1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38
39 static int numa_enabled = 1;
40
41 static char *cmdline __initdata;
42
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
63 /*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
67 * Note: cpumask_of_node() is not valid until after this is done.
68 */
setup_node_to_cpumask_map(void)69 static void __init setup_node_to_cpumask_map(void)
70 {
71 unsigned int node;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES)
75 setup_nr_node_ids();
76
77 /* allocate the map */
78 for_each_node(node)
79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80
81 /* cpumask_of_node() will now work */
82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 unsigned int *nid)
87 {
88 unsigned long long mem;
89 char *p = cmdline;
90 static unsigned int fake_nid;
91 static unsigned long long curr_boundary;
92
93 /*
94 * Modify node id, iff we started creating NUMA nodes
95 * We want to continue from where we left of the last time
96 */
97 if (fake_nid)
98 *nid = fake_nid;
99 /*
100 * In case there are no more arguments to parse, the
101 * node_id should be the same as the last fake node id
102 * (we've handled this above).
103 */
104 if (!p)
105 return 0;
106
107 mem = memparse(p, &p);
108 if (!mem)
109 return 0;
110
111 if (mem < curr_boundary)
112 return 0;
113
114 curr_boundary = mem;
115
116 if ((end_pfn << PAGE_SHIFT) > mem) {
117 /*
118 * Skip commas and spaces
119 */
120 while (*p == ',' || *p == ' ' || *p == '\t')
121 p++;
122
123 cmdline = p;
124 fake_nid++;
125 *nid = fake_nid;
126 dbg("created new fake_node with id %d\n", fake_nid);
127 return 1;
128 }
129 return 0;
130 }
131
reset_numa_cpu_lookup_table(void)132 static void reset_numa_cpu_lookup_table(void)
133 {
134 unsigned int cpu;
135
136 for_each_possible_cpu(cpu)
137 numa_cpu_lookup_table[cpu] = -1;
138 }
139
map_cpu_to_node(int cpu,int node)140 void map_cpu_to_node(int cpu, int node)
141 {
142 update_numa_cpu_lookup_table(cpu, node);
143
144 dbg("adding cpu %d to node %d\n", cpu, node);
145
146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)151 void unmap_cpu_from_node(unsigned long cpu)
152 {
153 int node = numa_cpu_lookup_table[cpu];
154
155 dbg("removing cpu %lu from node %d\n", cpu, node);
156
157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 } else {
160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 cpu, node);
162 }
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165
cpu_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 int dist = 0;
169
170 int i, index;
171
172 for (i = 0; i < distance_ref_points_depth; i++) {
173 index = be32_to_cpu(distance_ref_points[i]);
174 if (cpu1_assoc[index] == cpu2_assoc[index])
175 break;
176 dist++;
177 }
178
179 return dist;
180 }
181
182 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 return of_get_property(dev, "ibm,associativity", NULL);
186 }
187
__node_distance(int a,int b)188 int __node_distance(int a, int b)
189 {
190 int i;
191 int distance = LOCAL_DISTANCE;
192
193 if (!form1_affinity)
194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195
196 for (i = 0; i < distance_ref_points_depth; i++) {
197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 break;
199
200 /* Double the distance for each NUMA level */
201 distance *= 2;
202 }
203
204 return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207
initialize_distance_lookup_table(int nid,const __be32 * associativity)208 static void initialize_distance_lookup_table(int nid,
209 const __be32 *associativity)
210 {
211 int i;
212
213 if (!form1_affinity)
214 return;
215
216 for (i = 0; i < distance_ref_points_depth; i++) {
217 const __be32 *entry;
218
219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 }
222 }
223
224 /*
225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
226 * info is found.
227 */
associativity_to_nid(const __be32 * associativity)228 static int associativity_to_nid(const __be32 *associativity)
229 {
230 int nid = NUMA_NO_NODE;
231
232 if (!numa_enabled)
233 goto out;
234
235 if (of_read_number(associativity, 1) >= min_common_depth)
236 nid = of_read_number(&associativity[min_common_depth], 1);
237
238 /* POWER4 LPAR uses 0xffff as invalid node */
239 if (nid == 0xffff || nid >= nr_node_ids)
240 nid = NUMA_NO_NODE;
241
242 if (nid > 0 &&
243 of_read_number(associativity, 1) >= distance_ref_points_depth) {
244 /*
245 * Skip the length field and send start of associativity array
246 */
247 initialize_distance_lookup_table(nid, associativity + 1);
248 }
249
250 out:
251 return nid;
252 }
253
254 /* Returns the nid associated with the given device tree node,
255 * or -1 if not found.
256 */
of_node_to_nid_single(struct device_node * device)257 static int of_node_to_nid_single(struct device_node *device)
258 {
259 int nid = NUMA_NO_NODE;
260 const __be32 *tmp;
261
262 tmp = of_get_associativity(device);
263 if (tmp)
264 nid = associativity_to_nid(tmp);
265 return nid;
266 }
267
268 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)269 int of_node_to_nid(struct device_node *device)
270 {
271 int nid = NUMA_NO_NODE;
272
273 of_node_get(device);
274 while (device) {
275 nid = of_node_to_nid_single(device);
276 if (nid != -1)
277 break;
278
279 device = of_get_next_parent(device);
280 }
281 of_node_put(device);
282
283 return nid;
284 }
285 EXPORT_SYMBOL(of_node_to_nid);
286
find_min_common_depth(void)287 static int __init find_min_common_depth(void)
288 {
289 int depth;
290 struct device_node *root;
291
292 if (firmware_has_feature(FW_FEATURE_OPAL))
293 root = of_find_node_by_path("/ibm,opal");
294 else
295 root = of_find_node_by_path("/rtas");
296 if (!root)
297 root = of_find_node_by_path("/");
298
299 /*
300 * This property is a set of 32-bit integers, each representing
301 * an index into the ibm,associativity nodes.
302 *
303 * With form 0 affinity the first integer is for an SMP configuration
304 * (should be all 0's) and the second is for a normal NUMA
305 * configuration. We have only one level of NUMA.
306 *
307 * With form 1 affinity the first integer is the most significant
308 * NUMA boundary and the following are progressively less significant
309 * boundaries. There can be more than one level of NUMA.
310 */
311 distance_ref_points = of_get_property(root,
312 "ibm,associativity-reference-points",
313 &distance_ref_points_depth);
314
315 if (!distance_ref_points) {
316 dbg("NUMA: ibm,associativity-reference-points not found.\n");
317 goto err;
318 }
319
320 distance_ref_points_depth /= sizeof(int);
321
322 if (firmware_has_feature(FW_FEATURE_OPAL) ||
323 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
324 dbg("Using form 1 affinity\n");
325 form1_affinity = 1;
326 }
327
328 if (form1_affinity) {
329 depth = of_read_number(distance_ref_points, 1);
330 } else {
331 if (distance_ref_points_depth < 2) {
332 printk(KERN_WARNING "NUMA: "
333 "short ibm,associativity-reference-points\n");
334 goto err;
335 }
336
337 depth = of_read_number(&distance_ref_points[1], 1);
338 }
339
340 /*
341 * Warn and cap if the hardware supports more than
342 * MAX_DISTANCE_REF_POINTS domains.
343 */
344 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
345 printk(KERN_WARNING "NUMA: distance array capped at "
346 "%d entries\n", MAX_DISTANCE_REF_POINTS);
347 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
348 }
349
350 of_node_put(root);
351 return depth;
352
353 err:
354 of_node_put(root);
355 return -1;
356 }
357
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
359 {
360 struct device_node *memory = NULL;
361
362 memory = of_find_node_by_type(memory, "memory");
363 if (!memory)
364 panic("numa.c: No memory nodes found!");
365
366 *n_addr_cells = of_n_addr_cells(memory);
367 *n_size_cells = of_n_size_cells(memory);
368 of_node_put(memory);
369 }
370
read_n_cells(int n,const __be32 ** buf)371 static unsigned long read_n_cells(int n, const __be32 **buf)
372 {
373 unsigned long result = 0;
374
375 while (n--) {
376 result = (result << 32) | of_read_number(*buf, 1);
377 (*buf)++;
378 }
379 return result;
380 }
381
382 struct assoc_arrays {
383 u32 n_arrays;
384 u32 array_sz;
385 const __be32 *arrays;
386 };
387
388 /*
389 * Retrieve and validate the list of associativity arrays for drconf
390 * memory from the ibm,associativity-lookup-arrays property of the
391 * device tree..
392 *
393 * The layout of the ibm,associativity-lookup-arrays property is a number N
394 * indicating the number of associativity arrays, followed by a number M
395 * indicating the size of each associativity array, followed by a list
396 * of N associativity arrays.
397 */
of_get_assoc_arrays(struct assoc_arrays * aa)398 static int of_get_assoc_arrays(struct assoc_arrays *aa)
399 {
400 struct device_node *memory;
401 const __be32 *prop;
402 u32 len;
403
404 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
405 if (!memory)
406 return -1;
407
408 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
409 if (!prop || len < 2 * sizeof(unsigned int)) {
410 of_node_put(memory);
411 return -1;
412 }
413
414 aa->n_arrays = of_read_number(prop++, 1);
415 aa->array_sz = of_read_number(prop++, 1);
416
417 of_node_put(memory);
418
419 /* Now that we know the number of arrays and size of each array,
420 * revalidate the size of the property read in.
421 */
422 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
423 return -1;
424
425 aa->arrays = prop;
426 return 0;
427 }
428
429 /*
430 * This is like of_node_to_nid_single() for memory represented in the
431 * ibm,dynamic-reconfiguration-memory node.
432 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)433 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
434 {
435 struct assoc_arrays aa = { .arrays = NULL };
436 int default_nid = NUMA_NO_NODE;
437 int nid = default_nid;
438 int rc, index;
439
440 if ((min_common_depth < 0) || !numa_enabled)
441 return default_nid;
442
443 rc = of_get_assoc_arrays(&aa);
444 if (rc)
445 return default_nid;
446
447 if (min_common_depth <= aa.array_sz &&
448 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
449 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
450 nid = of_read_number(&aa.arrays[index], 1);
451
452 if (nid == 0xffff || nid >= nr_node_ids)
453 nid = default_nid;
454
455 if (nid > 0) {
456 index = lmb->aa_index * aa.array_sz;
457 initialize_distance_lookup_table(nid,
458 &aa.arrays[index]);
459 }
460 }
461
462 return nid;
463 }
464
465 #ifdef CONFIG_PPC_SPLPAR
vphn_get_nid(long lcpu)466 static int vphn_get_nid(long lcpu)
467 {
468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
469 long rc, hwid;
470
471 /*
472 * On a shared lpar, device tree will not have node associativity.
473 * At this time lppaca, or its __old_status field may not be
474 * updated. Hence kernel cannot detect if its on a shared lpar. So
475 * request an explicit associativity irrespective of whether the
476 * lpar is shared or dedicated. Use the device tree property as a
477 * fallback. cpu_to_phys_id is only valid between
478 * smp_setup_cpu_maps() and smp_setup_pacas().
479 */
480 if (firmware_has_feature(FW_FEATURE_VPHN)) {
481 if (cpu_to_phys_id)
482 hwid = cpu_to_phys_id[lcpu];
483 else
484 hwid = get_hard_smp_processor_id(lcpu);
485
486 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
487 if (rc == H_SUCCESS)
488 return associativity_to_nid(associativity);
489 }
490
491 return NUMA_NO_NODE;
492 }
493 #else
vphn_get_nid(long unused)494 static int vphn_get_nid(long unused)
495 {
496 return NUMA_NO_NODE;
497 }
498 #endif /* CONFIG_PPC_SPLPAR */
499
500 /*
501 * Figure out to which domain a cpu belongs and stick it there.
502 * Return the id of the domain used.
503 */
numa_setup_cpu(unsigned long lcpu)504 static int numa_setup_cpu(unsigned long lcpu)
505 {
506 struct device_node *cpu;
507 int fcpu = cpu_first_thread_sibling(lcpu);
508 int nid = NUMA_NO_NODE;
509
510 if (!cpu_present(lcpu)) {
511 set_cpu_numa_node(lcpu, first_online_node);
512 return first_online_node;
513 }
514
515 /*
516 * If a valid cpu-to-node mapping is already available, use it
517 * directly instead of querying the firmware, since it represents
518 * the most recent mapping notified to us by the platform (eg: VPHN).
519 * Since cpu_to_node binding remains the same for all threads in the
520 * core. If a valid cpu-to-node mapping is already available, for
521 * the first thread in the core, use it.
522 */
523 nid = numa_cpu_lookup_table[fcpu];
524 if (nid >= 0) {
525 map_cpu_to_node(lcpu, nid);
526 return nid;
527 }
528
529 nid = vphn_get_nid(lcpu);
530 if (nid != NUMA_NO_NODE)
531 goto out_present;
532
533 cpu = of_get_cpu_node(lcpu, NULL);
534
535 if (!cpu) {
536 WARN_ON(1);
537 if (cpu_present(lcpu))
538 goto out_present;
539 else
540 goto out;
541 }
542
543 nid = of_node_to_nid_single(cpu);
544 of_node_put(cpu);
545
546 out_present:
547 if (nid < 0 || !node_possible(nid))
548 nid = first_online_node;
549
550 /*
551 * Update for the first thread of the core. All threads of a core
552 * have to be part of the same node. This not only avoids querying
553 * for every other thread in the core, but always avoids a case
554 * where virtual node associativity change causes subsequent threads
555 * of a core to be associated with different nid. However if first
556 * thread is already online, expect it to have a valid mapping.
557 */
558 if (fcpu != lcpu) {
559 WARN_ON(cpu_online(fcpu));
560 map_cpu_to_node(fcpu, nid);
561 }
562
563 map_cpu_to_node(lcpu, nid);
564 out:
565 return nid;
566 }
567
verify_cpu_node_mapping(int cpu,int node)568 static void verify_cpu_node_mapping(int cpu, int node)
569 {
570 int base, sibling, i;
571
572 /* Verify that all the threads in the core belong to the same node */
573 base = cpu_first_thread_sibling(cpu);
574
575 for (i = 0; i < threads_per_core; i++) {
576 sibling = base + i;
577
578 if (sibling == cpu || cpu_is_offline(sibling))
579 continue;
580
581 if (cpu_to_node(sibling) != node) {
582 WARN(1, "CPU thread siblings %d and %d don't belong"
583 " to the same node!\n", cpu, sibling);
584 break;
585 }
586 }
587 }
588
589 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)590 static int ppc_numa_cpu_prepare(unsigned int cpu)
591 {
592 int nid;
593
594 nid = numa_setup_cpu(cpu);
595 verify_cpu_node_mapping(cpu, nid);
596 return 0;
597 }
598
ppc_numa_cpu_dead(unsigned int cpu)599 static int ppc_numa_cpu_dead(unsigned int cpu)
600 {
601 return 0;
602 }
603
604 /*
605 * Check and possibly modify a memory region to enforce the memory limit.
606 *
607 * Returns the size the region should have to enforce the memory limit.
608 * This will either be the original value of size, a truncated value,
609 * or zero. If the returned value of size is 0 the region should be
610 * discarded as it lies wholly above the memory limit.
611 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)612 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
613 unsigned long size)
614 {
615 /*
616 * We use memblock_end_of_DRAM() in here instead of memory_limit because
617 * we've already adjusted it for the limit and it takes care of
618 * having memory holes below the limit. Also, in the case of
619 * iommu_is_off, memory_limit is not set but is implicitly enforced.
620 */
621
622 if (start + size <= memblock_end_of_DRAM())
623 return size;
624
625 if (start >= memblock_end_of_DRAM())
626 return 0;
627
628 return memblock_end_of_DRAM() - start;
629 }
630
631 /*
632 * Reads the counter for a given entry in
633 * linux,drconf-usable-memory property
634 */
read_usm_ranges(const __be32 ** usm)635 static inline int __init read_usm_ranges(const __be32 **usm)
636 {
637 /*
638 * For each lmb in ibm,dynamic-memory a corresponding
639 * entry in linux,drconf-usable-memory property contains
640 * a counter followed by that many (base, size) duple.
641 * read the counter from linux,drconf-usable-memory
642 */
643 return read_n_cells(n_mem_size_cells, usm);
644 }
645
646 /*
647 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
648 * node. This assumes n_mem_{addr,size}_cells have been set.
649 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)650 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
651 const __be32 **usm,
652 void *data)
653 {
654 unsigned int ranges, is_kexec_kdump = 0;
655 unsigned long base, size, sz;
656 int nid;
657
658 /*
659 * Skip this block if the reserved bit is set in flags (0x80)
660 * or if the block is not assigned to this partition (0x8)
661 */
662 if ((lmb->flags & DRCONF_MEM_RESERVED)
663 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
664 return 0;
665
666 if (*usm)
667 is_kexec_kdump = 1;
668
669 base = lmb->base_addr;
670 size = drmem_lmb_size();
671 ranges = 1;
672
673 if (is_kexec_kdump) {
674 ranges = read_usm_ranges(usm);
675 if (!ranges) /* there are no (base, size) duple */
676 return 0;
677 }
678
679 do {
680 if (is_kexec_kdump) {
681 base = read_n_cells(n_mem_addr_cells, usm);
682 size = read_n_cells(n_mem_size_cells, usm);
683 }
684
685 nid = of_drconf_to_nid_single(lmb);
686 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
687 &nid);
688 node_set_online(nid);
689 sz = numa_enforce_memory_limit(base, size);
690 if (sz)
691 memblock_set_node(base, sz, &memblock.memory, nid);
692 } while (--ranges);
693
694 return 0;
695 }
696
parse_numa_properties(void)697 static int __init parse_numa_properties(void)
698 {
699 struct device_node *memory;
700 int default_nid = 0;
701 unsigned long i;
702
703 if (numa_enabled == 0) {
704 printk(KERN_WARNING "NUMA disabled by user\n");
705 return -1;
706 }
707
708 min_common_depth = find_min_common_depth();
709
710 if (min_common_depth < 0) {
711 /*
712 * if we fail to parse min_common_depth from device tree
713 * mark the numa disabled, boot with numa disabled.
714 */
715 numa_enabled = false;
716 return min_common_depth;
717 }
718
719 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
720
721 /*
722 * Even though we connect cpus to numa domains later in SMP
723 * init, we need to know the node ids now. This is because
724 * each node to be onlined must have NODE_DATA etc backing it.
725 */
726 for_each_present_cpu(i) {
727 struct device_node *cpu;
728 int nid = vphn_get_nid(i);
729
730 /*
731 * Don't fall back to default_nid yet -- we will plug
732 * cpus into nodes once the memory scan has discovered
733 * the topology.
734 */
735 if (nid == NUMA_NO_NODE) {
736 cpu = of_get_cpu_node(i, NULL);
737 BUG_ON(!cpu);
738 nid = of_node_to_nid_single(cpu);
739 of_node_put(cpu);
740 }
741
742 /* node_set_online() is an UB if 'nid' is negative */
743 if (likely(nid >= 0))
744 node_set_online(nid);
745 }
746
747 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
748
749 for_each_node_by_type(memory, "memory") {
750 unsigned long start;
751 unsigned long size;
752 int nid;
753 int ranges;
754 const __be32 *memcell_buf;
755 unsigned int len;
756
757 memcell_buf = of_get_property(memory,
758 "linux,usable-memory", &len);
759 if (!memcell_buf || len <= 0)
760 memcell_buf = of_get_property(memory, "reg", &len);
761 if (!memcell_buf || len <= 0)
762 continue;
763
764 /* ranges in cell */
765 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
766 new_range:
767 /* these are order-sensitive, and modify the buffer pointer */
768 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
769 size = read_n_cells(n_mem_size_cells, &memcell_buf);
770
771 /*
772 * Assumption: either all memory nodes or none will
773 * have associativity properties. If none, then
774 * everything goes to default_nid.
775 */
776 nid = of_node_to_nid_single(memory);
777 if (nid < 0)
778 nid = default_nid;
779
780 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
781 node_set_online(nid);
782
783 size = numa_enforce_memory_limit(start, size);
784 if (size)
785 memblock_set_node(start, size, &memblock.memory, nid);
786
787 if (--ranges)
788 goto new_range;
789 }
790
791 /*
792 * Now do the same thing for each MEMBLOCK listed in the
793 * ibm,dynamic-memory property in the
794 * ibm,dynamic-reconfiguration-memory node.
795 */
796 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
797 if (memory) {
798 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
799 of_node_put(memory);
800 }
801
802 return 0;
803 }
804
setup_nonnuma(void)805 static void __init setup_nonnuma(void)
806 {
807 unsigned long top_of_ram = memblock_end_of_DRAM();
808 unsigned long total_ram = memblock_phys_mem_size();
809 unsigned long start_pfn, end_pfn;
810 unsigned int nid = 0;
811 int i;
812
813 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
814 top_of_ram, total_ram);
815 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
816 (top_of_ram - total_ram) >> 20);
817
818 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
819 fake_numa_create_new_node(end_pfn, &nid);
820 memblock_set_node(PFN_PHYS(start_pfn),
821 PFN_PHYS(end_pfn - start_pfn),
822 &memblock.memory, nid);
823 node_set_online(nid);
824 }
825 }
826
dump_numa_cpu_topology(void)827 void __init dump_numa_cpu_topology(void)
828 {
829 unsigned int node;
830 unsigned int cpu, count;
831
832 if (!numa_enabled)
833 return;
834
835 for_each_online_node(node) {
836 pr_info("Node %d CPUs:", node);
837
838 count = 0;
839 /*
840 * If we used a CPU iterator here we would miss printing
841 * the holes in the cpumap.
842 */
843 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
844 if (cpumask_test_cpu(cpu,
845 node_to_cpumask_map[node])) {
846 if (count == 0)
847 pr_cont(" %u", cpu);
848 ++count;
849 } else {
850 if (count > 1)
851 pr_cont("-%u", cpu - 1);
852 count = 0;
853 }
854 }
855
856 if (count > 1)
857 pr_cont("-%u", nr_cpu_ids - 1);
858 pr_cont("\n");
859 }
860 }
861
862 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)863 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
864 {
865 u64 spanned_pages = end_pfn - start_pfn;
866 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
867 u64 nd_pa;
868 void *nd;
869 int tnid;
870
871 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
872 if (!nd_pa)
873 panic("Cannot allocate %zu bytes for node %d data\n",
874 nd_size, nid);
875
876 nd = __va(nd_pa);
877
878 /* report and initialize */
879 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
880 nd_pa, nd_pa + nd_size - 1);
881 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
882 if (tnid != nid)
883 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
884
885 node_data[nid] = nd;
886 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
887 NODE_DATA(nid)->node_id = nid;
888 NODE_DATA(nid)->node_start_pfn = start_pfn;
889 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
890 }
891
find_possible_nodes(void)892 static void __init find_possible_nodes(void)
893 {
894 struct device_node *rtas;
895 const __be32 *domains = NULL;
896 int prop_length, max_nodes;
897 u32 i;
898
899 if (!numa_enabled)
900 return;
901
902 rtas = of_find_node_by_path("/rtas");
903 if (!rtas)
904 return;
905
906 /*
907 * ibm,current-associativity-domains is a fairly recent property. If
908 * it doesn't exist, then fallback on ibm,max-associativity-domains.
909 * Current denotes what the platform can support compared to max
910 * which denotes what the Hypervisor can support.
911 *
912 * If the LPAR is migratable, new nodes might be activated after a LPM,
913 * so we should consider the max number in that case.
914 */
915 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
916 domains = of_get_property(rtas,
917 "ibm,current-associativity-domains",
918 &prop_length);
919 if (!domains) {
920 domains = of_get_property(rtas, "ibm,max-associativity-domains",
921 &prop_length);
922 if (!domains)
923 goto out;
924 }
925
926 max_nodes = of_read_number(&domains[min_common_depth], 1);
927 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
928
929 for (i = 0; i < max_nodes; i++) {
930 if (!node_possible(i))
931 node_set(i, node_possible_map);
932 }
933
934 prop_length /= sizeof(int);
935 if (prop_length > min_common_depth + 2)
936 coregroup_enabled = 1;
937
938 out:
939 of_node_put(rtas);
940 }
941
mem_topology_setup(void)942 void __init mem_topology_setup(void)
943 {
944 int cpu;
945
946 /*
947 * Linux/mm assumes node 0 to be online at boot. However this is not
948 * true on PowerPC, where node 0 is similar to any other node, it
949 * could be cpuless, memoryless node. So force node 0 to be offline
950 * for now. This will prevent cpuless, memoryless node 0 showing up
951 * unnecessarily as online. If a node has cpus or memory that need
952 * to be online, then node will anyway be marked online.
953 */
954 node_set_offline(0);
955
956 if (parse_numa_properties())
957 setup_nonnuma();
958
959 /*
960 * Modify the set of possible NUMA nodes to reflect information
961 * available about the set of online nodes, and the set of nodes
962 * that we expect to make use of for this platform's affinity
963 * calculations.
964 */
965 nodes_and(node_possible_map, node_possible_map, node_online_map);
966
967 find_possible_nodes();
968
969 setup_node_to_cpumask_map();
970
971 reset_numa_cpu_lookup_table();
972
973 for_each_possible_cpu(cpu) {
974 /*
975 * Powerpc with CONFIG_NUMA always used to have a node 0,
976 * even if it was memoryless or cpuless. For all cpus that
977 * are possible but not present, cpu_to_node() would point
978 * to node 0. To remove a cpuless, memoryless dummy node,
979 * powerpc need to make sure all possible but not present
980 * cpu_to_node are set to a proper node.
981 */
982 numa_setup_cpu(cpu);
983 }
984 }
985
initmem_init(void)986 void __init initmem_init(void)
987 {
988 int nid;
989
990 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
991 max_pfn = max_low_pfn;
992
993 memblock_dump_all();
994
995 for_each_online_node(nid) {
996 unsigned long start_pfn, end_pfn;
997
998 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
999 setup_node_data(nid, start_pfn, end_pfn);
1000 }
1001
1002 sparse_init();
1003
1004 /*
1005 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1006 * even before we online them, so that we can use cpu_to_{node,mem}
1007 * early in boot, cf. smp_prepare_cpus().
1008 * _nocalls() + manual invocation is used because cpuhp is not yet
1009 * initialized for the boot CPU.
1010 */
1011 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1012 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1013 }
1014
early_numa(char * p)1015 static int __init early_numa(char *p)
1016 {
1017 if (!p)
1018 return 0;
1019
1020 if (strstr(p, "off"))
1021 numa_enabled = 0;
1022
1023 if (strstr(p, "debug"))
1024 numa_debug = 1;
1025
1026 p = strstr(p, "fake=");
1027 if (p)
1028 cmdline = p + strlen("fake=");
1029
1030 return 0;
1031 }
1032 early_param("numa", early_numa);
1033
1034 #ifdef CONFIG_MEMORY_HOTPLUG
1035 /*
1036 * Find the node associated with a hot added memory section for
1037 * memory represented in the device tree by the property
1038 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1040 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1041 {
1042 struct drmem_lmb *lmb;
1043 unsigned long lmb_size;
1044 int nid = NUMA_NO_NODE;
1045
1046 lmb_size = drmem_lmb_size();
1047
1048 for_each_drmem_lmb(lmb) {
1049 /* skip this block if it is reserved or not assigned to
1050 * this partition */
1051 if ((lmb->flags & DRCONF_MEM_RESERVED)
1052 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1053 continue;
1054
1055 if ((scn_addr < lmb->base_addr)
1056 || (scn_addr >= (lmb->base_addr + lmb_size)))
1057 continue;
1058
1059 nid = of_drconf_to_nid_single(lmb);
1060 break;
1061 }
1062
1063 return nid;
1064 }
1065
1066 /*
1067 * Find the node associated with a hot added memory section for memory
1068 * represented in the device tree as a node (i.e. memory@XXXX) for
1069 * each memblock.
1070 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1071 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1072 {
1073 struct device_node *memory;
1074 int nid = NUMA_NO_NODE;
1075
1076 for_each_node_by_type(memory, "memory") {
1077 unsigned long start, size;
1078 int ranges;
1079 const __be32 *memcell_buf;
1080 unsigned int len;
1081
1082 memcell_buf = of_get_property(memory, "reg", &len);
1083 if (!memcell_buf || len <= 0)
1084 continue;
1085
1086 /* ranges in cell */
1087 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1088
1089 while (ranges--) {
1090 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1091 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1092
1093 if ((scn_addr < start) || (scn_addr >= (start + size)))
1094 continue;
1095
1096 nid = of_node_to_nid_single(memory);
1097 break;
1098 }
1099
1100 if (nid >= 0)
1101 break;
1102 }
1103
1104 of_node_put(memory);
1105
1106 return nid;
1107 }
1108
1109 /*
1110 * Find the node associated with a hot added memory section. Section
1111 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1112 * sections are fully contained within a single MEMBLOCK.
1113 */
hot_add_scn_to_nid(unsigned long scn_addr)1114 int hot_add_scn_to_nid(unsigned long scn_addr)
1115 {
1116 struct device_node *memory = NULL;
1117 int nid;
1118
1119 if (!numa_enabled)
1120 return first_online_node;
1121
1122 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1123 if (memory) {
1124 nid = hot_add_drconf_scn_to_nid(scn_addr);
1125 of_node_put(memory);
1126 } else {
1127 nid = hot_add_node_scn_to_nid(scn_addr);
1128 }
1129
1130 if (nid < 0 || !node_possible(nid))
1131 nid = first_online_node;
1132
1133 return nid;
1134 }
1135
hot_add_drconf_memory_max(void)1136 static u64 hot_add_drconf_memory_max(void)
1137 {
1138 struct device_node *memory = NULL;
1139 struct device_node *dn = NULL;
1140 const __be64 *lrdr = NULL;
1141
1142 dn = of_find_node_by_path("/rtas");
1143 if (dn) {
1144 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1145 of_node_put(dn);
1146 if (lrdr)
1147 return be64_to_cpup(lrdr);
1148 }
1149
1150 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1151 if (memory) {
1152 of_node_put(memory);
1153 return drmem_lmb_memory_max();
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * memory_hotplug_max - return max address of memory that may be added
1160 *
1161 * This is currently only used on systems that support drconfig memory
1162 * hotplug.
1163 */
memory_hotplug_max(void)1164 u64 memory_hotplug_max(void)
1165 {
1166 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1167 }
1168 #endif /* CONFIG_MEMORY_HOTPLUG */
1169
1170 /* Virtual Processor Home Node (VPHN) support */
1171 #ifdef CONFIG_PPC_SPLPAR
1172 static int topology_inited;
1173
1174 /*
1175 * Retrieve the new associativity information for a virtual processor's
1176 * home node.
1177 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1178 static long vphn_get_associativity(unsigned long cpu,
1179 __be32 *associativity)
1180 {
1181 long rc;
1182
1183 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1184 VPHN_FLAG_VCPU, associativity);
1185
1186 switch (rc) {
1187 case H_SUCCESS:
1188 dbg("VPHN hcall succeeded. Reset polling...\n");
1189 goto out;
1190
1191 case H_FUNCTION:
1192 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1193 break;
1194 case H_HARDWARE:
1195 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1196 "preventing VPHN. Disabling polling...\n");
1197 break;
1198 case H_PARAMETER:
1199 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1200 "Disabling polling...\n");
1201 break;
1202 default:
1203 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1204 , rc);
1205 break;
1206 }
1207 out:
1208 return rc;
1209 }
1210
find_and_online_cpu_nid(int cpu)1211 int find_and_online_cpu_nid(int cpu)
1212 {
1213 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1214 int new_nid;
1215
1216 /* Use associativity from first thread for all siblings */
1217 if (vphn_get_associativity(cpu, associativity))
1218 return cpu_to_node(cpu);
1219
1220 new_nid = associativity_to_nid(associativity);
1221 if (new_nid < 0 || !node_possible(new_nid))
1222 new_nid = first_online_node;
1223
1224 if (NODE_DATA(new_nid) == NULL) {
1225 #ifdef CONFIG_MEMORY_HOTPLUG
1226 /*
1227 * Need to ensure that NODE_DATA is initialized for a node from
1228 * available memory (see memblock_alloc_try_nid). If unable to
1229 * init the node, then default to nearest node that has memory
1230 * installed. Skip onlining a node if the subsystems are not
1231 * yet initialized.
1232 */
1233 if (!topology_inited || try_online_node(new_nid))
1234 new_nid = first_online_node;
1235 #else
1236 /*
1237 * Default to using the nearest node that has memory installed.
1238 * Otherwise, it would be necessary to patch the kernel MM code
1239 * to deal with more memoryless-node error conditions.
1240 */
1241 new_nid = first_online_node;
1242 #endif
1243 }
1244
1245 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1246 cpu, new_nid);
1247 return new_nid;
1248 }
1249
cpu_to_coregroup_id(int cpu)1250 int cpu_to_coregroup_id(int cpu)
1251 {
1252 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1253 int index;
1254
1255 if (cpu < 0 || cpu > nr_cpu_ids)
1256 return -1;
1257
1258 if (!coregroup_enabled)
1259 goto out;
1260
1261 if (!firmware_has_feature(FW_FEATURE_VPHN))
1262 goto out;
1263
1264 if (vphn_get_associativity(cpu, associativity))
1265 goto out;
1266
1267 index = of_read_number(associativity, 1);
1268 if (index > min_common_depth + 1)
1269 return of_read_number(&associativity[index - 1], 1);
1270
1271 out:
1272 return cpu_to_core_id(cpu);
1273 }
1274
topology_update_init(void)1275 static int topology_update_init(void)
1276 {
1277 topology_inited = 1;
1278 return 0;
1279 }
1280 device_initcall(topology_update_init);
1281 #endif /* CONFIG_PPC_SPLPAR */
1282