 /*
1041 * By now the command and data lines should be unused so there is no reason for
1042 * CQHCI to take a long time to halt, but if it doesn't halt there could be
1043 * problems clearing tasks, so be generous.
1044 */
1045 #define CQHCI_FINISH_HALT_TIMEOUT 20
1046
1047 /* CQHCI could be expected to clear it's internal state pretty quickly */
1048 #define CQHCI_CLEAR_TIMEOUT 20
1049
cqhci_recovery_finish(struct mmc_host * mmc)1050 static void cqhci_recovery_finish(struct mmc_host *mmc)
1051 {
1052 struct cqhci_host *cq_host = mmc->cqe_private;
1053 unsigned long flags;
1054 u32 cqcfg;
1055 bool ok;
1056
1057 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1058
1059 WARN_ON(!cq_host->recovery_halt);
1060
1061 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1062
1063 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1064 ok = false;
1065
1066 /*
1067 * The specification contradicts itself, by saying that tasks cannot be
1068 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1069 * be disabled/re-enabled, but not to disable before clearing tasks.
1070 * Have a go anyway.
1071 */
1072 if (!ok) {
1073 pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1074 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1075 cqcfg &= ~CQHCI_ENABLE;
1076 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1077 cqcfg |= CQHCI_ENABLE;
1078 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1079 /* Be sure that there are no tasks */
1080 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1081 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1082 ok = false;
1083 WARN_ON(!ok);
1084 }
1085
1086 cqhci_recover_mrqs(cq_host);
1087
1088 WARN_ON(cq_host->qcnt);
1089
1090 spin_lock_irqsave(&cq_host->lock, flags);
1091 cq_host->qcnt = 0;
1092 cq_host->recovery_halt = false;
1093 mmc->cqe_on = false;
1094 spin_unlock_irqrestore(&cq_host->lock, flags);
1095
1096 /* Ensure all writes are done before interrupts are re-enabled */
1097 wmb();
1098
1099 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1100
1101 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1102
1103 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1104 }
1105
1106 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1107 .cqe_enable = cqhci_enable,
1108 .cqe_disable = cqhci_disable,
1109 .cqe_request = cqhci_request,
1110 .cqe_post_req = cqhci_post_req,
1111 .cqe_off = cqhci_off,
1112 .cqe_wait_for_idle = cqhci_wait_for_idle,
1113 .cqe_timeout = cqhci_timeout,
1114 .cqe_recovery_start = cqhci_recovery_start,
1115 .cqe_recovery_finish = cqhci_recovery_finish,
1116 };
1117
cqhci_pltfm_init(struct platform_device * pdev)1118 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1119 {
1120 struct cqhci_host *cq_host;
1121 struct resource *cqhci_memres = NULL;
1122
1123 /* check and setup CMDQ interface */
1124 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1125 "cqhci");
1126 if (!cqhci_memres) {
1127 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1128 return ERR_PTR(-EINVAL);
1129 }
1130
1131 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1132 if (!cq_host)
1133 return ERR_PTR(-ENOMEM);
1134 cq_host->mmio = devm_ioremap(&pdev->dev,
1135 cqhci_memres->start,
1136 resource_size(cqhci_memres));
1137 if (!cq_host->mmio) {
1138 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1139 return ERR_PTR(-EBUSY);
1140 }
1141 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1142
1143 return cq_host;
1144 }
1145 EXPORT_SYMBOL(cqhci_pltfm_init);
1146
cqhci_ver_major(struct cqhci_host * cq_host)1147 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1148 {
1149 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1150 }
1151
cqhci_ver_minor(struct cqhci_host * cq_host)1152 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1153 {
1154 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1155
1156 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1157 }
1158
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1159 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1160 bool dma64)
1161 {
1162 int err;
1163
1164 cq_host->dma64 = dma64;
1165 cq_host->mmc = mmc;
1166 cq_host->mmc->cqe_private = cq_host;
1167
1168 cq_host->num_slots = NUM_SLOTS;
1169 cq_host->dcmd_slot = DCMD_SLOT;
1170
1171 mmc->cqe_ops = &cqhci_cqe_ops;
1172
1173 mmc->cqe_qdepth = NUM_SLOTS;
1174 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1175 mmc->cqe_qdepth -= 1;
1176
1177 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1178 sizeof(*cq_host->slot), GFP_KERNEL);
1179 if (!cq_host->slot) {
1180 err = -ENOMEM;
1181 goto out_err;
1182 }
1183
1184 err = cqhci_crypto_init(cq_host);
1185 if (err) {
1186 pr_err("%s: CQHCI crypto initialization failed\n",
1187 mmc_hostname(mmc));
1188 goto out_err;
1189 }
1190
1191 spin_lock_init(&cq_host->lock);
1192
1193 init_completion(&cq_host->halt_comp);
1194 init_waitqueue_head(&cq_host->wait_queue);
1195
1196 pr_info("%s: CQHCI version %u.%02u\n",
1197 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1198 cqhci_ver_minor(cq_host));
1199
1200 return 0;
1201
1202 out_err:
1203 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1204 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1205 cqhci_ver_minor(cq_host), err);
1206 return err;
1207 }
1208 EXPORT_SYMBOL(cqhci_init);
1209
1210 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1211 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1212 MODULE_LICENSE("GPL v2");
1213