• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
setup_node_to_cpumask_map(void)69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for_each_node(node)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84 
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
reset_numa_cpu_lookup_table(void)132 static void reset_numa_cpu_lookup_table(void)
133 {
134 	unsigned int cpu;
135 
136 	for_each_possible_cpu(cpu)
137 		numa_cpu_lookup_table[cpu] = -1;
138 }
139 
map_cpu_to_node(int cpu,int node)140 void map_cpu_to_node(int cpu, int node)
141 {
142 	update_numa_cpu_lookup_table(cpu, node);
143 
144 	dbg("adding cpu %d to node %d\n", cpu, node);
145 
146 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149 
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)151 void unmap_cpu_from_node(unsigned long cpu)
152 {
153 	int node = numa_cpu_lookup_table[cpu];
154 
155 	dbg("removing cpu %lu from node %d\n", cpu, node);
156 
157 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 	} else {
160 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 		       cpu, node);
162 	}
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165 
cpu_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 	int dist = 0;
169 
170 	int i, index;
171 
172 	for (i = 0; i < distance_ref_points_depth; i++) {
173 		index = be32_to_cpu(distance_ref_points[i]);
174 		if (cpu1_assoc[index] == cpu2_assoc[index])
175 			break;
176 		dist++;
177 	}
178 
179 	return dist;
180 }
181 
182 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 	return of_get_property(dev, "ibm,associativity", NULL);
186 }
187 
__node_distance(int a,int b)188 int __node_distance(int a, int b)
189 {
190 	int i;
191 	int distance = LOCAL_DISTANCE;
192 
193 	if (!form1_affinity)
194 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195 
196 	for (i = 0; i < distance_ref_points_depth; i++) {
197 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 			break;
199 
200 		/* Double the distance for each NUMA level */
201 		distance *= 2;
202 	}
203 
204 	return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207 
initialize_distance_lookup_table(int nid,const __be32 * associativity)208 static void initialize_distance_lookup_table(int nid,
209 		const __be32 *associativity)
210 {
211 	int i;
212 
213 	if (!form1_affinity)
214 		return;
215 
216 	for (i = 0; i < distance_ref_points_depth; i++) {
217 		const __be32 *entry;
218 
219 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 	}
222 }
223 
224 /*
225  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
226  * info is found.
227  */
associativity_to_nid(const __be32 * associativity)228 static int associativity_to_nid(const __be32 *associativity)
229 {
230 	int nid = NUMA_NO_NODE;
231 
232 	if (!numa_enabled)
233 		goto out;
234 
235 	if (of_read_number(associativity, 1) >= min_common_depth)
236 		nid = of_read_number(&associativity[min_common_depth], 1);
237 
238 	/* POWER4 LPAR uses 0xffff as invalid node */
239 	if (nid == 0xffff || nid >= nr_node_ids)
240 		nid = NUMA_NO_NODE;
241 
242 	if (nid > 0 &&
243 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
244 		/*
245 		 * Skip the length field and send start of associativity array
246 		 */
247 		initialize_distance_lookup_table(nid, associativity + 1);
248 	}
249 
250 out:
251 	return nid;
252 }
253 
254 /* Returns the nid associated with the given device tree node,
255  * or -1 if not found.
256  */
of_node_to_nid_single(struct device_node * device)257 static int of_node_to_nid_single(struct device_node *device)
258 {
259 	int nid = NUMA_NO_NODE;
260 	const __be32 *tmp;
261 
262 	tmp = of_get_associativity(device);
263 	if (tmp)
264 		nid = associativity_to_nid(tmp);
265 	return nid;
266 }
267 
268 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)269 int of_node_to_nid(struct device_node *device)
270 {
271 	int nid = NUMA_NO_NODE;
272 
273 	of_node_get(device);
274 	while (device) {
275 		nid = of_node_to_nid_single(device);
276 		if (nid != -1)
277 			break;
278 
279 		device = of_get_next_parent(device);
280 	}
281 	of_node_put(device);
282 
283 	return nid;
284 }
285 EXPORT_SYMBOL(of_node_to_nid);
286 
find_min_common_depth(void)287 static int __init find_min_common_depth(void)
288 {
289 	int depth;
290 	struct device_node *root;
291 
292 	if (firmware_has_feature(FW_FEATURE_OPAL))
293 		root = of_find_node_by_path("/ibm,opal");
294 	else
295 		root = of_find_node_by_path("/rtas");
296 	if (!root)
297 		root = of_find_node_by_path("/");
298 
299 	/*
300 	 * This property is a set of 32-bit integers, each representing
301 	 * an index into the ibm,associativity nodes.
302 	 *
303 	 * With form 0 affinity the first integer is for an SMP configuration
304 	 * (should be all 0's) and the second is for a normal NUMA
305 	 * configuration. We have only one level of NUMA.
306 	 *
307 	 * With form 1 affinity the first integer is the most significant
308 	 * NUMA boundary and the following are progressively less significant
309 	 * boundaries. There can be more than one level of NUMA.
310 	 */
311 	distance_ref_points = of_get_property(root,
312 					"ibm,associativity-reference-points",
313 					&distance_ref_points_depth);
314 
315 	if (!distance_ref_points) {
316 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
317 		goto err;
318 	}
319 
320 	distance_ref_points_depth /= sizeof(int);
321 
322 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
323 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
324 		dbg("Using form 1 affinity\n");
325 		form1_affinity = 1;
326 	}
327 
328 	if (form1_affinity) {
329 		depth = of_read_number(distance_ref_points, 1);
330 	} else {
331 		if (distance_ref_points_depth < 2) {
332 			printk(KERN_WARNING "NUMA: "
333 				"short ibm,associativity-reference-points\n");
334 			goto err;
335 		}
336 
337 		depth = of_read_number(&distance_ref_points[1], 1);
338 	}
339 
340 	/*
341 	 * Warn and cap if the hardware supports more than
342 	 * MAX_DISTANCE_REF_POINTS domains.
343 	 */
344 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
345 		printk(KERN_WARNING "NUMA: distance array capped at "
346 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
347 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
348 	}
349 
350 	of_node_put(root);
351 	return depth;
352 
353 err:
354 	of_node_put(root);
355 	return -1;
356 }
357 
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
359 {
360 	struct device_node *memory = NULL;
361 
362 	memory = of_find_node_by_type(memory, "memory");
363 	if (!memory)
364 		panic("numa.c: No memory nodes found!");
365 
366 	*n_addr_cells = of_n_addr_cells(memory);
367 	*n_size_cells = of_n_size_cells(memory);
368 	of_node_put(memory);
369 }
370 
read_n_cells(int n,const __be32 ** buf)371 static unsigned long read_n_cells(int n, const __be32 **buf)
372 {
373 	unsigned long result = 0;
374 
375 	while (n--) {
376 		result = (result << 32) | of_read_number(*buf, 1);
377 		(*buf)++;
378 	}
379 	return result;
380 }
381 
382 struct assoc_arrays {
383 	u32	n_arrays;
384 	u32	array_sz;
385 	const __be32 *arrays;
386 };
387 
388 /*
389  * Retrieve and validate the list of associativity arrays for drconf
390  * memory from the ibm,associativity-lookup-arrays property of the
391  * device tree..
392  *
393  * The layout of the ibm,associativity-lookup-arrays property is a number N
394  * indicating the number of associativity arrays, followed by a number M
395  * indicating the size of each associativity array, followed by a list
396  * of N associativity arrays.
397  */
of_get_assoc_arrays(struct assoc_arrays * aa)398 static int of_get_assoc_arrays(struct assoc_arrays *aa)
399 {
400 	struct device_node *memory;
401 	const __be32 *prop;
402 	u32 len;
403 
404 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
405 	if (!memory)
406 		return -1;
407 
408 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
409 	if (!prop || len < 2 * sizeof(unsigned int)) {
410 		of_node_put(memory);
411 		return -1;
412 	}
413 
414 	aa->n_arrays = of_read_number(prop++, 1);
415 	aa->array_sz = of_read_number(prop++, 1);
416 
417 	of_node_put(memory);
418 
419 	/* Now that we know the number of arrays and size of each array,
420 	 * revalidate the size of the property read in.
421 	 */
422 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
423 		return -1;
424 
425 	aa->arrays = prop;
426 	return 0;
427 }
428 
429 /*
430  * This is like of_node_to_nid_single() for memory represented in the
431  * ibm,dynamic-reconfiguration-memory node.
432  */
of_drconf_to_nid_single(struct drmem_lmb * lmb)433 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
434 {
435 	struct assoc_arrays aa = { .arrays = NULL };
436 	int default_nid = NUMA_NO_NODE;
437 	int nid = default_nid;
438 	int rc, index;
439 
440 	if ((min_common_depth < 0) || !numa_enabled)
441 		return default_nid;
442 
443 	rc = of_get_assoc_arrays(&aa);
444 	if (rc)
445 		return default_nid;
446 
447 	if (min_common_depth <= aa.array_sz &&
448 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
449 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
450 		nid = of_read_number(&aa.arrays[index], 1);
451 
452 		if (nid == 0xffff || nid >= nr_node_ids)
453 			nid = default_nid;
454 
455 		if (nid > 0) {
456 			index = lmb->aa_index * aa.array_sz;
457 			initialize_distance_lookup_table(nid,
458 							&aa.arrays[index]);
459 		}
460 	}
461 
462 	return nid;
463 }
464 
465 #ifdef CONFIG_PPC_SPLPAR
vphn_get_nid(long lcpu)466 static int vphn_get_nid(long lcpu)
467 {
468 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
469 	long rc, hwid;
470 
471 	/*
472 	 * On a shared lpar, device tree will not have node associativity.
473 	 * At this time lppaca, or its __old_status field may not be
474 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
475 	 * request an explicit associativity irrespective of whether the
476 	 * lpar is shared or dedicated. Use the device tree property as a
477 	 * fallback. cpu_to_phys_id is only valid between
478 	 * smp_setup_cpu_maps() and smp_setup_pacas().
479 	 */
480 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
481 		if (cpu_to_phys_id)
482 			hwid = cpu_to_phys_id[lcpu];
483 		else
484 			hwid = get_hard_smp_processor_id(lcpu);
485 
486 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
487 		if (rc == H_SUCCESS)
488 			return associativity_to_nid(associativity);
489 	}
490 
491 	return NUMA_NO_NODE;
492 }
493 #else
vphn_get_nid(long unused)494 static int vphn_get_nid(long unused)
495 {
496 	return NUMA_NO_NODE;
497 }
498 #endif  /* CONFIG_PPC_SPLPAR */
499 
500 /*
501  * Figure out to which domain a cpu belongs and stick it there.
502  * Return the id of the domain used.
503  */
numa_setup_cpu(unsigned long lcpu)504 static int numa_setup_cpu(unsigned long lcpu)
505 {
506 	struct device_node *cpu;
507 	int fcpu = cpu_first_thread_sibling(lcpu);
508 	int nid = NUMA_NO_NODE;
509 
510 	if (!cpu_present(lcpu)) {
511 		set_cpu_numa_node(lcpu, first_online_node);
512 		return first_online_node;
513 	}
514 
515 	/*
516 	 * If a valid cpu-to-node mapping is already available, use it
517 	 * directly instead of querying the firmware, since it represents
518 	 * the most recent mapping notified to us by the platform (eg: VPHN).
519 	 * Since cpu_to_node binding remains the same for all threads in the
520 	 * core. If a valid cpu-to-node mapping is already available, for
521 	 * the first thread in the core, use it.
522 	 */
523 	nid = numa_cpu_lookup_table[fcpu];
524 	if (nid >= 0) {
525 		map_cpu_to_node(lcpu, nid);
526 		return nid;
527 	}
528 
529 	nid = vphn_get_nid(lcpu);
530 	if (nid != NUMA_NO_NODE)
531 		goto out_present;
532 
533 	cpu = of_get_cpu_node(lcpu, NULL);
534 
535 	if (!cpu) {
536 		WARN_ON(1);
537 		if (cpu_present(lcpu))
538 			goto out_present;
539 		else
540 			goto out;
541 	}
542 
543 	nid = of_node_to_nid_single(cpu);
544 	of_node_put(cpu);
545 
546 out_present:
547 	if (nid < 0 || !node_possible(nid))
548 		nid = first_online_node;
549 
550 	/*
551 	 * Update for the first thread of the core. All threads of a core
552 	 * have to be part of the same node. This not only avoids querying
553 	 * for every other thread in the core, but always avoids a case
554 	 * where virtual node associativity change causes subsequent threads
555 	 * of a core to be associated with different nid. However if first
556 	 * thread is already online, expect it to have a valid mapping.
557 	 */
558 	if (fcpu != lcpu) {
559 		WARN_ON(cpu_online(fcpu));
560 		map_cpu_to_node(fcpu, nid);
561 	}
562 
563 	map_cpu_to_node(lcpu, nid);
564 out:
565 	return nid;
566 }
567 
verify_cpu_node_mapping(int cpu,int node)568 static void verify_cpu_node_mapping(int cpu, int node)
569 {
570 	int base, sibling, i;
571 
572 	/* Verify that all the threads in the core belong to the same node */
573 	base = cpu_first_thread_sibling(cpu);
574 
575 	for (i = 0; i < threads_per_core; i++) {
576 		sibling = base + i;
577 
578 		if (sibling == cpu || cpu_is_offline(sibling))
579 			continue;
580 
581 		if (cpu_to_node(sibling) != node) {
582 			WARN(1, "CPU thread siblings %d and %d don't belong"
583 				" to the same node!\n", cpu, sibling);
584 			break;
585 		}
586 	}
587 }
588 
589 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)590 static int ppc_numa_cpu_prepare(unsigned int cpu)
591 {
592 	int nid;
593 
594 	nid = numa_setup_cpu(cpu);
595 	verify_cpu_node_mapping(cpu, nid);
596 	return 0;
597 }
598 
ppc_numa_cpu_dead(unsigned int cpu)599 static int ppc_numa_cpu_dead(unsigned int cpu)
600 {
601 	return 0;
602 }
603 
604 /*
605  * Check and possibly modify a memory region to enforce the memory limit.
606  *
607  * Returns the size the region should have to enforce the memory limit.
608  * This will either be the original value of size, a truncated value,
609  * or zero. If the returned value of size is 0 the region should be
610  * discarded as it lies wholly above the memory limit.
611  */
numa_enforce_memory_limit(unsigned long start,unsigned long size)612 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
613 						      unsigned long size)
614 {
615 	/*
616 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
617 	 * we've already adjusted it for the limit and it takes care of
618 	 * having memory holes below the limit.  Also, in the case of
619 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
620 	 */
621 
622 	if (start + size <= memblock_end_of_DRAM())
623 		return size;
624 
625 	if (start >= memblock_end_of_DRAM())
626 		return 0;
627 
628 	return memblock_end_of_DRAM() - start;
629 }
630 
631 /*
632  * Reads the counter for a given entry in
633  * linux,drconf-usable-memory property
634  */
read_usm_ranges(const __be32 ** usm)635 static inline int __init read_usm_ranges(const __be32 **usm)
636 {
637 	/*
638 	 * For each lmb in ibm,dynamic-memory a corresponding
639 	 * entry in linux,drconf-usable-memory property contains
640 	 * a counter followed by that many (base, size) duple.
641 	 * read the counter from linux,drconf-usable-memory
642 	 */
643 	return read_n_cells(n_mem_size_cells, usm);
644 }
645 
646 /*
647  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
648  * node.  This assumes n_mem_{addr,size}_cells have been set.
649  */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)650 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
651 					const __be32 **usm,
652 					void *data)
653 {
654 	unsigned int ranges, is_kexec_kdump = 0;
655 	unsigned long base, size, sz;
656 	int nid;
657 
658 	/*
659 	 * Skip this block if the reserved bit is set in flags (0x80)
660 	 * or if the block is not assigned to this partition (0x8)
661 	 */
662 	if ((lmb->flags & DRCONF_MEM_RESERVED)
663 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
664 		return 0;
665 
666 	if (*usm)
667 		is_kexec_kdump = 1;
668 
669 	base = lmb->base_addr;
670 	size = drmem_lmb_size();
671 	ranges = 1;
672 
673 	if (is_kexec_kdump) {
674 		ranges = read_usm_ranges(usm);
675 		if (!ranges) /* there are no (base, size) duple */
676 			return 0;
677 	}
678 
679 	do {
680 		if (is_kexec_kdump) {
681 			base = read_n_cells(n_mem_addr_cells, usm);
682 			size = read_n_cells(n_mem_size_cells, usm);
683 		}
684 
685 		nid = of_drconf_to_nid_single(lmb);
686 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
687 					  &nid);
688 		node_set_online(nid);
689 		sz = numa_enforce_memory_limit(base, size);
690 		if (sz)
691 			memblock_set_node(base, sz, &memblock.memory, nid);
692 	} while (--ranges);
693 
694 	return 0;
695 }
696 
parse_numa_properties(void)697 static int __init parse_numa_properties(void)
698 {
699 	struct device_node *memory;
700 	int default_nid = 0;
701 	unsigned long i;
702 
703 	if (numa_enabled == 0) {
704 		printk(KERN_WARNING "NUMA disabled by user\n");
705 		return -1;
706 	}
707 
708 	min_common_depth = find_min_common_depth();
709 
710 	if (min_common_depth < 0) {
711 		/*
712 		 * if we fail to parse min_common_depth from device tree
713 		 * mark the numa disabled, boot with numa disabled.
714 		 */
715 		numa_enabled = false;
716 		return min_common_depth;
717 	}
718 
719 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
720 
721 	/*
722 	 * Even though we connect cpus to numa domains later in SMP
723 	 * init, we need to know the node ids now. This is because
724 	 * each node to be onlined must have NODE_DATA etc backing it.
725 	 */
726 	for_each_present_cpu(i) {
727 		struct device_node *cpu;
728 		int nid = vphn_get_nid(i);
729 
730 		/*
731 		 * Don't fall back to default_nid yet -- we will plug
732 		 * cpus into nodes once the memory scan has discovered
733 		 * the topology.
734 		 */
735 		if (nid == NUMA_NO_NODE) {
736 			cpu = of_get_cpu_node(i, NULL);
737 			BUG_ON(!cpu);
738 			nid = of_node_to_nid_single(cpu);
739 			of_node_put(cpu);
740 		}
741 
742 		/* node_set_online() is an UB if 'nid' is negative */
743 		if (likely(nid >= 0))
744 			node_set_online(nid);
745 	}
746 
747 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
748 
749 	for_each_node_by_type(memory, "memory") {
750 		unsigned long start;
751 		unsigned long size;
752 		int nid;
753 		int ranges;
754 		const __be32 *memcell_buf;
755 		unsigned int len;
756 
757 		memcell_buf = of_get_property(memory,
758 			"linux,usable-memory", &len);
759 		if (!memcell_buf || len <= 0)
760 			memcell_buf = of_get_property(memory, "reg", &len);
761 		if (!memcell_buf || len <= 0)
762 			continue;
763 
764 		/* ranges in cell */
765 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
766 new_range:
767 		/* these are order-sensitive, and modify the buffer pointer */
768 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
769 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
770 
771 		/*
772 		 * Assumption: either all memory nodes or none will
773 		 * have associativity properties.  If none, then
774 		 * everything goes to default_nid.
775 		 */
776 		nid = of_node_to_nid_single(memory);
777 		if (nid < 0)
778 			nid = default_nid;
779 
780 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
781 		node_set_online(nid);
782 
783 		size = numa_enforce_memory_limit(start, size);
784 		if (size)
785 			memblock_set_node(start, size, &memblock.memory, nid);
786 
787 		if (--ranges)
788 			goto new_range;
789 	}
790 
791 	/*
792 	 * Now do the same thing for each MEMBLOCK listed in the
793 	 * ibm,dynamic-memory property in the
794 	 * ibm,dynamic-reconfiguration-memory node.
795 	 */
796 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
797 	if (memory) {
798 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
799 		of_node_put(memory);
800 	}
801 
802 	return 0;
803 }
804 
setup_nonnuma(void)805 static void __init setup_nonnuma(void)
806 {
807 	unsigned long top_of_ram = memblock_end_of_DRAM();
808 	unsigned long total_ram = memblock_phys_mem_size();
809 	unsigned long start_pfn, end_pfn;
810 	unsigned int nid = 0;
811 	int i;
812 
813 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
814 	       top_of_ram, total_ram);
815 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
816 	       (top_of_ram - total_ram) >> 20);
817 
818 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
819 		fake_numa_create_new_node(end_pfn, &nid);
820 		memblock_set_node(PFN_PHYS(start_pfn),
821 				  PFN_PHYS(end_pfn - start_pfn),
822 				  &memblock.memory, nid);
823 		node_set_online(nid);
824 	}
825 }
826 
dump_numa_cpu_topology(void)827 void __init dump_numa_cpu_topology(void)
828 {
829 	unsigned int node;
830 	unsigned int cpu, count;
831 
832 	if (!numa_enabled)
833 		return;
834 
835 	for_each_online_node(node) {
836 		pr_info("Node %d CPUs:", node);
837 
838 		count = 0;
839 		/*
840 		 * If we used a CPU iterator here we would miss printing
841 		 * the holes in the cpumap.
842 		 */
843 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
844 			if (cpumask_test_cpu(cpu,
845 					node_to_cpumask_map[node])) {
846 				if (count == 0)
847 					pr_cont(" %u", cpu);
848 				++count;
849 			} else {
850 				if (count > 1)
851 					pr_cont("-%u", cpu - 1);
852 				count = 0;
853 			}
854 		}
855 
856 		if (count > 1)
857 			pr_cont("-%u", nr_cpu_ids - 1);
858 		pr_cont("\n");
859 	}
860 }
861 
862 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)863 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
864 {
865 	u64 spanned_pages = end_pfn - start_pfn;
866 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
867 	u64 nd_pa;
868 	void *nd;
869 	int tnid;
870 
871 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
872 	if (!nd_pa)
873 		panic("Cannot allocate %zu bytes for node %d data\n",
874 		      nd_size, nid);
875 
876 	nd = __va(nd_pa);
877 
878 	/* report and initialize */
879 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
880 		nd_pa, nd_pa + nd_size - 1);
881 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
882 	if (tnid != nid)
883 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
884 
885 	node_data[nid] = nd;
886 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
887 	NODE_DATA(nid)->node_id = nid;
888 	NODE_DATA(nid)->node_start_pfn = start_pfn;
889 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
890 }
891 
find_possible_nodes(void)892 static void __init find_possible_nodes(void)
893 {
894 	struct device_node *rtas;
895 	const __be32 *domains = NULL;
896 	int prop_length, max_nodes;
897 	u32 i;
898 
899 	if (!numa_enabled)
900 		return;
901 
902 	rtas = of_find_node_by_path("/rtas");
903 	if (!rtas)
904 		return;
905 
906 	/*
907 	 * ibm,current-associativity-domains is a fairly recent property. If
908 	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
909 	 * Current denotes what the platform can support compared to max
910 	 * which denotes what the Hypervisor can support.
911 	 *
912 	 * If the LPAR is migratable, new nodes might be activated after a LPM,
913 	 * so we should consider the max number in that case.
914 	 */
915 	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
916 		domains = of_get_property(rtas,
917 					  "ibm,current-associativity-domains",
918 					  &prop_length);
919 	if (!domains) {
920 		domains = of_get_property(rtas, "ibm,max-associativity-domains",
921 					&prop_length);
922 		if (!domains)
923 			goto out;
924 	}
925 
926 	max_nodes = of_read_number(&domains[min_common_depth], 1);
927 	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
928 
929 	for (i = 0; i < max_nodes; i++) {
930 		if (!node_possible(i))
931 			node_set(i, node_possible_map);
932 	}
933 
934 	prop_length /= sizeof(int);
935 	if (prop_length > min_common_depth + 2)
936 		coregroup_enabled = 1;
937 
938 out:
939 	of_node_put(rtas);
940 }
941 
mem_topology_setup(void)942 void __init mem_topology_setup(void)
943 {
944 	int cpu;
945 
946 	/*
947 	 * Linux/mm assumes node 0 to be online at boot. However this is not
948 	 * true on PowerPC, where node 0 is similar to any other node, it
949 	 * could be cpuless, memoryless node. So force node 0 to be offline
950 	 * for now. This will prevent cpuless, memoryless node 0 showing up
951 	 * unnecessarily as online. If a node has cpus or memory that need
952 	 * to be online, then node will anyway be marked online.
953 	 */
954 	node_set_offline(0);
955 
956 	if (parse_numa_properties())
957 		setup_nonnuma();
958 
959 	/*
960 	 * Modify the set of possible NUMA nodes to reflect information
961 	 * available about the set of online nodes, and the set of nodes
962 	 * that we expect to make use of for this platform's affinity
963 	 * calculations.
964 	 */
965 	nodes_and(node_possible_map, node_possible_map, node_online_map);
966 
967 	find_possible_nodes();
968 
969 	setup_node_to_cpumask_map();
970 
971 	reset_numa_cpu_lookup_table();
972 
973 	for_each_possible_cpu(cpu) {
974 		/*
975 		 * Powerpc with CONFIG_NUMA always used to have a node 0,
976 		 * even if it was memoryless or cpuless. For all cpus that
977 		 * are possible but not present, cpu_to_node() would point
978 		 * to node 0. To remove a cpuless, memoryless dummy node,
979 		 * powerpc need to make sure all possible but not present
980 		 * cpu_to_node are set to a proper node.
981 		 */
982 		numa_setup_cpu(cpu);
983 	}
984 }
985 
initmem_init(void)986 void __init initmem_init(void)
987 {
988 	int nid;
989 
990 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
991 	max_pfn = max_low_pfn;
992 
993 	memblock_dump_all();
994 
995 	for_each_online_node(nid) {
996 		unsigned long start_pfn, end_pfn;
997 
998 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
999 		setup_node_data(nid, start_pfn, end_pfn);
1000 	}
1001 
1002 	sparse_init();
1003 
1004 	/*
1005 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1006 	 * even before we online them, so that we can use cpu_to_{node,mem}
1007 	 * early in boot, cf. smp_prepare_cpus().
1008 	 * _nocalls() + manual invocation is used because cpuhp is not yet
1009 	 * initialized for the boot CPU.
1010 	 */
1011 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1012 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1013 }
1014 
early_numa(char * p)1015 static int __init early_numa(char *p)
1016 {
1017 	if (!p)
1018 		return 0;
1019 
1020 	if (strstr(p, "off"))
1021 		numa_enabled = 0;
1022 
1023 	if (strstr(p, "debug"))
1024 		numa_debug = 1;
1025 
1026 	p = strstr(p, "fake=");
1027 	if (p)
1028 		cmdline = p + strlen("fake=");
1029 
1030 	return 0;
1031 }
1032 early_param("numa", early_numa);
1033 
1034 #ifdef CONFIG_MEMORY_HOTPLUG
1035 /*
1036  * Find the node associated with a hot added memory section for
1037  * memory represented in the device tree by the property
1038  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039  */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1040 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1041 {
1042 	struct drmem_lmb *lmb;
1043 	unsigned long lmb_size;
1044 	int nid = NUMA_NO_NODE;
1045 
1046 	lmb_size = drmem_lmb_size();
1047 
1048 	for_each_drmem_lmb(lmb) {
1049 		/* skip this block if it is reserved or not assigned to
1050 		 * this partition */
1051 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1052 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1053 			continue;
1054 
1055 		if ((scn_addr < lmb->base_addr)
1056 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1057 			continue;
1058 
1059 		nid = of_drconf_to_nid_single(lmb);
1060 		break;
1061 	}
1062 
1063 	return nid;
1064 }
1065 
1066 /*
1067  * Find the node associated with a hot added memory section for memory
1068  * represented in the device tree as a node (i.e. memory@XXXX) for
1069  * each memblock.
1070  */
hot_add_node_scn_to_nid(unsigned long scn_addr)1071 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1072 {
1073 	struct device_node *memory;
1074 	int nid = NUMA_NO_NODE;
1075 
1076 	for_each_node_by_type(memory, "memory") {
1077 		unsigned long start, size;
1078 		int ranges;
1079 		const __be32 *memcell_buf;
1080 		unsigned int len;
1081 
1082 		memcell_buf = of_get_property(memory, "reg", &len);
1083 		if (!memcell_buf || len <= 0)
1084 			continue;
1085 
1086 		/* ranges in cell */
1087 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1088 
1089 		while (ranges--) {
1090 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1091 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1092 
1093 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1094 				continue;
1095 
1096 			nid = of_node_to_nid_single(memory);
1097 			break;
1098 		}
1099 
1100 		if (nid >= 0)
1101 			break;
1102 	}
1103 
1104 	of_node_put(memory);
1105 
1106 	return nid;
1107 }
1108 
1109 /*
1110  * Find the node associated with a hot added memory section.  Section
1111  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1112  * sections are fully contained within a single MEMBLOCK.
1113  */
hot_add_scn_to_nid(unsigned long scn_addr)1114 int hot_add_scn_to_nid(unsigned long scn_addr)
1115 {
1116 	struct device_node *memory = NULL;
1117 	int nid;
1118 
1119 	if (!numa_enabled)
1120 		return first_online_node;
1121 
1122 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1123 	if (memory) {
1124 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1125 		of_node_put(memory);
1126 	} else {
1127 		nid = hot_add_node_scn_to_nid(scn_addr);
1128 	}
1129 
1130 	if (nid < 0 || !node_possible(nid))
1131 		nid = first_online_node;
1132 
1133 	return nid;
1134 }
1135 
hot_add_drconf_memory_max(void)1136 static u64 hot_add_drconf_memory_max(void)
1137 {
1138 	struct device_node *memory = NULL;
1139 	struct device_node *dn = NULL;
1140 	const __be64 *lrdr = NULL;
1141 
1142 	dn = of_find_node_by_path("/rtas");
1143 	if (dn) {
1144 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1145 		of_node_put(dn);
1146 		if (lrdr)
1147 			return be64_to_cpup(lrdr);
1148 	}
1149 
1150 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1151 	if (memory) {
1152 		of_node_put(memory);
1153 		return drmem_lmb_memory_max();
1154 	}
1155 	return 0;
1156 }
1157 
1158 /*
1159  * memory_hotplug_max - return max address of memory that may be added
1160  *
1161  * This is currently only used on systems that support drconfig memory
1162  * hotplug.
1163  */
memory_hotplug_max(void)1164 u64 memory_hotplug_max(void)
1165 {
1166         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1167 }
1168 #endif /* CONFIG_MEMORY_HOTPLUG */
1169 
1170 /* Virtual Processor Home Node (VPHN) support */
1171 #ifdef CONFIG_PPC_SPLPAR
1172 static int topology_inited;
1173 
1174 /*
1175  * Retrieve the new associativity information for a virtual processor's
1176  * home node.
1177  */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1178 static long vphn_get_associativity(unsigned long cpu,
1179 					__be32 *associativity)
1180 {
1181 	long rc;
1182 
1183 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1184 				VPHN_FLAG_VCPU, associativity);
1185 
1186 	switch (rc) {
1187 	case H_SUCCESS:
1188 		dbg("VPHN hcall succeeded. Reset polling...\n");
1189 		goto out;
1190 
1191 	case H_FUNCTION:
1192 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1193 		break;
1194 	case H_HARDWARE:
1195 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1196 			"preventing VPHN. Disabling polling...\n");
1197 		break;
1198 	case H_PARAMETER:
1199 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1200 			"Disabling polling...\n");
1201 		break;
1202 	default:
1203 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1204 			, rc);
1205 		break;
1206 	}
1207 out:
1208 	return rc;
1209 }
1210 
find_and_online_cpu_nid(int cpu)1211 int find_and_online_cpu_nid(int cpu)
1212 {
1213 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1214 	int new_nid;
1215 
1216 	/* Use associativity from first thread for all siblings */
1217 	if (vphn_get_associativity(cpu, associativity))
1218 		return cpu_to_node(cpu);
1219 
1220 	new_nid = associativity_to_nid(associativity);
1221 	if (new_nid < 0 || !node_possible(new_nid))
1222 		new_nid = first_online_node;
1223 
1224 	if (NODE_DATA(new_nid) == NULL) {
1225 #ifdef CONFIG_MEMORY_HOTPLUG
1226 		/*
1227 		 * Need to ensure that NODE_DATA is initialized for a node from
1228 		 * available memory (see memblock_alloc_try_nid). If unable to
1229 		 * init the node, then default to nearest node that has memory
1230 		 * installed. Skip onlining a node if the subsystems are not
1231 		 * yet initialized.
1232 		 */
1233 		if (!topology_inited || try_online_node(new_nid))
1234 			new_nid = first_online_node;
1235 #else
1236 		/*
1237 		 * Default to using the nearest node that has memory installed.
1238 		 * Otherwise, it would be necessary to patch the kernel MM code
1239 		 * to deal with more memoryless-node error conditions.
1240 		 */
1241 		new_nid = first_online_node;
1242 #endif
1243 	}
1244 
1245 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1246 		cpu, new_nid);
1247 	return new_nid;
1248 }
1249 
cpu_to_coregroup_id(int cpu)1250 int cpu_to_coregroup_id(int cpu)
1251 {
1252 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1253 	int index;
1254 
1255 	if (cpu < 0 || cpu > nr_cpu_ids)
1256 		return -1;
1257 
1258 	if (!coregroup_enabled)
1259 		goto out;
1260 
1261 	if (!firmware_has_feature(FW_FEATURE_VPHN))
1262 		goto out;
1263 
1264 	if (vphn_get_associativity(cpu, associativity))
1265 		goto out;
1266 
1267 	index = of_read_number(associativity, 1);
1268 	if (index > min_common_depth + 1)
1269 		return of_read_number(&associativity[index - 1], 1);
1270 
1271 out:
1272 	return cpu_to_core_id(cpu);
1273 }
1274 
topology_update_init(void)1275 static int topology_update_init(void)
1276 {
1277 	topology_inited = 1;
1278 	return 0;
1279 }
1280 device_initcall(topology_update_init);
1281 #endif /* CONFIG_PPC_SPLPAR */
1282