• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Cell Broadband Engine OProfile Support
4  *
5  * (C) Copyright IBM Corporation 2006
6  *
7  * Author: Maynard Johnson <maynardj@us.ibm.com>
8  */
9 
10 /* The purpose of this file is to handle SPU event task switching
11  * and to record SPU context information into the OProfile
12  * event buffer.
13  *
14  * Additionally, the spu_sync_buffer function is provided as a helper
15  * for recoding actual SPU program counter samples to the event buffer.
16  */
17 #include <linux/dcookies.h>
18 #include <linux/kref.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/module.h>
23 #include <linux/notifier.h>
24 #include <linux/numa.h>
25 #include <linux/oprofile.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include "pr_util.h"
29 
30 #define RELEASE_ALL 9999
31 
32 static DEFINE_SPINLOCK(buffer_lock);
33 static DEFINE_SPINLOCK(cache_lock);
34 static int num_spu_nodes;
35 static int spu_prof_num_nodes;
36 
37 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
38 struct delayed_work spu_work;
39 static unsigned max_spu_buff;
40 
spu_buff_add(unsigned long int value,int spu)41 static void spu_buff_add(unsigned long int value, int spu)
42 {
43 	/* spu buff is a circular buffer.  Add entries to the
44 	 * head.  Head is the index to store the next value.
45 	 * The buffer is full when there is one available entry
46 	 * in the queue, i.e. head and tail can't be equal.
47 	 * That way we can tell the difference between the
48 	 * buffer being full versus empty.
49 	 *
50 	 *  ASSUMPTION: the buffer_lock is held when this function
51 	 *             is called to lock the buffer, head and tail.
52 	 */
53 	int full = 1;
54 
55 	if (spu_buff[spu].head >= spu_buff[spu].tail) {
56 		if ((spu_buff[spu].head - spu_buff[spu].tail)
57 		    <  (max_spu_buff - 1))
58 			full = 0;
59 
60 	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
61 		if ((spu_buff[spu].tail - spu_buff[spu].head)
62 		    > 1)
63 			full = 0;
64 	}
65 
66 	if (!full) {
67 		spu_buff[spu].buff[spu_buff[spu].head] = value;
68 		spu_buff[spu].head++;
69 
70 		if (spu_buff[spu].head >= max_spu_buff)
71 			spu_buff[spu].head = 0;
72 	} else {
73 		/* From the user's perspective make the SPU buffer
74 		 * size management/overflow look like we are using
75 		 * per cpu buffers.  The user uses the same
76 		 * per cpu parameter to adjust the SPU buffer size.
77 		 * Increment the sample_lost_overflow to inform
78 		 * the user the buffer size needs to be increased.
79 		 */
80 		oprofile_cpu_buffer_inc_smpl_lost();
81 	}
82 }
83 
84 /* This function copies the per SPU buffers to the
85  * OProfile kernel buffer.
86  */
sync_spu_buff(void)87 static void sync_spu_buff(void)
88 {
89 	int spu;
90 	unsigned long flags;
91 	int curr_head;
92 
93 	for (spu = 0; spu < num_spu_nodes; spu++) {
94 		/* In case there was an issue and the buffer didn't
95 		 * get created skip it.
96 		 */
97 		if (spu_buff[spu].buff == NULL)
98 			continue;
99 
100 		/* Hold the lock to make sure the head/tail
101 		 * doesn't change while spu_buff_add() is
102 		 * deciding if the buffer is full or not.
103 		 * Being a little paranoid.
104 		 */
105 		spin_lock_irqsave(&buffer_lock, flags);
106 		curr_head = spu_buff[spu].head;
107 		spin_unlock_irqrestore(&buffer_lock, flags);
108 
109 		/* Transfer the current contents to the kernel buffer.
110 		 * data can still be added to the head of the buffer.
111 		 */
112 		oprofile_put_buff(spu_buff[spu].buff,
113 				  spu_buff[spu].tail,
114 				  curr_head, max_spu_buff);
115 
116 		spin_lock_irqsave(&buffer_lock, flags);
117 		spu_buff[spu].tail = curr_head;
118 		spin_unlock_irqrestore(&buffer_lock, flags);
119 	}
120 
121 }
122 
wq_sync_spu_buff(struct work_struct * work)123 static void wq_sync_spu_buff(struct work_struct *work)
124 {
125 	/* move data from spu buffers to kernel buffer */
126 	sync_spu_buff();
127 
128 	/* only reschedule if profiling is not done */
129 	if (spu_prof_running)
130 		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
131 }
132 
133 /* Container for caching information about an active SPU task. */
134 struct cached_info {
135 	struct vma_to_fileoffset_map *map;
136 	struct spu *the_spu;	/* needed to access pointer to local_store */
137 	struct kref cache_ref;
138 };
139 
140 static struct cached_info *spu_info[MAX_NUMNODES * 8];
141 
destroy_cached_info(struct kref * kref)142 static void destroy_cached_info(struct kref *kref)
143 {
144 	struct cached_info *info;
145 
146 	info = container_of(kref, struct cached_info, cache_ref);
147 	vma_map_free(info->map);
148 	kfree(info);
149 	module_put(THIS_MODULE);
150 }
151 
152 /* Return the cached_info for the passed SPU number.
153  * ATTENTION:  Callers are responsible for obtaining the
154  *	       cache_lock if needed prior to invoking this function.
155  */
get_cached_info(struct spu * the_spu,int spu_num)156 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
157 {
158 	struct kref *ref;
159 	struct cached_info *ret_info;
160 
161 	if (spu_num >= num_spu_nodes) {
162 		printk(KERN_ERR "SPU_PROF: "
163 		       "%s, line %d: Invalid index %d into spu info cache\n",
164 		       __func__, __LINE__, spu_num);
165 		ret_info = NULL;
166 		goto out;
167 	}
168 	if (!spu_info[spu_num] && the_spu) {
169 		ref = spu_get_profile_private_kref(the_spu->ctx);
170 		if (ref) {
171 			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
172 			kref_get(&spu_info[spu_num]->cache_ref);
173 		}
174 	}
175 
176 	ret_info = spu_info[spu_num];
177  out:
178 	return ret_info;
179 }
180 
181 
182 /* Looks for cached info for the passed spu.  If not found, the
183  * cached info is created for the passed spu.
184  * Returns 0 for success; otherwise, -1 for error.
185  */
186 static int
prepare_cached_spu_info(struct spu * spu,unsigned long objectId)187 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
188 {
189 	unsigned long flags;
190 	struct vma_to_fileoffset_map *new_map;
191 	int retval = 0;
192 	struct cached_info *info;
193 
194 	/* We won't bother getting cache_lock here since
195 	 * don't do anything with the cached_info that's returned.
196 	 */
197 	info = get_cached_info(spu, spu->number);
198 
199 	if (info) {
200 		pr_debug("Found cached SPU info.\n");
201 		goto out;
202 	}
203 
204 	/* Create cached_info and set spu_info[spu->number] to point to it.
205 	 * spu->number is a system-wide value, not a per-node value.
206 	 */
207 	info = kzalloc(sizeof(*info), GFP_KERNEL);
208 	if (!info) {
209 		printk(KERN_ERR "SPU_PROF: "
210 		       "%s, line %d: create vma_map failed\n",
211 		       __func__, __LINE__);
212 		retval = -ENOMEM;
213 		goto err_alloc;
214 	}
215 	new_map = create_vma_map(spu, objectId);
216 	if (!new_map) {
217 		printk(KERN_ERR "SPU_PROF: "
218 		       "%s, line %d: create vma_map failed\n",
219 		       __func__, __LINE__);
220 		retval = -ENOMEM;
221 		goto err_alloc;
222 	}
223 
224 	pr_debug("Created vma_map\n");
225 	info->map = new_map;
226 	info->the_spu = spu;
227 	kref_init(&info->cache_ref);
228 	spin_lock_irqsave(&cache_lock, flags);
229 	spu_info[spu->number] = info;
230 	/* Increment count before passing off ref to SPUFS. */
231 	kref_get(&info->cache_ref);
232 
233 	/* We increment the module refcount here since SPUFS is
234 	 * responsible for the final destruction of the cached_info,
235 	 * and it must be able to access the destroy_cached_info()
236 	 * function defined in the OProfile module.  We decrement
237 	 * the module refcount in destroy_cached_info.
238 	 */
239 	try_module_get(THIS_MODULE);
240 	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
241 				destroy_cached_info);
242 	spin_unlock_irqrestore(&cache_lock, flags);
243 	goto out;
244 
245 err_alloc:
246 	kfree(info);
247 out:
248 	return retval;
249 }
250 
251 /*
252  * NOTE:  The caller is responsible for locking the
253  *	  cache_lock prior to calling this function.
254  */
release_cached_info(int spu_index)255 static int release_cached_info(int spu_index)
256 {
257 	int index, end;
258 
259 	if (spu_index == RELEASE_ALL) {
260 		end = num_spu_nodes;
261 		index = 0;
262 	} else {
263 		if (spu_index >= num_spu_nodes) {
264 			printk(KERN_ERR "SPU_PROF: "
265 				"%s, line %d: "
266 				"Invalid index %d into spu info cache\n",
267 				__func__, __LINE__, spu_index);
268 			goto out;
269 		}
270 		end = spu_index + 1;
271 		index = spu_index;
272 	}
273 	for (; index < end; index++) {
274 		if (spu_info[index]) {
275 			kref_put(&spu_info[index]->cache_ref,
276 				 destroy_cached_info);
277 			spu_info[index] = NULL;
278 		}
279 	}
280 
281 out:
282 	return 0;
283 }
284 
285 /* The source code for fast_get_dcookie was "borrowed"
286  * from drivers/oprofile/buffer_sync.c.
287  */
288 
289 /* Optimisation. We can manage without taking the dcookie sem
290  * because we cannot reach this code without at least one
291  * dcookie user still being registered (namely, the reader
292  * of the event buffer).
293  */
fast_get_dcookie(const struct path * path)294 static inline unsigned long fast_get_dcookie(const struct path *path)
295 {
296 	unsigned long cookie;
297 
298 	if (path->dentry->d_flags & DCACHE_COOKIE)
299 		return (unsigned long)path->dentry;
300 	get_dcookie(path, &cookie);
301 	return cookie;
302 }
303 
304 /* Look up the dcookie for the task's mm->exe_file,
305  * which corresponds loosely to "application name". Also, determine
306  * the offset for the SPU ELF object.  If computed offset is
307  * non-zero, it implies an embedded SPU object; otherwise, it's a
308  * separate SPU binary, in which case we retrieve it's dcookie.
309  * For the embedded case, we must determine if SPU ELF is embedded
310  * in the executable application or another file (i.e., shared lib).
311  * If embedded in a shared lib, we must get the dcookie and return
312  * that to the caller.
313  */
314 static unsigned long
get_exec_dcookie_and_offset(struct spu * spu,unsigned int * offsetp,unsigned long * spu_bin_dcookie,unsigned long spu_ref)315 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
316 			    unsigned long *spu_bin_dcookie,
317 			    unsigned long spu_ref)
318 {
319 	unsigned long app_cookie = 0;
320 	unsigned int my_offset = 0;
321 	struct vm_area_struct *vma;
322 	struct file *exe_file;
323 	struct mm_struct *mm = spu->mm;
324 
325 	if (!mm)
326 		goto out;
327 
328 	exe_file = get_mm_exe_file(mm);
329 	if (exe_file) {
330 		app_cookie = fast_get_dcookie(&exe_file->f_path);
331 		pr_debug("got dcookie for %pD\n", exe_file);
332 		fput(exe_file);
333 	}
334 
335 	mmap_read_lock(mm);
336 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
337 		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
338 			continue;
339 		my_offset = spu_ref - vma->vm_start;
340 		if (!vma->vm_file)
341 			goto fail_no_image_cookie;
342 
343 		pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
344 			 my_offset, spu_ref, vma->vm_file);
345 		*offsetp = my_offset;
346 		break;
347 	}
348 
349 	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
350 	pr_debug("got dcookie for %pD\n", vma->vm_file);
351 
352 	mmap_read_unlock(mm);
353 
354 out:
355 	return app_cookie;
356 
357 fail_no_image_cookie:
358 	mmap_read_unlock(mm);
359 
360 	printk(KERN_ERR "SPU_PROF: "
361 		"%s, line %d: Cannot find dcookie for SPU binary\n",
362 		__func__, __LINE__);
363 	goto out;
364 }
365 
366 
367 
368 /* This function finds or creates cached context information for the
369  * passed SPU and records SPU context information into the OProfile
370  * event buffer.
371  */
process_context_switch(struct spu * spu,unsigned long objectId)372 static int process_context_switch(struct spu *spu, unsigned long objectId)
373 {
374 	unsigned long flags;
375 	int retval;
376 	unsigned int offset = 0;
377 	unsigned long spu_cookie = 0, app_dcookie;
378 
379 	retval = prepare_cached_spu_info(spu, objectId);
380 	if (retval)
381 		goto out;
382 
383 	/* Get dcookie first because a mutex_lock is taken in that
384 	 * code path, so interrupts must not be disabled.
385 	 */
386 	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
387 	if (!app_dcookie || !spu_cookie) {
388 		retval  = -ENOENT;
389 		goto out;
390 	}
391 
392 	/* Record context info in event buffer */
393 	spin_lock_irqsave(&buffer_lock, flags);
394 	spu_buff_add(ESCAPE_CODE, spu->number);
395 	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
396 	spu_buff_add(spu->number, spu->number);
397 	spu_buff_add(spu->pid, spu->number);
398 	spu_buff_add(spu->tgid, spu->number);
399 	spu_buff_add(app_dcookie, spu->number);
400 	spu_buff_add(spu_cookie, spu->number);
401 	spu_buff_add(offset, spu->number);
402 
403 	/* Set flag to indicate SPU PC data can now be written out.  If
404 	 * the SPU program counter data is seen before an SPU context
405 	 * record is seen, the postprocessing will fail.
406 	 */
407 	spu_buff[spu->number].ctx_sw_seen = 1;
408 
409 	spin_unlock_irqrestore(&buffer_lock, flags);
410 	smp_wmb();	/* insure spu event buffer updates are written */
411 			/* don't want entries intermingled... */
412 out:
413 	return retval;
414 }
415 
416 /*
417  * This function is invoked on either a bind_context or unbind_context.
418  * If called for an unbind_context, the val arg is 0; otherwise,
419  * it is the object-id value for the spu context.
420  * The data arg is of type 'struct spu *'.
421  */
spu_active_notify(struct notifier_block * self,unsigned long val,void * data)422 static int spu_active_notify(struct notifier_block *self, unsigned long val,
423 				void *data)
424 {
425 	int retval;
426 	unsigned long flags;
427 	struct spu *the_spu = data;
428 
429 	pr_debug("SPU event notification arrived\n");
430 	if (!val) {
431 		spin_lock_irqsave(&cache_lock, flags);
432 		retval = release_cached_info(the_spu->number);
433 		spin_unlock_irqrestore(&cache_lock, flags);
434 	} else {
435 		retval = process_context_switch(the_spu, val);
436 	}
437 	return retval;
438 }
439 
440 static struct notifier_block spu_active = {
441 	.notifier_call = spu_active_notify,
442 };
443 
number_of_online_nodes(void)444 static int number_of_online_nodes(void)
445 {
446         u32 cpu; u32 tmp;
447         int nodes = 0;
448         for_each_online_cpu(cpu) {
449                 tmp = cbe_cpu_to_node(cpu) + 1;
450                 if (tmp > nodes)
451                         nodes++;
452         }
453         return nodes;
454 }
455 
oprofile_spu_buff_create(void)456 static int oprofile_spu_buff_create(void)
457 {
458 	int spu;
459 
460 	max_spu_buff = oprofile_get_cpu_buffer_size();
461 
462 	for (spu = 0; spu < num_spu_nodes; spu++) {
463 		/* create circular buffers to store the data in.
464 		 * use locks to manage accessing the buffers
465 		 */
466 		spu_buff[spu].head = 0;
467 		spu_buff[spu].tail = 0;
468 
469 		/*
470 		 * Create a buffer for each SPU.  Can't reliably
471 		 * create a single buffer for all spus due to not
472 		 * enough contiguous kernel memory.
473 		 */
474 
475 		spu_buff[spu].buff = kzalloc((max_spu_buff
476 					      * sizeof(unsigned long)),
477 					     GFP_KERNEL);
478 
479 		if (!spu_buff[spu].buff) {
480 			printk(KERN_ERR "SPU_PROF: "
481 			       "%s, line %d:  oprofile_spu_buff_create "
482 		       "failed to allocate spu buffer %d.\n",
483 			       __func__, __LINE__, spu);
484 
485 			/* release the spu buffers that have been allocated */
486 			while (spu >= 0) {
487 				kfree(spu_buff[spu].buff);
488 				spu_buff[spu].buff = 0;
489 				spu--;
490 			}
491 			return -ENOMEM;
492 		}
493 	}
494 	return 0;
495 }
496 
497 /* The main purpose of this function is to synchronize
498  * OProfile with SPUFS by registering to be notified of
499  * SPU task switches.
500  *
501  * NOTE: When profiling SPUs, we must ensure that only
502  * spu_sync_start is invoked and not the generic sync_start
503  * in drivers/oprofile/oprof.c.	 A return value of
504  * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
505  * accomplish this.
506  */
spu_sync_start(void)507 int spu_sync_start(void)
508 {
509 	int spu;
510 	int ret = SKIP_GENERIC_SYNC;
511 	int register_ret;
512 	unsigned long flags = 0;
513 
514 	spu_prof_num_nodes = number_of_online_nodes();
515 	num_spu_nodes = spu_prof_num_nodes * 8;
516 	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
517 
518 	/* create buffer for storing the SPU data to put in
519 	 * the kernel buffer.
520 	 */
521 	ret = oprofile_spu_buff_create();
522 	if (ret)
523 		goto out;
524 
525 	spin_lock_irqsave(&buffer_lock, flags);
526 	for (spu = 0; spu < num_spu_nodes; spu++) {
527 		spu_buff_add(ESCAPE_CODE, spu);
528 		spu_buff_add(SPU_PROFILING_CODE, spu);
529 		spu_buff_add(num_spu_nodes, spu);
530 	}
531 	spin_unlock_irqrestore(&buffer_lock, flags);
532 
533 	for (spu = 0; spu < num_spu_nodes; spu++) {
534 		spu_buff[spu].ctx_sw_seen = 0;
535 		spu_buff[spu].last_guard_val = 0;
536 	}
537 
538 	/* Register for SPU events  */
539 	register_ret = spu_switch_event_register(&spu_active);
540 	if (register_ret) {
541 		ret = SYNC_START_ERROR;
542 		goto out;
543 	}
544 
545 	pr_debug("spu_sync_start -- running.\n");
546 out:
547 	return ret;
548 }
549 
550 /* Record SPU program counter samples to the oprofile event buffer. */
spu_sync_buffer(int spu_num,unsigned int * samples,int num_samples)551 void spu_sync_buffer(int spu_num, unsigned int *samples,
552 		     int num_samples)
553 {
554 	unsigned long long file_offset;
555 	unsigned long flags;
556 	int i;
557 	struct vma_to_fileoffset_map *map;
558 	struct spu *the_spu;
559 	unsigned long long spu_num_ll = spu_num;
560 	unsigned long long spu_num_shifted = spu_num_ll << 32;
561 	struct cached_info *c_info;
562 
563 	/* We need to obtain the cache_lock here because it's
564 	 * possible that after getting the cached_info, the SPU job
565 	 * corresponding to this cached_info may end, thus resulting
566 	 * in the destruction of the cached_info.
567 	 */
568 	spin_lock_irqsave(&cache_lock, flags);
569 	c_info = get_cached_info(NULL, spu_num);
570 	if (!c_info) {
571 		/* This legitimately happens when the SPU task ends before all
572 		 * samples are recorded.
573 		 * No big deal -- so we just drop a few samples.
574 		 */
575 		pr_debug("SPU_PROF: No cached SPU context "
576 			  "for SPU #%d. Dropping samples.\n", spu_num);
577 		goto out;
578 	}
579 
580 	map = c_info->map;
581 	the_spu = c_info->the_spu;
582 	spin_lock(&buffer_lock);
583 	for (i = 0; i < num_samples; i++) {
584 		unsigned int sample = *(samples+i);
585 		int grd_val = 0;
586 		file_offset = 0;
587 		if (sample == 0)
588 			continue;
589 		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
590 
591 		/* If overlays are used by this SPU application, the guard
592 		 * value is non-zero, indicating which overlay section is in
593 		 * use.	 We need to discard samples taken during the time
594 		 * period which an overlay occurs (i.e., guard value changes).
595 		 */
596 		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
597 			spu_buff[spu_num].last_guard_val = grd_val;
598 			/* Drop the rest of the samples. */
599 			break;
600 		}
601 
602 		/* We must ensure that the SPU context switch has been written
603 		 * out before samples for the SPU.  Otherwise, the SPU context
604 		 * information is not available and the postprocessing of the
605 		 * SPU PC will fail with no available anonymous map information.
606 		 */
607 		if (spu_buff[spu_num].ctx_sw_seen)
608 			spu_buff_add((file_offset | spu_num_shifted),
609 					 spu_num);
610 	}
611 	spin_unlock(&buffer_lock);
612 out:
613 	spin_unlock_irqrestore(&cache_lock, flags);
614 }
615 
616 
spu_sync_stop(void)617 int spu_sync_stop(void)
618 {
619 	unsigned long flags = 0;
620 	int ret;
621 	int k;
622 
623 	ret = spu_switch_event_unregister(&spu_active);
624 
625 	if (ret)
626 		printk(KERN_ERR "SPU_PROF: "
627 		       "%s, line %d: spu_switch_event_unregister "	\
628 		       "returned %d\n",
629 		       __func__, __LINE__, ret);
630 
631 	/* flush any remaining data in the per SPU buffers */
632 	sync_spu_buff();
633 
634 	spin_lock_irqsave(&cache_lock, flags);
635 	ret = release_cached_info(RELEASE_ALL);
636 	spin_unlock_irqrestore(&cache_lock, flags);
637 
638 	/* remove scheduled work queue item rather then waiting
639 	 * for every queued entry to execute.  Then flush pending
640 	 * system wide buffer to event buffer.
641 	 */
642 	cancel_delayed_work(&spu_work);
643 
644 	for (k = 0; k < num_spu_nodes; k++) {
645 		spu_buff[k].ctx_sw_seen = 0;
646 
647 		/*
648 		 * spu_sys_buff will be null if there was a problem
649 		 * allocating the buffer.  Only delete if it exists.
650 		 */
651 		kfree(spu_buff[k].buff);
652 		spu_buff[k].buff = 0;
653 	}
654 	pr_debug("spu_sync_stop -- done.\n");
655 	return ret;
656 }
657 
658