1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Support for Intel AES-NI instructions. This file contains glue
4 * code, the real AES implementation is in intel-aes_asm.S.
5 *
6 * Copyright (C) 2008, Intel Corp.
7 * Author: Huang Ying <ying.huang@intel.com>
8 *
9 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10 * interface for 64-bit kernels.
11 * Authors: Adrian Hoban <adrian.hoban@intel.com>
12 * Gabriele Paoloni <gabriele.paoloni@intel.com>
13 * Tadeusz Struk (tadeusz.struk@intel.com)
14 * Aidan O'Mahony (aidan.o.mahony@intel.com)
15 * Copyright (c) 2010, Intel Corporation.
16 */
17
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
36 #ifdef CONFIG_X86_64
37 #include <asm/crypto/glue_helper.h>
38 #endif
39
40
41 #define AESNI_ALIGN 16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
44 #define RFC4106_HASH_SUBKEY_SIZE 16
45 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
46 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
47 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
48
49 /* This data is stored at the end of the crypto_tfm struct.
50 * It's a type of per "session" data storage location.
51 * This needs to be 16 byte aligned.
52 */
53 struct aesni_rfc4106_gcm_ctx {
54 u8 hash_subkey[16] AESNI_ALIGN_ATTR;
55 struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
56 u8 nonce[4];
57 };
58
59 struct generic_gcmaes_ctx {
60 u8 hash_subkey[16] AESNI_ALIGN_ATTR;
61 struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
62 };
63
64 struct aesni_xts_ctx {
65 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 };
68
69 #define GCM_BLOCK_LEN 16
70
71 struct gcm_context_data {
72 /* init, update and finalize context data */
73 u8 aad_hash[GCM_BLOCK_LEN];
74 u64 aad_length;
75 u64 in_length;
76 u8 partial_block_enc_key[GCM_BLOCK_LEN];
77 u8 orig_IV[GCM_BLOCK_LEN];
78 u8 current_counter[GCM_BLOCK_LEN];
79 u64 partial_block_len;
80 u64 unused;
81 u8 hash_keys[GCM_BLOCK_LEN * 16];
82 };
83
84 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
85 unsigned int key_len);
86 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
87 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
88 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 const u8 *in, unsigned int len);
90 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 const u8 *in, unsigned int len);
92 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 const u8 *in, unsigned int len, u8 *iv);
96
97 #define AVX_GEN2_OPTSIZE 640
98 #define AVX_GEN4_OPTSIZE 4096
99
100 asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
101 const u8 *in, unsigned int len, u8 *iv);
102
103 asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
104 const u8 *in, unsigned int len, u8 *iv);
105
106 #ifdef CONFIG_X86_64
107
108 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
109 const u8 *in, unsigned int len, u8 *iv);
110 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
111 const u8 *in, unsigned int len, u8 *iv);
112
113 /* asmlinkage void aesni_gcm_enc()
114 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
115 * struct gcm_context_data. May be uninitialized.
116 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117 * const u8 *in, Plaintext input
118 * unsigned long plaintext_len, Length of data in bytes for encryption.
119 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
120 * 16-byte aligned pointer.
121 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
122 * const u8 *aad, Additional Authentication Data (AAD)
123 * unsigned long aad_len, Length of AAD in bytes.
124 * u8 *auth_tag, Authenticated Tag output.
125 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
126 * Valid values are 16 (most likely), 12 or 8.
127 */
128 asmlinkage void aesni_gcm_enc(void *ctx,
129 struct gcm_context_data *gdata, u8 *out,
130 const u8 *in, unsigned long plaintext_len, u8 *iv,
131 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
132 u8 *auth_tag, unsigned long auth_tag_len);
133
134 /* asmlinkage void aesni_gcm_dec()
135 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
136 * struct gcm_context_data. May be uninitialized.
137 * u8 *out, Plaintext output. Decrypt in-place is allowed.
138 * const u8 *in, Ciphertext input
139 * unsigned long ciphertext_len, Length of data in bytes for decryption.
140 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
141 * 16-byte aligned pointer.
142 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
143 * const u8 *aad, Additional Authentication Data (AAD)
144 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
145 * to be 8 or 12 bytes
146 * u8 *auth_tag, Authenticated Tag output.
147 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
148 * Valid values are 16 (most likely), 12 or 8.
149 */
150 asmlinkage void aesni_gcm_dec(void *ctx,
151 struct gcm_context_data *gdata, u8 *out,
152 const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 u8 *auth_tag, unsigned long auth_tag_len);
155
156 /* Scatter / Gather routines, with args similar to above */
157 asmlinkage void aesni_gcm_init(void *ctx,
158 struct gcm_context_data *gdata,
159 u8 *iv,
160 u8 *hash_subkey, const u8 *aad,
161 unsigned long aad_len);
162 asmlinkage void aesni_gcm_enc_update(void *ctx,
163 struct gcm_context_data *gdata, u8 *out,
164 const u8 *in, unsigned long plaintext_len);
165 asmlinkage void aesni_gcm_dec_update(void *ctx,
166 struct gcm_context_data *gdata, u8 *out,
167 const u8 *in,
168 unsigned long ciphertext_len);
169 asmlinkage void aesni_gcm_finalize(void *ctx,
170 struct gcm_context_data *gdata,
171 u8 *auth_tag, unsigned long auth_tag_len);
172
173 static const struct aesni_gcm_tfm_s {
174 void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
175 u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
176 void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
177 const u8 *in, unsigned long plaintext_len);
178 void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
179 const u8 *in, unsigned long ciphertext_len);
180 void (*finalize)(void *ctx, struct gcm_context_data *gdata,
181 u8 *auth_tag, unsigned long auth_tag_len);
182 } *aesni_gcm_tfm;
183
184 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
185 .init = &aesni_gcm_init,
186 .enc_update = &aesni_gcm_enc_update,
187 .dec_update = &aesni_gcm_dec_update,
188 .finalize = &aesni_gcm_finalize,
189 };
190
191 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
192 void *keys, u8 *out, unsigned int num_bytes);
193 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
194 void *keys, u8 *out, unsigned int num_bytes);
195 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
196 void *keys, u8 *out, unsigned int num_bytes);
197 /*
198 * asmlinkage void aesni_gcm_init_avx_gen2()
199 * gcm_data *my_ctx_data, context data
200 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
201 */
202 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
203 struct gcm_context_data *gdata,
204 u8 *iv,
205 u8 *hash_subkey,
206 const u8 *aad,
207 unsigned long aad_len);
208
209 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
210 struct gcm_context_data *gdata, u8 *out,
211 const u8 *in, unsigned long plaintext_len);
212 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
213 struct gcm_context_data *gdata, u8 *out,
214 const u8 *in,
215 unsigned long ciphertext_len);
216 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
217 struct gcm_context_data *gdata,
218 u8 *auth_tag, unsigned long auth_tag_len);
219
220 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
221 struct gcm_context_data *gdata, u8 *out,
222 const u8 *in, unsigned long plaintext_len, u8 *iv,
223 const u8 *aad, unsigned long aad_len,
224 u8 *auth_tag, unsigned long auth_tag_len);
225
226 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
227 struct gcm_context_data *gdata, u8 *out,
228 const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 const u8 *aad, unsigned long aad_len,
230 u8 *auth_tag, unsigned long auth_tag_len);
231
232 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
233 .init = &aesni_gcm_init_avx_gen2,
234 .enc_update = &aesni_gcm_enc_update_avx_gen2,
235 .dec_update = &aesni_gcm_dec_update_avx_gen2,
236 .finalize = &aesni_gcm_finalize_avx_gen2,
237 };
238
239 /*
240 * asmlinkage void aesni_gcm_init_avx_gen4()
241 * gcm_data *my_ctx_data, context data
242 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
243 */
244 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
245 struct gcm_context_data *gdata,
246 u8 *iv,
247 u8 *hash_subkey,
248 const u8 *aad,
249 unsigned long aad_len);
250
251 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
252 struct gcm_context_data *gdata, u8 *out,
253 const u8 *in, unsigned long plaintext_len);
254 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
255 struct gcm_context_data *gdata, u8 *out,
256 const u8 *in,
257 unsigned long ciphertext_len);
258 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
259 struct gcm_context_data *gdata,
260 u8 *auth_tag, unsigned long auth_tag_len);
261
262 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
263 struct gcm_context_data *gdata, u8 *out,
264 const u8 *in, unsigned long plaintext_len, u8 *iv,
265 const u8 *aad, unsigned long aad_len,
266 u8 *auth_tag, unsigned long auth_tag_len);
267
268 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
269 struct gcm_context_data *gdata, u8 *out,
270 const u8 *in, unsigned long ciphertext_len, u8 *iv,
271 const u8 *aad, unsigned long aad_len,
272 u8 *auth_tag, unsigned long auth_tag_len);
273
274 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
275 .init = &aesni_gcm_init_avx_gen4,
276 .enc_update = &aesni_gcm_enc_update_avx_gen4,
277 .dec_update = &aesni_gcm_dec_update_avx_gen4,
278 .finalize = &aesni_gcm_finalize_avx_gen4,
279 };
280
281 static inline struct
aesni_rfc4106_gcm_ctx_get(struct crypto_aead * tfm)282 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
283 {
284 unsigned long align = AESNI_ALIGN;
285
286 if (align <= crypto_tfm_ctx_alignment())
287 align = 1;
288 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
289 }
290
291 static inline struct
generic_gcmaes_ctx_get(struct crypto_aead * tfm)292 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
293 {
294 unsigned long align = AESNI_ALIGN;
295
296 if (align <= crypto_tfm_ctx_alignment())
297 align = 1;
298 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
299 }
300 #endif
301
aes_ctx(void * raw_ctx)302 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
303 {
304 unsigned long addr = (unsigned long)raw_ctx;
305 unsigned long align = AESNI_ALIGN;
306
307 if (align <= crypto_tfm_ctx_alignment())
308 align = 1;
309 return (struct crypto_aes_ctx *)ALIGN(addr, align);
310 }
311
aes_set_key_common(struct crypto_tfm * tfm,void * raw_ctx,const u8 * in_key,unsigned int key_len)312 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
313 const u8 *in_key, unsigned int key_len)
314 {
315 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
316 int err;
317
318 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
319 key_len != AES_KEYSIZE_256)
320 return -EINVAL;
321
322 if (!crypto_simd_usable())
323 err = aes_expandkey(ctx, in_key, key_len);
324 else {
325 kernel_fpu_begin();
326 err = aesni_set_key(ctx, in_key, key_len);
327 kernel_fpu_end();
328 }
329
330 return err;
331 }
332
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)333 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
334 unsigned int key_len)
335 {
336 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
337 }
338
aesni_encrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)339 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
340 {
341 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
342
343 if (!crypto_simd_usable()) {
344 aes_encrypt(ctx, dst, src);
345 } else {
346 kernel_fpu_begin();
347 aesni_enc(ctx, dst, src);
348 kernel_fpu_end();
349 }
350 }
351
aesni_decrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)352 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
353 {
354 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
355
356 if (!crypto_simd_usable()) {
357 aes_decrypt(ctx, dst, src);
358 } else {
359 kernel_fpu_begin();
360 aesni_dec(ctx, dst, src);
361 kernel_fpu_end();
362 }
363 }
364
aesni_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)365 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
366 unsigned int len)
367 {
368 return aes_set_key_common(crypto_skcipher_tfm(tfm),
369 crypto_skcipher_ctx(tfm), key, len);
370 }
371
ecb_encrypt(struct skcipher_request * req)372 static int ecb_encrypt(struct skcipher_request *req)
373 {
374 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
375 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
376 struct skcipher_walk walk;
377 unsigned int nbytes;
378 int err;
379
380 err = skcipher_walk_virt(&walk, req, true);
381
382 kernel_fpu_begin();
383 while ((nbytes = walk.nbytes)) {
384 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
385 nbytes & AES_BLOCK_MASK);
386 nbytes &= AES_BLOCK_SIZE - 1;
387 err = skcipher_walk_done(&walk, nbytes);
388 }
389 kernel_fpu_end();
390
391 return err;
392 }
393
ecb_decrypt(struct skcipher_request * req)394 static int ecb_decrypt(struct skcipher_request *req)
395 {
396 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
397 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
398 struct skcipher_walk walk;
399 unsigned int nbytes;
400 int err;
401
402 err = skcipher_walk_virt(&walk, req, true);
403
404 kernel_fpu_begin();
405 while ((nbytes = walk.nbytes)) {
406 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
407 nbytes & AES_BLOCK_MASK);
408 nbytes &= AES_BLOCK_SIZE - 1;
409 err = skcipher_walk_done(&walk, nbytes);
410 }
411 kernel_fpu_end();
412
413 return err;
414 }
415
cbc_encrypt(struct skcipher_request * req)416 static int cbc_encrypt(struct skcipher_request *req)
417 {
418 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
419 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
420 struct skcipher_walk walk;
421 unsigned int nbytes;
422 int err;
423
424 err = skcipher_walk_virt(&walk, req, true);
425
426 kernel_fpu_begin();
427 while ((nbytes = walk.nbytes)) {
428 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
429 nbytes & AES_BLOCK_MASK, walk.iv);
430 nbytes &= AES_BLOCK_SIZE - 1;
431 err = skcipher_walk_done(&walk, nbytes);
432 }
433 kernel_fpu_end();
434
435 return err;
436 }
437
cbc_decrypt(struct skcipher_request * req)438 static int cbc_decrypt(struct skcipher_request *req)
439 {
440 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
441 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
442 struct skcipher_walk walk;
443 unsigned int nbytes;
444 int err;
445
446 err = skcipher_walk_virt(&walk, req, true);
447
448 kernel_fpu_begin();
449 while ((nbytes = walk.nbytes)) {
450 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
451 nbytes & AES_BLOCK_MASK, walk.iv);
452 nbytes &= AES_BLOCK_SIZE - 1;
453 err = skcipher_walk_done(&walk, nbytes);
454 }
455 kernel_fpu_end();
456
457 return err;
458 }
459
460 #ifdef CONFIG_X86_64
ctr_crypt_final(struct crypto_aes_ctx * ctx,struct skcipher_walk * walk)461 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
462 struct skcipher_walk *walk)
463 {
464 u8 *ctrblk = walk->iv;
465 u8 keystream[AES_BLOCK_SIZE];
466 u8 *src = walk->src.virt.addr;
467 u8 *dst = walk->dst.virt.addr;
468 unsigned int nbytes = walk->nbytes;
469
470 aesni_enc(ctx, keystream, ctrblk);
471 crypto_xor_cpy(dst, keystream, src, nbytes);
472
473 crypto_inc(ctrblk, AES_BLOCK_SIZE);
474 }
475
aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx * ctx,u8 * out,const u8 * in,unsigned int len,u8 * iv)476 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
477 const u8 *in, unsigned int len, u8 *iv)
478 {
479 /*
480 * based on key length, override with the by8 version
481 * of ctr mode encryption/decryption for improved performance
482 * aes_set_key_common() ensures that key length is one of
483 * {128,192,256}
484 */
485 if (ctx->key_length == AES_KEYSIZE_128)
486 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
487 else if (ctx->key_length == AES_KEYSIZE_192)
488 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
489 else
490 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
491 }
492
ctr_crypt(struct skcipher_request * req)493 static int ctr_crypt(struct skcipher_request *req)
494 {
495 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
496 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
497 struct skcipher_walk walk;
498 unsigned int nbytes;
499 int err;
500
501 err = skcipher_walk_virt(&walk, req, true);
502
503 kernel_fpu_begin();
504 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
505 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
506 nbytes & AES_BLOCK_MASK, walk.iv);
507 nbytes &= AES_BLOCK_SIZE - 1;
508 err = skcipher_walk_done(&walk, nbytes);
509 }
510 if (walk.nbytes) {
511 ctr_crypt_final(ctx, &walk);
512 err = skcipher_walk_done(&walk, 0);
513 }
514 kernel_fpu_end();
515
516 return err;
517 }
518
xts_aesni_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)519 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
520 unsigned int keylen)
521 {
522 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
523 int err;
524
525 err = xts_verify_key(tfm, key, keylen);
526 if (err)
527 return err;
528
529 keylen /= 2;
530
531 /* first half of xts-key is for crypt */
532 err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
533 key, keylen);
534 if (err)
535 return err;
536
537 /* second half of xts-key is for tweak */
538 return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
539 key + keylen, keylen);
540 }
541
542
aesni_xts_enc(const void * ctx,u8 * dst,const u8 * src,le128 * iv)543 static void aesni_xts_enc(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
544 {
545 glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_enc);
546 }
547
aesni_xts_dec(const void * ctx,u8 * dst,const u8 * src,le128 * iv)548 static void aesni_xts_dec(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
549 {
550 glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_dec);
551 }
552
aesni_xts_enc32(const void * ctx,u8 * dst,const u8 * src,le128 * iv)553 static void aesni_xts_enc32(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
554 {
555 aesni_xts_encrypt(ctx, dst, src, 32 * AES_BLOCK_SIZE, (u8 *)iv);
556 }
557
aesni_xts_dec32(const void * ctx,u8 * dst,const u8 * src,le128 * iv)558 static void aesni_xts_dec32(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
559 {
560 aesni_xts_decrypt(ctx, dst, src, 32 * AES_BLOCK_SIZE, (u8 *)iv);
561 }
562
563 static const struct common_glue_ctx aesni_enc_xts = {
564 .num_funcs = 2,
565 .fpu_blocks_limit = 1,
566
567 .funcs = { {
568 .num_blocks = 32,
569 .fn_u = { .xts = aesni_xts_enc32 }
570 }, {
571 .num_blocks = 1,
572 .fn_u = { .xts = aesni_xts_enc }
573 } }
574 };
575
576 static const struct common_glue_ctx aesni_dec_xts = {
577 .num_funcs = 2,
578 .fpu_blocks_limit = 1,
579
580 .funcs = { {
581 .num_blocks = 32,
582 .fn_u = { .xts = aesni_xts_dec32 }
583 }, {
584 .num_blocks = 1,
585 .fn_u = { .xts = aesni_xts_dec }
586 } }
587 };
588
xts_encrypt(struct skcipher_request * req)589 static int xts_encrypt(struct skcipher_request *req)
590 {
591 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
592 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
593
594 return glue_xts_req_128bit(&aesni_enc_xts, req, aesni_enc,
595 aes_ctx(ctx->raw_tweak_ctx),
596 aes_ctx(ctx->raw_crypt_ctx),
597 false);
598 }
599
xts_decrypt(struct skcipher_request * req)600 static int xts_decrypt(struct skcipher_request *req)
601 {
602 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
603 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
604
605 return glue_xts_req_128bit(&aesni_dec_xts, req, aesni_enc,
606 aes_ctx(ctx->raw_tweak_ctx),
607 aes_ctx(ctx->raw_crypt_ctx),
608 true);
609 }
610
611 static int
rfc4106_set_hash_subkey(u8 * hash_subkey,const u8 * key,unsigned int key_len)612 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
613 {
614 struct crypto_aes_ctx ctx;
615 int ret;
616
617 ret = aes_expandkey(&ctx, key, key_len);
618 if (ret)
619 return ret;
620
621 /* Clear the data in the hash sub key container to zero.*/
622 /* We want to cipher all zeros to create the hash sub key. */
623 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
624
625 aes_encrypt(&ctx, hash_subkey, hash_subkey);
626
627 memzero_explicit(&ctx, sizeof(ctx));
628 return 0;
629 }
630
common_rfc4106_set_key(struct crypto_aead * aead,const u8 * key,unsigned int key_len)631 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
632 unsigned int key_len)
633 {
634 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
635
636 if (key_len < 4)
637 return -EINVAL;
638
639 /*Account for 4 byte nonce at the end.*/
640 key_len -= 4;
641
642 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
643
644 return aes_set_key_common(crypto_aead_tfm(aead),
645 &ctx->aes_key_expanded, key, key_len) ?:
646 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
647 }
648
649 /* This is the Integrity Check Value (aka the authentication tag) length and can
650 * be 8, 12 or 16 bytes long. */
common_rfc4106_set_authsize(struct crypto_aead * aead,unsigned int authsize)651 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
652 unsigned int authsize)
653 {
654 switch (authsize) {
655 case 8:
656 case 12:
657 case 16:
658 break;
659 default:
660 return -EINVAL;
661 }
662
663 return 0;
664 }
665
generic_gcmaes_set_authsize(struct crypto_aead * tfm,unsigned int authsize)666 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
667 unsigned int authsize)
668 {
669 switch (authsize) {
670 case 4:
671 case 8:
672 case 12:
673 case 13:
674 case 14:
675 case 15:
676 case 16:
677 break;
678 default:
679 return -EINVAL;
680 }
681
682 return 0;
683 }
684
gcmaes_crypt_by_sg(bool enc,struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)685 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
686 unsigned int assoclen, u8 *hash_subkey,
687 u8 *iv, void *aes_ctx)
688 {
689 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
690 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
691 const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
692 u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8);
693 struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN);
694 struct scatter_walk dst_sg_walk = {};
695 unsigned long left = req->cryptlen;
696 unsigned long len, srclen, dstlen;
697 struct scatter_walk assoc_sg_walk;
698 struct scatter_walk src_sg_walk;
699 struct scatterlist src_start[2];
700 struct scatterlist dst_start[2];
701 struct scatterlist *src_sg;
702 struct scatterlist *dst_sg;
703 u8 *src, *dst, *assoc;
704 u8 *assocmem = NULL;
705 u8 authTag[16];
706
707 if (!enc)
708 left -= auth_tag_len;
709
710 if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
711 gcm_tfm = &aesni_gcm_tfm_avx_gen2;
712 if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
713 gcm_tfm = &aesni_gcm_tfm_sse;
714
715 /* Linearize assoc, if not already linear */
716 if (req->src->length >= assoclen && req->src->length &&
717 (!PageHighMem(sg_page(req->src)) ||
718 req->src->offset + req->src->length <= PAGE_SIZE)) {
719 scatterwalk_start(&assoc_sg_walk, req->src);
720 assoc = scatterwalk_map(&assoc_sg_walk);
721 } else {
722 /* assoc can be any length, so must be on heap */
723 assocmem = kmalloc(assoclen, GFP_ATOMIC);
724 if (unlikely(!assocmem))
725 return -ENOMEM;
726 assoc = assocmem;
727
728 scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
729 }
730
731 if (left) {
732 src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
733 scatterwalk_start(&src_sg_walk, src_sg);
734 if (req->src != req->dst) {
735 dst_sg = scatterwalk_ffwd(dst_start, req->dst,
736 req->assoclen);
737 scatterwalk_start(&dst_sg_walk, dst_sg);
738 }
739 }
740
741 kernel_fpu_begin();
742 gcm_tfm->init(aes_ctx, data, iv, hash_subkey, assoc, assoclen);
743 if (req->src != req->dst) {
744 while (left) {
745 src = scatterwalk_map(&src_sg_walk);
746 dst = scatterwalk_map(&dst_sg_walk);
747 srclen = scatterwalk_clamp(&src_sg_walk, left);
748 dstlen = scatterwalk_clamp(&dst_sg_walk, left);
749 len = min(srclen, dstlen);
750 if (len) {
751 if (enc)
752 gcm_tfm->enc_update(aes_ctx, data,
753 dst, src, len);
754 else
755 gcm_tfm->dec_update(aes_ctx, data,
756 dst, src, len);
757 }
758 left -= len;
759
760 scatterwalk_unmap(src);
761 scatterwalk_unmap(dst);
762 scatterwalk_advance(&src_sg_walk, len);
763 scatterwalk_advance(&dst_sg_walk, len);
764 scatterwalk_done(&src_sg_walk, 0, left);
765 scatterwalk_done(&dst_sg_walk, 1, left);
766 }
767 } else {
768 while (left) {
769 dst = src = scatterwalk_map(&src_sg_walk);
770 len = scatterwalk_clamp(&src_sg_walk, left);
771 if (len) {
772 if (enc)
773 gcm_tfm->enc_update(aes_ctx, data,
774 src, src, len);
775 else
776 gcm_tfm->dec_update(aes_ctx, data,
777 src, src, len);
778 }
779 left -= len;
780 scatterwalk_unmap(src);
781 scatterwalk_advance(&src_sg_walk, len);
782 scatterwalk_done(&src_sg_walk, 1, left);
783 }
784 }
785 gcm_tfm->finalize(aes_ctx, data, authTag, auth_tag_len);
786 kernel_fpu_end();
787
788 if (!assocmem)
789 scatterwalk_unmap(assoc);
790 else
791 kfree(assocmem);
792
793 if (!enc) {
794 u8 authTagMsg[16];
795
796 /* Copy out original authTag */
797 scatterwalk_map_and_copy(authTagMsg, req->src,
798 req->assoclen + req->cryptlen -
799 auth_tag_len,
800 auth_tag_len, 0);
801
802 /* Compare generated tag with passed in tag. */
803 return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
804 -EBADMSG : 0;
805 }
806
807 /* Copy in the authTag */
808 scatterwalk_map_and_copy(authTag, req->dst,
809 req->assoclen + req->cryptlen,
810 auth_tag_len, 1);
811
812 return 0;
813 }
814
gcmaes_encrypt(struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)815 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
816 u8 *hash_subkey, u8 *iv, void *aes_ctx)
817 {
818 return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
819 aes_ctx);
820 }
821
gcmaes_decrypt(struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)822 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
823 u8 *hash_subkey, u8 *iv, void *aes_ctx)
824 {
825 return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
826 aes_ctx);
827 }
828
helper_rfc4106_encrypt(struct aead_request * req)829 static int helper_rfc4106_encrypt(struct aead_request *req)
830 {
831 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
832 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
833 void *aes_ctx = &(ctx->aes_key_expanded);
834 u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
835 u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
836 unsigned int i;
837 __be32 counter = cpu_to_be32(1);
838
839 /* Assuming we are supporting rfc4106 64-bit extended */
840 /* sequence numbers We need to have the AAD length equal */
841 /* to 16 or 20 bytes */
842 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
843 return -EINVAL;
844
845 /* IV below built */
846 for (i = 0; i < 4; i++)
847 *(iv+i) = ctx->nonce[i];
848 for (i = 0; i < 8; i++)
849 *(iv+4+i) = req->iv[i];
850 *((__be32 *)(iv+12)) = counter;
851
852 return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
853 aes_ctx);
854 }
855
helper_rfc4106_decrypt(struct aead_request * req)856 static int helper_rfc4106_decrypt(struct aead_request *req)
857 {
858 __be32 counter = cpu_to_be32(1);
859 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
860 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
861 void *aes_ctx = &(ctx->aes_key_expanded);
862 u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
863 u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
864 unsigned int i;
865
866 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
867 return -EINVAL;
868
869 /* Assuming we are supporting rfc4106 64-bit extended */
870 /* sequence numbers We need to have the AAD length */
871 /* equal to 16 or 20 bytes */
872
873 /* IV below built */
874 for (i = 0; i < 4; i++)
875 *(iv+i) = ctx->nonce[i];
876 for (i = 0; i < 8; i++)
877 *(iv+4+i) = req->iv[i];
878 *((__be32 *)(iv+12)) = counter;
879
880 return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
881 aes_ctx);
882 }
883 #endif
884
885 static struct crypto_alg aesni_cipher_alg = {
886 .cra_name = "aes",
887 .cra_driver_name = "aes-aesni",
888 .cra_priority = 300,
889 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
890 .cra_blocksize = AES_BLOCK_SIZE,
891 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
892 .cra_module = THIS_MODULE,
893 .cra_u = {
894 .cipher = {
895 .cia_min_keysize = AES_MIN_KEY_SIZE,
896 .cia_max_keysize = AES_MAX_KEY_SIZE,
897 .cia_setkey = aes_set_key,
898 .cia_encrypt = aesni_encrypt,
899 .cia_decrypt = aesni_decrypt
900 }
901 }
902 };
903
904 static struct skcipher_alg aesni_skciphers[] = {
905 {
906 .base = {
907 .cra_name = "__ecb(aes)",
908 .cra_driver_name = "__ecb-aes-aesni",
909 .cra_priority = 400,
910 .cra_flags = CRYPTO_ALG_INTERNAL,
911 .cra_blocksize = AES_BLOCK_SIZE,
912 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
913 .cra_module = THIS_MODULE,
914 },
915 .min_keysize = AES_MIN_KEY_SIZE,
916 .max_keysize = AES_MAX_KEY_SIZE,
917 .setkey = aesni_skcipher_setkey,
918 .encrypt = ecb_encrypt,
919 .decrypt = ecb_decrypt,
920 }, {
921 .base = {
922 .cra_name = "__cbc(aes)",
923 .cra_driver_name = "__cbc-aes-aesni",
924 .cra_priority = 400,
925 .cra_flags = CRYPTO_ALG_INTERNAL,
926 .cra_blocksize = AES_BLOCK_SIZE,
927 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
928 .cra_module = THIS_MODULE,
929 },
930 .min_keysize = AES_MIN_KEY_SIZE,
931 .max_keysize = AES_MAX_KEY_SIZE,
932 .ivsize = AES_BLOCK_SIZE,
933 .setkey = aesni_skcipher_setkey,
934 .encrypt = cbc_encrypt,
935 .decrypt = cbc_decrypt,
936 #ifdef CONFIG_X86_64
937 }, {
938 .base = {
939 .cra_name = "__ctr(aes)",
940 .cra_driver_name = "__ctr-aes-aesni",
941 .cra_priority = 400,
942 .cra_flags = CRYPTO_ALG_INTERNAL,
943 .cra_blocksize = 1,
944 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
945 .cra_module = THIS_MODULE,
946 },
947 .min_keysize = AES_MIN_KEY_SIZE,
948 .max_keysize = AES_MAX_KEY_SIZE,
949 .ivsize = AES_BLOCK_SIZE,
950 .chunksize = AES_BLOCK_SIZE,
951 .setkey = aesni_skcipher_setkey,
952 .encrypt = ctr_crypt,
953 .decrypt = ctr_crypt,
954 }, {
955 .base = {
956 .cra_name = "__xts(aes)",
957 .cra_driver_name = "__xts-aes-aesni",
958 .cra_priority = 401,
959 .cra_flags = CRYPTO_ALG_INTERNAL,
960 .cra_blocksize = AES_BLOCK_SIZE,
961 .cra_ctxsize = XTS_AES_CTX_SIZE,
962 .cra_module = THIS_MODULE,
963 },
964 .min_keysize = 2 * AES_MIN_KEY_SIZE,
965 .max_keysize = 2 * AES_MAX_KEY_SIZE,
966 .ivsize = AES_BLOCK_SIZE,
967 .setkey = xts_aesni_setkey,
968 .encrypt = xts_encrypt,
969 .decrypt = xts_decrypt,
970 #endif
971 }
972 };
973
974 static
975 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
976
977 #ifdef CONFIG_X86_64
generic_gcmaes_set_key(struct crypto_aead * aead,const u8 * key,unsigned int key_len)978 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
979 unsigned int key_len)
980 {
981 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
982
983 return aes_set_key_common(crypto_aead_tfm(aead),
984 &ctx->aes_key_expanded, key, key_len) ?:
985 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
986 }
987
generic_gcmaes_encrypt(struct aead_request * req)988 static int generic_gcmaes_encrypt(struct aead_request *req)
989 {
990 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
991 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
992 void *aes_ctx = &(ctx->aes_key_expanded);
993 u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
994 u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
995 __be32 counter = cpu_to_be32(1);
996
997 memcpy(iv, req->iv, 12);
998 *((__be32 *)(iv+12)) = counter;
999
1000 return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1001 aes_ctx);
1002 }
1003
generic_gcmaes_decrypt(struct aead_request * req)1004 static int generic_gcmaes_decrypt(struct aead_request *req)
1005 {
1006 __be32 counter = cpu_to_be32(1);
1007 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1008 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1009 void *aes_ctx = &(ctx->aes_key_expanded);
1010 u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
1011 u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
1012
1013 memcpy(iv, req->iv, 12);
1014 *((__be32 *)(iv+12)) = counter;
1015
1016 return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1017 aes_ctx);
1018 }
1019
1020 static struct aead_alg aesni_aeads[] = { {
1021 .setkey = common_rfc4106_set_key,
1022 .setauthsize = common_rfc4106_set_authsize,
1023 .encrypt = helper_rfc4106_encrypt,
1024 .decrypt = helper_rfc4106_decrypt,
1025 .ivsize = GCM_RFC4106_IV_SIZE,
1026 .maxauthsize = 16,
1027 .base = {
1028 .cra_name = "__rfc4106(gcm(aes))",
1029 .cra_driver_name = "__rfc4106-gcm-aesni",
1030 .cra_priority = 400,
1031 .cra_flags = CRYPTO_ALG_INTERNAL,
1032 .cra_blocksize = 1,
1033 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1034 .cra_alignmask = AESNI_ALIGN - 1,
1035 .cra_module = THIS_MODULE,
1036 },
1037 }, {
1038 .setkey = generic_gcmaes_set_key,
1039 .setauthsize = generic_gcmaes_set_authsize,
1040 .encrypt = generic_gcmaes_encrypt,
1041 .decrypt = generic_gcmaes_decrypt,
1042 .ivsize = GCM_AES_IV_SIZE,
1043 .maxauthsize = 16,
1044 .base = {
1045 .cra_name = "__gcm(aes)",
1046 .cra_driver_name = "__generic-gcm-aesni",
1047 .cra_priority = 400,
1048 .cra_flags = CRYPTO_ALG_INTERNAL,
1049 .cra_blocksize = 1,
1050 .cra_ctxsize = sizeof(struct generic_gcmaes_ctx),
1051 .cra_alignmask = AESNI_ALIGN - 1,
1052 .cra_module = THIS_MODULE,
1053 },
1054 } };
1055 #else
1056 static struct aead_alg aesni_aeads[0];
1057 #endif
1058
1059 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1060
1061 static const struct x86_cpu_id aesni_cpu_id[] = {
1062 X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1063 {}
1064 };
1065 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1066
aesni_init(void)1067 static int __init aesni_init(void)
1068 {
1069 int err;
1070
1071 if (!x86_match_cpu(aesni_cpu_id))
1072 return -ENODEV;
1073 #ifdef CONFIG_X86_64
1074 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1075 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1076 aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1077 } else
1078 if (boot_cpu_has(X86_FEATURE_AVX)) {
1079 pr_info("AVX version of gcm_enc/dec engaged.\n");
1080 aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1081 } else {
1082 pr_info("SSE version of gcm_enc/dec engaged.\n");
1083 aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1084 }
1085 aesni_ctr_enc_tfm = aesni_ctr_enc;
1086 if (boot_cpu_has(X86_FEATURE_AVX)) {
1087 /* optimize performance of ctr mode encryption transform */
1088 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1089 pr_info("AES CTR mode by8 optimization enabled\n");
1090 }
1091 #endif
1092
1093 err = crypto_register_alg(&aesni_cipher_alg);
1094 if (err)
1095 return err;
1096
1097 err = simd_register_skciphers_compat(aesni_skciphers,
1098 ARRAY_SIZE(aesni_skciphers),
1099 aesni_simd_skciphers);
1100 if (err)
1101 goto unregister_cipher;
1102
1103 err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1104 aesni_simd_aeads);
1105 if (err)
1106 goto unregister_skciphers;
1107
1108 return 0;
1109
1110 unregister_skciphers:
1111 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1112 aesni_simd_skciphers);
1113 unregister_cipher:
1114 crypto_unregister_alg(&aesni_cipher_alg);
1115 return err;
1116 }
1117
aesni_exit(void)1118 static void __exit aesni_exit(void)
1119 {
1120 simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1121 aesni_simd_aeads);
1122 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1123 aesni_simd_skciphers);
1124 crypto_unregister_alg(&aesni_cipher_alg);
1125 }
1126
1127 late_initcall(aesni_init);
1128 module_exit(aesni_exit);
1129
1130 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1131 MODULE_LICENSE("GPL");
1132 MODULE_ALIAS_CRYPTO("aes");
1133