1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5 #include <asm-generic/pgtable-nopmd.h>
6
7 #include <asm/book3s/32/hash.h>
8
9 /* And here we include common definitions */
10
11 #define _PAGE_KERNEL_RO 0
12 #define _PAGE_KERNEL_ROX (_PAGE_EXEC)
13 #define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
14 #define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
15
16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
17
18 #ifndef __ASSEMBLY__
19
pte_user(pte_t pte)20 static inline bool pte_user(pte_t pte)
21 {
22 return pte_val(pte) & _PAGE_USER;
23 }
24 #endif /* __ASSEMBLY__ */
25
26 /*
27 * Location of the PFN in the PTE. Most 32-bit platforms use the same
28 * as _PAGE_SHIFT here (ie, naturally aligned).
29 * Platform who don't just pre-define the value so we don't override it here.
30 */
31 #define PTE_RPN_SHIFT (PAGE_SHIFT)
32
33 /*
34 * The mask covered by the RPN must be a ULL on 32-bit platforms with
35 * 64-bit PTEs.
36 */
37 #ifdef CONFIG_PTE_64BIT
38 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
39 #define MAX_POSSIBLE_PHYSMEM_BITS 36
40 #else
41 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
42 #define MAX_POSSIBLE_PHYSMEM_BITS 32
43 #endif
44
45 /*
46 * _PAGE_CHG_MASK masks of bits that are to be preserved across
47 * pgprot changes.
48 */
49 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
50 _PAGE_ACCESSED | _PAGE_SPECIAL)
51
52 /*
53 * We define 2 sets of base prot bits, one for basic pages (ie,
54 * cacheable kernel and user pages) and one for non cacheable
55 * pages. We always set _PAGE_COHERENT when SMP is enabled or
56 * the processor might need it for DMA coherency.
57 */
58 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
59 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
60
61 /*
62 * Permission masks used to generate the __P and __S table.
63 *
64 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
65 *
66 * Write permissions imply read permissions for now.
67 */
68 #define PAGE_NONE __pgprot(_PAGE_BASE)
69 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
70 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
71 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
72 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
74 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
75
76 /* Permission masks used for kernel mappings */
77 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
78 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
79 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
80 _PAGE_NO_CACHE | _PAGE_GUARDED)
81 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
82 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
83 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
84
85 /*
86 * Protection used for kernel text. We want the debuggers to be able to
87 * set breakpoints anywhere, so don't write protect the kernel text
88 * on platforms where such control is possible.
89 */
90 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
91 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
92 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
93 #else
94 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
95 #endif
96
97 /* Make modules code happy. We don't set RO yet */
98 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
99
100 /* Advertise special mapping type for AGP */
101 #define PAGE_AGP (PAGE_KERNEL_NC)
102 #define HAVE_PAGE_AGP
103
104 #define PTE_INDEX_SIZE PTE_SHIFT
105 #define PMD_INDEX_SIZE 0
106 #define PUD_INDEX_SIZE 0
107 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
108
109 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
110 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
111
112 #ifndef __ASSEMBLY__
113 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
114 #define PMD_TABLE_SIZE 0
115 #define PUD_TABLE_SIZE 0
116 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
117
118 /* Bits to mask out from a PMD to get to the PTE page */
119 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
120 #endif /* __ASSEMBLY__ */
121
122 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
123 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
124
125 /*
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
128 *
129 * For any >32-bit physical address platform, we can use the following
130 * two level page table layout where the pgdir is 8KB and the MS 13 bits
131 * are an index to the second level table. The combined pgdir/pmd first
132 * level has 2048 entries and the second level has 512 64-bit PTE entries.
133 * -Matt
134 */
135 /* PGDIR_SHIFT determines what a top-level page table entry can map */
136 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
137 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
138 #define PGDIR_MASK (~(PGDIR_SIZE-1))
139
140 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
141
142 #ifndef __ASSEMBLY__
143
144 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
145 void unmap_kernel_page(unsigned long va);
146
147 #endif /* !__ASSEMBLY__ */
148
149 /*
150 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
151 * value (for now) on others, from where we can start layout kernel
152 * virtual space that goes below PKMAP and FIXMAP
153 */
154 #include <asm/fixmap.h>
155
156 /*
157 * ioremap_bot starts at that address. Early ioremaps move down from there,
158 * until mem_init() at which point this becomes the top of the vmalloc
159 * and ioremap space
160 */
161 #ifdef CONFIG_HIGHMEM
162 #define IOREMAP_TOP PKMAP_BASE
163 #else
164 #define IOREMAP_TOP FIXADDR_START
165 #endif
166
167 /* PPC32 shares vmalloc area with ioremap */
168 #define IOREMAP_START VMALLOC_START
169 #define IOREMAP_END VMALLOC_END
170
171 /*
172 * Just any arbitrary offset to the start of the vmalloc VM area: the
173 * current 16MB value just means that there will be a 64MB "hole" after the
174 * physical memory until the kernel virtual memory starts. That means that
175 * any out-of-bounds memory accesses will hopefully be caught.
176 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
177 * area for the same reason. ;)
178 *
179 * We no longer map larger than phys RAM with the BATs so we don't have
180 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
181 * about clashes between our early calls to ioremap() that start growing down
182 * from ioremap_base being run into the VM area allocations (growing upwards
183 * from VMALLOC_START). For this reason we have ioremap_bot to check when
184 * we actually run into our mappings setup in the early boot with the VM
185 * system. This really does become a problem for machines with good amounts
186 * of RAM. -- Cort
187 */
188 #define VMALLOC_OFFSET (0x1000000) /* 16M */
189
190 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
191
192 #ifdef CONFIG_KASAN_VMALLOC
193 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
194 #else
195 #define VMALLOC_END ioremap_bot
196 #endif
197
198 #ifdef CONFIG_STRICT_KERNEL_RWX
199 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
200 #define MODULES_VADDR (MODULES_END - SZ_256M)
201 #endif
202
203 #ifndef __ASSEMBLY__
204 #include <linux/sched.h>
205 #include <linux/threads.h>
206
207 /* Bits to mask out from a PGD to get to the PUD page */
208 #define PGD_MASKED_BITS 0
209
210 #define pte_ERROR(e) \
211 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
212 (unsigned long long)pte_val(e))
213 #define pgd_ERROR(e) \
214 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
215 /*
216 * Bits in a linux-style PTE. These match the bits in the
217 * (hardware-defined) PowerPC PTE as closely as possible.
218 */
219
220 #define pte_clear(mm, addr, ptep) \
221 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
222
223 #define pmd_none(pmd) (!pmd_val(pmd))
224 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
225 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)226 static inline void pmd_clear(pmd_t *pmdp)
227 {
228 *pmdp = __pmd(0);
229 }
230
231
232 /*
233 * When flushing the tlb entry for a page, we also need to flush the hash
234 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
235 */
236 extern int flush_hash_pages(unsigned context, unsigned long va,
237 unsigned long pmdval, int count);
238
239 /* Add an HPTE to the hash table */
240 extern void add_hash_page(unsigned context, unsigned long va,
241 unsigned long pmdval);
242
243 /* Flush an entry from the TLB/hash table */
244 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
245 unsigned long address);
246
247 /*
248 * PTE updates. This function is called whenever an existing
249 * valid PTE is updated. This does -not- include set_pte_at()
250 * which nowadays only sets a new PTE.
251 *
252 * Depending on the type of MMU, we may need to use atomic updates
253 * and the PTE may be either 32 or 64 bit wide. In the later case,
254 * when using atomic updates, only the low part of the PTE is
255 * accessed atomically.
256 */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)257 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
258 unsigned long clr, unsigned long set, int huge)
259 {
260 pte_basic_t old;
261 unsigned long tmp;
262
263 __asm__ __volatile__(
264 #ifndef CONFIG_PTE_64BIT
265 "1: lwarx %0, 0, %3\n"
266 " andc %1, %0, %4\n"
267 #else
268 "1: lwarx %L0, 0, %3\n"
269 " lwz %0, -4(%3)\n"
270 " andc %1, %L0, %4\n"
271 #endif
272 " or %1, %1, %5\n"
273 " stwcx. %1, 0, %3\n"
274 " bne- 1b"
275 : "=&r" (old), "=&r" (tmp), "=m" (*p)
276 #ifndef CONFIG_PTE_64BIT
277 : "r" (p),
278 #else
279 : "b" ((unsigned long)(p) + 4),
280 #endif
281 "r" (clr), "r" (set), "m" (*p)
282 : "cc" );
283
284 return old;
285 }
286
287 /*
288 * 2.6 calls this without flushing the TLB entry; this is wrong
289 * for our hash-based implementation, we fix that up here.
290 */
291 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)292 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
293 unsigned long addr, pte_t *ptep)
294 {
295 unsigned long old;
296 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
297 if (old & _PAGE_HASHPTE) {
298 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
299 flush_hash_pages(mm->context.id, addr, ptephys, 1);
300 }
301 return (old & _PAGE_ACCESSED) != 0;
302 }
303 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
304 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
305
306 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)307 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
308 pte_t *ptep)
309 {
310 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
311 }
312
313 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)314 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
315 pte_t *ptep)
316 {
317 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
318 }
319
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)320 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
321 pte_t *ptep, pte_t entry,
322 unsigned long address,
323 int psize)
324 {
325 unsigned long set = pte_val(entry) &
326 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
327
328 pte_update(vma->vm_mm, address, ptep, 0, set, 0);
329
330 flush_tlb_page(vma, address);
331 }
332
333 #define __HAVE_ARCH_PTE_SAME
334 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
335
336 #define pmd_page(pmd) \
337 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
338
339 /*
340 * Encode and decode a swap entry.
341 * Note that the bits we use in a PTE for representing a swap entry
342 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
343 * -- paulus
344 */
345 #define __swp_type(entry) ((entry).val & 0x1f)
346 #define __swp_offset(entry) ((entry).val >> 5)
347 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
348 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
349 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
350
351 /* Generic accessors to PTE bits */
pte_write(pte_t pte)352 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
pte_read(pte_t pte)353 static inline int pte_read(pte_t pte) { return 1; }
pte_dirty(pte_t pte)354 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
pte_young(pte_t pte)355 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
pte_special(pte_t pte)356 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
pte_none(pte_t pte)357 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
pte_exec(pte_t pte)358 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
359
pte_present(pte_t pte)360 static inline int pte_present(pte_t pte)
361 {
362 return pte_val(pte) & _PAGE_PRESENT;
363 }
364
pte_hw_valid(pte_t pte)365 static inline bool pte_hw_valid(pte_t pte)
366 {
367 return pte_val(pte) & _PAGE_PRESENT;
368 }
369
pte_hashpte(pte_t pte)370 static inline bool pte_hashpte(pte_t pte)
371 {
372 return !!(pte_val(pte) & _PAGE_HASHPTE);
373 }
374
pte_ci(pte_t pte)375 static inline bool pte_ci(pte_t pte)
376 {
377 return !!(pte_val(pte) & _PAGE_NO_CACHE);
378 }
379
380 /*
381 * We only find page table entry in the last level
382 * Hence no need for other accessors
383 */
384 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)385 static inline bool pte_access_permitted(pte_t pte, bool write)
386 {
387 /*
388 * A read-only access is controlled by _PAGE_USER bit.
389 * We have _PAGE_READ set for WRITE and EXECUTE
390 */
391 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
392 return false;
393
394 if (write && !pte_write(pte))
395 return false;
396
397 return true;
398 }
399
400 /* Conversion functions: convert a page and protection to a page entry,
401 * and a page entry and page directory to the page they refer to.
402 *
403 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
404 * long for now.
405 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)406 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
407 {
408 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
409 pgprot_val(pgprot));
410 }
411
pte_pfn(pte_t pte)412 static inline unsigned long pte_pfn(pte_t pte)
413 {
414 return pte_val(pte) >> PTE_RPN_SHIFT;
415 }
416
417 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)418 static inline pte_t pte_wrprotect(pte_t pte)
419 {
420 return __pte(pte_val(pte) & ~_PAGE_RW);
421 }
422
pte_exprotect(pte_t pte)423 static inline pte_t pte_exprotect(pte_t pte)
424 {
425 return __pte(pte_val(pte) & ~_PAGE_EXEC);
426 }
427
pte_mkclean(pte_t pte)428 static inline pte_t pte_mkclean(pte_t pte)
429 {
430 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
431 }
432
pte_mkold(pte_t pte)433 static inline pte_t pte_mkold(pte_t pte)
434 {
435 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
436 }
437
pte_mkexec(pte_t pte)438 static inline pte_t pte_mkexec(pte_t pte)
439 {
440 return __pte(pte_val(pte) | _PAGE_EXEC);
441 }
442
pte_mkpte(pte_t pte)443 static inline pte_t pte_mkpte(pte_t pte)
444 {
445 return pte;
446 }
447
pte_mkwrite(pte_t pte)448 static inline pte_t pte_mkwrite(pte_t pte)
449 {
450 return __pte(pte_val(pte) | _PAGE_RW);
451 }
452
pte_mkdirty(pte_t pte)453 static inline pte_t pte_mkdirty(pte_t pte)
454 {
455 return __pte(pte_val(pte) | _PAGE_DIRTY);
456 }
457
pte_mkyoung(pte_t pte)458 static inline pte_t pte_mkyoung(pte_t pte)
459 {
460 return __pte(pte_val(pte) | _PAGE_ACCESSED);
461 }
462
pte_mkspecial(pte_t pte)463 static inline pte_t pte_mkspecial(pte_t pte)
464 {
465 return __pte(pte_val(pte) | _PAGE_SPECIAL);
466 }
467
pte_mkhuge(pte_t pte)468 static inline pte_t pte_mkhuge(pte_t pte)
469 {
470 return pte;
471 }
472
pte_mkprivileged(pte_t pte)473 static inline pte_t pte_mkprivileged(pte_t pte)
474 {
475 return __pte(pte_val(pte) & ~_PAGE_USER);
476 }
477
pte_mkuser(pte_t pte)478 static inline pte_t pte_mkuser(pte_t pte)
479 {
480 return __pte(pte_val(pte) | _PAGE_USER);
481 }
482
pte_modify(pte_t pte,pgprot_t newprot)483 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
484 {
485 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
486 }
487
488
489
490 /* This low level function performs the actual PTE insertion
491 * Setting the PTE depends on the MMU type and other factors. It's
492 * an horrible mess that I'm not going to try to clean up now but
493 * I'm keeping it in one place rather than spread around
494 */
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)495 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
496 pte_t *ptep, pte_t pte, int percpu)
497 {
498 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
499 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
500 * helper pte_update() which does an atomic update. We need to do that
501 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
502 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
503 * the hash bits instead (ie, same as the non-SMP case)
504 */
505 if (percpu)
506 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
507 | (pte_val(pte) & ~_PAGE_HASHPTE));
508 else
509 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
510
511 #elif defined(CONFIG_PTE_64BIT)
512 /* Second case is 32-bit with 64-bit PTE. In this case, we
513 * can just store as long as we do the two halves in the right order
514 * with a barrier in between. This is possible because we take care,
515 * in the hash code, to pre-invalidate if the PTE was already hashed,
516 * which synchronizes us with any concurrent invalidation.
517 * In the percpu case, we also fallback to the simple update preserving
518 * the hash bits
519 */
520 if (percpu) {
521 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
522 | (pte_val(pte) & ~_PAGE_HASHPTE));
523 return;
524 }
525 if (pte_val(*ptep) & _PAGE_HASHPTE)
526 flush_hash_entry(mm, ptep, addr);
527 __asm__ __volatile__("\
528 stw%X0 %2,%0\n\
529 eieio\n\
530 stw%X1 %L2,%1"
531 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
532 : "r" (pte) : "memory");
533
534 #else
535 /* Third case is 32-bit hash table in UP mode, we need to preserve
536 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
537 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
538 * and see we need to keep track that this PTE needs invalidating
539 */
540 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
541 | (pte_val(pte) & ~_PAGE_HASHPTE));
542 #endif
543 }
544
545 /*
546 * Macro to mark a page protection value as "uncacheable".
547 */
548
549 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
550 _PAGE_WRITETHRU)
551
552 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)553 static inline pgprot_t pgprot_noncached(pgprot_t prot)
554 {
555 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
556 _PAGE_NO_CACHE | _PAGE_GUARDED);
557 }
558
559 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)560 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
561 {
562 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
563 _PAGE_NO_CACHE);
564 }
565
566 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)567 static inline pgprot_t pgprot_cached(pgprot_t prot)
568 {
569 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
570 _PAGE_COHERENT);
571 }
572
573 #define pgprot_cached_wthru pgprot_cached_wthru
pgprot_cached_wthru(pgprot_t prot)574 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
575 {
576 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
577 _PAGE_COHERENT | _PAGE_WRITETHRU);
578 }
579
580 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
pgprot_cached_noncoherent(pgprot_t prot)581 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
582 {
583 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
584 }
585
586 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)587 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
588 {
589 return pgprot_noncached_wc(prot);
590 }
591
592 #endif /* !__ASSEMBLY__ */
593
594 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
595