1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 1991,1992 Linus Torvalds 4 * 5 * entry_32.S contains the system-call and low-level fault and trap handling routines. 6 * 7 * Stack layout while running C code: 8 * ptrace needs to have all registers on the stack. 9 * If the order here is changed, it needs to be 10 * updated in fork.c:copy_process(), signal.c:do_signal(), 11 * ptrace.c and ptrace.h 12 * 13 * 0(%esp) - %ebx 14 * 4(%esp) - %ecx 15 * 8(%esp) - %edx 16 * C(%esp) - %esi 17 * 10(%esp) - %edi 18 * 14(%esp) - %ebp 19 * 18(%esp) - %eax 20 * 1C(%esp) - %ds 21 * 20(%esp) - %es 22 * 24(%esp) - %fs 23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS 24 * 2C(%esp) - orig_eax 25 * 30(%esp) - %eip 26 * 34(%esp) - %cs 27 * 38(%esp) - %eflags 28 * 3C(%esp) - %oldesp 29 * 40(%esp) - %oldss 30 */ 31 32#include <linux/linkage.h> 33#include <linux/err.h> 34#include <asm/thread_info.h> 35#include <asm/irqflags.h> 36#include <asm/errno.h> 37#include <asm/segment.h> 38#include <asm/smp.h> 39#include <asm/percpu.h> 40#include <asm/processor-flags.h> 41#include <asm/irq_vectors.h> 42#include <asm/cpufeatures.h> 43#include <asm/alternative.h> 44#include <asm/asm.h> 45#include <asm/smap.h> 46#include <asm/frame.h> 47#include <asm/trapnr.h> 48#include <asm/nospec-branch.h> 49 50#include "calling.h" 51 52 .section .entry.text, "ax" 53 54#define PTI_SWITCH_MASK (1 << PAGE_SHIFT) 55 56/* 57 * User gs save/restore 58 * 59 * %gs is used for userland TLS and kernel only uses it for stack 60 * canary which is required to be at %gs:20 by gcc. Read the comment 61 * at the top of stackprotector.h for more info. 62 * 63 * Local labels 98 and 99 are used. 64 */ 65#ifdef CONFIG_X86_32_LAZY_GS 66 67 /* unfortunately push/pop can't be no-op */ 68.macro PUSH_GS 69 pushl $0 70.endm 71.macro POP_GS pop=0 72 addl $(4 + \pop), %esp 73.endm 74.macro POP_GS_EX 75.endm 76 77 /* all the rest are no-op */ 78.macro PTGS_TO_GS 79.endm 80.macro PTGS_TO_GS_EX 81.endm 82.macro GS_TO_REG reg 83.endm 84.macro REG_TO_PTGS reg 85.endm 86.macro SET_KERNEL_GS reg 87.endm 88 89#else /* CONFIG_X86_32_LAZY_GS */ 90 91.macro PUSH_GS 92 pushl %gs 93.endm 94 95.macro POP_GS pop=0 9698: popl %gs 97 .if \pop <> 0 98 add $\pop, %esp 99 .endif 100.endm 101.macro POP_GS_EX 102.pushsection .fixup, "ax" 10399: movl $0, (%esp) 104 jmp 98b 105.popsection 106 _ASM_EXTABLE(98b, 99b) 107.endm 108 109.macro PTGS_TO_GS 11098: mov PT_GS(%esp), %gs 111.endm 112.macro PTGS_TO_GS_EX 113.pushsection .fixup, "ax" 11499: movl $0, PT_GS(%esp) 115 jmp 98b 116.popsection 117 _ASM_EXTABLE(98b, 99b) 118.endm 119 120.macro GS_TO_REG reg 121 movl %gs, \reg 122.endm 123.macro REG_TO_PTGS reg 124 movl \reg, PT_GS(%esp) 125.endm 126.macro SET_KERNEL_GS reg 127 movl $(__KERNEL_STACK_CANARY), \reg 128 movl \reg, %gs 129.endm 130 131#endif /* CONFIG_X86_32_LAZY_GS */ 132 133/* Unconditionally switch to user cr3 */ 134.macro SWITCH_TO_USER_CR3 scratch_reg:req 135 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 136 137 movl %cr3, \scratch_reg 138 orl $PTI_SWITCH_MASK, \scratch_reg 139 movl \scratch_reg, %cr3 140.Lend_\@: 141.endm 142 143.macro BUG_IF_WRONG_CR3 no_user_check=0 144#ifdef CONFIG_DEBUG_ENTRY 145 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 146 .if \no_user_check == 0 147 /* coming from usermode? */ 148 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp) 149 jz .Lend_\@ 150 .endif 151 /* On user-cr3? */ 152 movl %cr3, %eax 153 testl $PTI_SWITCH_MASK, %eax 154 jnz .Lend_\@ 155 /* From userspace with kernel cr3 - BUG */ 156 ud2 157.Lend_\@: 158#endif 159.endm 160 161/* 162 * Switch to kernel cr3 if not already loaded and return current cr3 in 163 * \scratch_reg 164 */ 165.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req 166 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI 167 movl %cr3, \scratch_reg 168 /* Test if we are already on kernel CR3 */ 169 testl $PTI_SWITCH_MASK, \scratch_reg 170 jz .Lend_\@ 171 andl $(~PTI_SWITCH_MASK), \scratch_reg 172 movl \scratch_reg, %cr3 173 /* Return original CR3 in \scratch_reg */ 174 orl $PTI_SWITCH_MASK, \scratch_reg 175.Lend_\@: 176.endm 177 178#define CS_FROM_ENTRY_STACK (1 << 31) 179#define CS_FROM_USER_CR3 (1 << 30) 180#define CS_FROM_KERNEL (1 << 29) 181#define CS_FROM_ESPFIX (1 << 28) 182 183.macro FIXUP_FRAME 184 /* 185 * The high bits of the CS dword (__csh) are used for CS_FROM_*. 186 * Clear them in case hardware didn't do this for us. 187 */ 188 andl $0x0000ffff, 4*4(%esp) 189 190#ifdef CONFIG_VM86 191 testl $X86_EFLAGS_VM, 5*4(%esp) 192 jnz .Lfrom_usermode_no_fixup_\@ 193#endif 194 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp) 195 jnz .Lfrom_usermode_no_fixup_\@ 196 197 orl $CS_FROM_KERNEL, 4*4(%esp) 198 199 /* 200 * When we're here from kernel mode; the (exception) stack looks like: 201 * 202 * 6*4(%esp) - <previous context> 203 * 5*4(%esp) - flags 204 * 4*4(%esp) - cs 205 * 3*4(%esp) - ip 206 * 2*4(%esp) - orig_eax 207 * 1*4(%esp) - gs / function 208 * 0*4(%esp) - fs 209 * 210 * Lets build a 5 entry IRET frame after that, such that struct pt_regs 211 * is complete and in particular regs->sp is correct. This gives us 212 * the original 6 enties as gap: 213 * 214 * 14*4(%esp) - <previous context> 215 * 13*4(%esp) - gap / flags 216 * 12*4(%esp) - gap / cs 217 * 11*4(%esp) - gap / ip 218 * 10*4(%esp) - gap / orig_eax 219 * 9*4(%esp) - gap / gs / function 220 * 8*4(%esp) - gap / fs 221 * 7*4(%esp) - ss 222 * 6*4(%esp) - sp 223 * 5*4(%esp) - flags 224 * 4*4(%esp) - cs 225 * 3*4(%esp) - ip 226 * 2*4(%esp) - orig_eax 227 * 1*4(%esp) - gs / function 228 * 0*4(%esp) - fs 229 */ 230 231 pushl %ss # ss 232 pushl %esp # sp (points at ss) 233 addl $7*4, (%esp) # point sp back at the previous context 234 pushl 7*4(%esp) # flags 235 pushl 7*4(%esp) # cs 236 pushl 7*4(%esp) # ip 237 pushl 7*4(%esp) # orig_eax 238 pushl 7*4(%esp) # gs / function 239 pushl 7*4(%esp) # fs 240.Lfrom_usermode_no_fixup_\@: 241.endm 242 243.macro IRET_FRAME 244 /* 245 * We're called with %ds, %es, %fs, and %gs from the interrupted 246 * frame, so we shouldn't use them. Also, we may be in ESPFIX 247 * mode and therefore have a nonzero SS base and an offset ESP, 248 * so any attempt to access the stack needs to use SS. (except for 249 * accesses through %esp, which automatically use SS.) 250 */ 251 testl $CS_FROM_KERNEL, 1*4(%esp) 252 jz .Lfinished_frame_\@ 253 254 /* 255 * Reconstruct the 3 entry IRET frame right after the (modified) 256 * regs->sp without lowering %esp in between, such that an NMI in the 257 * middle doesn't scribble our stack. 258 */ 259 pushl %eax 260 pushl %ecx 261 movl 5*4(%esp), %eax # (modified) regs->sp 262 263 movl 4*4(%esp), %ecx # flags 264 movl %ecx, %ss:-1*4(%eax) 265 266 movl 3*4(%esp), %ecx # cs 267 andl $0x0000ffff, %ecx 268 movl %ecx, %ss:-2*4(%eax) 269 270 movl 2*4(%esp), %ecx # ip 271 movl %ecx, %ss:-3*4(%eax) 272 273 movl 1*4(%esp), %ecx # eax 274 movl %ecx, %ss:-4*4(%eax) 275 276 popl %ecx 277 lea -4*4(%eax), %esp 278 popl %eax 279.Lfinished_frame_\@: 280.endm 281 282.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0 283 cld 284.if \skip_gs == 0 285 PUSH_GS 286.endif 287 pushl %fs 288 289 pushl %eax 290 movl $(__KERNEL_PERCPU), %eax 291 movl %eax, %fs 292.if \unwind_espfix > 0 293 UNWIND_ESPFIX_STACK 294.endif 295 popl %eax 296 297 FIXUP_FRAME 298 pushl %es 299 pushl %ds 300 pushl \pt_regs_ax 301 pushl %ebp 302 pushl %edi 303 pushl %esi 304 pushl %edx 305 pushl %ecx 306 pushl %ebx 307 movl $(__USER_DS), %edx 308 movl %edx, %ds 309 movl %edx, %es 310.if \skip_gs == 0 311 SET_KERNEL_GS %edx 312.endif 313 /* Switch to kernel stack if necessary */ 314.if \switch_stacks > 0 315 SWITCH_TO_KERNEL_STACK 316.endif 317.endm 318 319.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0 320 SAVE_ALL unwind_espfix=\unwind_espfix 321 322 BUG_IF_WRONG_CR3 323 324 /* 325 * Now switch the CR3 when PTI is enabled. 326 * 327 * We can enter with either user or kernel cr3, the code will 328 * store the old cr3 in \cr3_reg and switches to the kernel cr3 329 * if necessary. 330 */ 331 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg 332 333.Lend_\@: 334.endm 335 336.macro RESTORE_INT_REGS 337 popl %ebx 338 popl %ecx 339 popl %edx 340 popl %esi 341 popl %edi 342 popl %ebp 343 popl %eax 344.endm 345 346.macro RESTORE_REGS pop=0 347 RESTORE_INT_REGS 3481: popl %ds 3492: popl %es 3503: popl %fs 351 POP_GS \pop 352 IRET_FRAME 353.pushsection .fixup, "ax" 3544: movl $0, (%esp) 355 jmp 1b 3565: movl $0, (%esp) 357 jmp 2b 3586: movl $0, (%esp) 359 jmp 3b 360.popsection 361 _ASM_EXTABLE(1b, 4b) 362 _ASM_EXTABLE(2b, 5b) 363 _ASM_EXTABLE(3b, 6b) 364 POP_GS_EX 365.endm 366 367.macro RESTORE_ALL_NMI cr3_reg:req pop=0 368 /* 369 * Now switch the CR3 when PTI is enabled. 370 * 371 * We enter with kernel cr3 and switch the cr3 to the value 372 * stored on \cr3_reg, which is either a user or a kernel cr3. 373 */ 374 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI 375 376 testl $PTI_SWITCH_MASK, \cr3_reg 377 jz .Lswitched_\@ 378 379 /* User cr3 in \cr3_reg - write it to hardware cr3 */ 380 movl \cr3_reg, %cr3 381 382.Lswitched_\@: 383 384 BUG_IF_WRONG_CR3 385 386 RESTORE_REGS pop=\pop 387.endm 388 389.macro CHECK_AND_APPLY_ESPFIX 390#ifdef CONFIG_X86_ESPFIX32 391#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8) 392#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET 393 394 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX 395 396 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS 397 /* 398 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we 399 * are returning to the kernel. 400 * See comments in process.c:copy_thread() for details. 401 */ 402 movb PT_OLDSS(%esp), %ah 403 movb PT_CS(%esp), %al 404 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax 405 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax 406 jne .Lend_\@ # returning to user-space with LDT SS 407 408 /* 409 * Setup and switch to ESPFIX stack 410 * 411 * We're returning to userspace with a 16 bit stack. The CPU will not 412 * restore the high word of ESP for us on executing iret... This is an 413 * "official" bug of all the x86-compatible CPUs, which we can work 414 * around to make dosemu and wine happy. We do this by preloading the 415 * high word of ESP with the high word of the userspace ESP while 416 * compensating for the offset by changing to the ESPFIX segment with 417 * a base address that matches for the difference. 418 */ 419 mov %esp, %edx /* load kernel esp */ 420 mov PT_OLDESP(%esp), %eax /* load userspace esp */ 421 mov %dx, %ax /* eax: new kernel esp */ 422 sub %eax, %edx /* offset (low word is 0) */ 423 shr $16, %edx 424 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ 425 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ 426 pushl $__ESPFIX_SS 427 pushl %eax /* new kernel esp */ 428 /* 429 * Disable interrupts, but do not irqtrace this section: we 430 * will soon execute iret and the tracer was already set to 431 * the irqstate after the IRET: 432 */ 433 DISABLE_INTERRUPTS(CLBR_ANY) 434 lss (%esp), %esp /* switch to espfix segment */ 435.Lend_\@: 436#endif /* CONFIG_X86_ESPFIX32 */ 437.endm 438 439/* 440 * Called with pt_regs fully populated and kernel segments loaded, 441 * so we can access PER_CPU and use the integer registers. 442 * 443 * We need to be very careful here with the %esp switch, because an NMI 444 * can happen everywhere. If the NMI handler finds itself on the 445 * entry-stack, it will overwrite the task-stack and everything we 446 * copied there. So allocate the stack-frame on the task-stack and 447 * switch to it before we do any copying. 448 */ 449 450.macro SWITCH_TO_KERNEL_STACK 451 452 BUG_IF_WRONG_CR3 453 454 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 455 456 /* 457 * %eax now contains the entry cr3 and we carry it forward in 458 * that register for the time this macro runs 459 */ 460 461 /* Are we on the entry stack? Bail out if not! */ 462 movl PER_CPU_VAR(cpu_entry_area), %ecx 463 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 464 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ 465 cmpl $SIZEOF_entry_stack, %ecx 466 jae .Lend_\@ 467 468 /* Load stack pointer into %esi and %edi */ 469 movl %esp, %esi 470 movl %esi, %edi 471 472 /* Move %edi to the top of the entry stack */ 473 andl $(MASK_entry_stack), %edi 474 addl $(SIZEOF_entry_stack), %edi 475 476 /* Load top of task-stack into %edi */ 477 movl TSS_entry2task_stack(%edi), %edi 478 479 /* Special case - entry from kernel mode via entry stack */ 480#ifdef CONFIG_VM86 481 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS 482 movb PT_CS(%esp), %cl 483 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx 484#else 485 movl PT_CS(%esp), %ecx 486 andl $SEGMENT_RPL_MASK, %ecx 487#endif 488 cmpl $USER_RPL, %ecx 489 jb .Lentry_from_kernel_\@ 490 491 /* Bytes to copy */ 492 movl $PTREGS_SIZE, %ecx 493 494#ifdef CONFIG_VM86 495 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) 496 jz .Lcopy_pt_regs_\@ 497 498 /* 499 * Stack-frame contains 4 additional segment registers when 500 * coming from VM86 mode 501 */ 502 addl $(4 * 4), %ecx 503 504#endif 505.Lcopy_pt_regs_\@: 506 507 /* Allocate frame on task-stack */ 508 subl %ecx, %edi 509 510 /* Switch to task-stack */ 511 movl %edi, %esp 512 513 /* 514 * We are now on the task-stack and can safely copy over the 515 * stack-frame 516 */ 517 shrl $2, %ecx 518 cld 519 rep movsl 520 521 jmp .Lend_\@ 522 523.Lentry_from_kernel_\@: 524 525 /* 526 * This handles the case when we enter the kernel from 527 * kernel-mode and %esp points to the entry-stack. When this 528 * happens we need to switch to the task-stack to run C code, 529 * but switch back to the entry-stack again when we approach 530 * iret and return to the interrupted code-path. This usually 531 * happens when we hit an exception while restoring user-space 532 * segment registers on the way back to user-space or when the 533 * sysenter handler runs with eflags.tf set. 534 * 535 * When we switch to the task-stack here, we can't trust the 536 * contents of the entry-stack anymore, as the exception handler 537 * might be scheduled out or moved to another CPU. Therefore we 538 * copy the complete entry-stack to the task-stack and set a 539 * marker in the iret-frame (bit 31 of the CS dword) to detect 540 * what we've done on the iret path. 541 * 542 * On the iret path we copy everything back and switch to the 543 * entry-stack, so that the interrupted kernel code-path 544 * continues on the same stack it was interrupted with. 545 * 546 * Be aware that an NMI can happen anytime in this code. 547 * 548 * %esi: Entry-Stack pointer (same as %esp) 549 * %edi: Top of the task stack 550 * %eax: CR3 on kernel entry 551 */ 552 553 /* Calculate number of bytes on the entry stack in %ecx */ 554 movl %esi, %ecx 555 556 /* %ecx to the top of entry-stack */ 557 andl $(MASK_entry_stack), %ecx 558 addl $(SIZEOF_entry_stack), %ecx 559 560 /* Number of bytes on the entry stack to %ecx */ 561 sub %esi, %ecx 562 563 /* Mark stackframe as coming from entry stack */ 564 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 565 566 /* 567 * Test the cr3 used to enter the kernel and add a marker 568 * so that we can switch back to it before iret. 569 */ 570 testl $PTI_SWITCH_MASK, %eax 571 jz .Lcopy_pt_regs_\@ 572 orl $CS_FROM_USER_CR3, PT_CS(%esp) 573 574 /* 575 * %esi and %edi are unchanged, %ecx contains the number of 576 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate 577 * the stack-frame on task-stack and copy everything over 578 */ 579 jmp .Lcopy_pt_regs_\@ 580 581.Lend_\@: 582.endm 583 584/* 585 * Switch back from the kernel stack to the entry stack. 586 * 587 * The %esp register must point to pt_regs on the task stack. It will 588 * first calculate the size of the stack-frame to copy, depending on 589 * whether we return to VM86 mode or not. With that it uses 'rep movsl' 590 * to copy the contents of the stack over to the entry stack. 591 * 592 * We must be very careful here, as we can't trust the contents of the 593 * task-stack once we switched to the entry-stack. When an NMI happens 594 * while on the entry-stack, the NMI handler will switch back to the top 595 * of the task stack, overwriting our stack-frame we are about to copy. 596 * Therefore we switch the stack only after everything is copied over. 597 */ 598.macro SWITCH_TO_ENTRY_STACK 599 600 /* Bytes to copy */ 601 movl $PTREGS_SIZE, %ecx 602 603#ifdef CONFIG_VM86 604 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) 605 jz .Lcopy_pt_regs_\@ 606 607 /* Additional 4 registers to copy when returning to VM86 mode */ 608 addl $(4 * 4), %ecx 609 610.Lcopy_pt_regs_\@: 611#endif 612 613 /* Initialize source and destination for movsl */ 614 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 615 subl %ecx, %edi 616 movl %esp, %esi 617 618 /* Save future stack pointer in %ebx */ 619 movl %edi, %ebx 620 621 /* Copy over the stack-frame */ 622 shrl $2, %ecx 623 cld 624 rep movsl 625 626 /* 627 * Switch to entry-stack - needs to happen after everything is 628 * copied because the NMI handler will overwrite the task-stack 629 * when on entry-stack 630 */ 631 movl %ebx, %esp 632 633.Lend_\@: 634.endm 635 636/* 637 * This macro handles the case when we return to kernel-mode on the iret 638 * path and have to switch back to the entry stack and/or user-cr3 639 * 640 * See the comments below the .Lentry_from_kernel_\@ label in the 641 * SWITCH_TO_KERNEL_STACK macro for more details. 642 */ 643.macro PARANOID_EXIT_TO_KERNEL_MODE 644 645 /* 646 * Test if we entered the kernel with the entry-stack. Most 647 * likely we did not, because this code only runs on the 648 * return-to-kernel path. 649 */ 650 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) 651 jz .Lend_\@ 652 653 /* Unlikely slow-path */ 654 655 /* Clear marker from stack-frame */ 656 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) 657 658 /* Copy the remaining task-stack contents to entry-stack */ 659 movl %esp, %esi 660 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi 661 662 /* Bytes on the task-stack to ecx */ 663 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx 664 subl %esi, %ecx 665 666 /* Allocate stack-frame on entry-stack */ 667 subl %ecx, %edi 668 669 /* 670 * Save future stack-pointer, we must not switch until the 671 * copy is done, otherwise the NMI handler could destroy the 672 * contents of the task-stack we are about to copy. 673 */ 674 movl %edi, %ebx 675 676 /* Do the copy */ 677 shrl $2, %ecx 678 cld 679 rep movsl 680 681 /* Safe to switch to entry-stack now */ 682 movl %ebx, %esp 683 684 /* 685 * We came from entry-stack and need to check if we also need to 686 * switch back to user cr3. 687 */ 688 testl $CS_FROM_USER_CR3, PT_CS(%esp) 689 jz .Lend_\@ 690 691 /* Clear marker from stack-frame */ 692 andl $(~CS_FROM_USER_CR3), PT_CS(%esp) 693 694 SWITCH_TO_USER_CR3 scratch_reg=%eax 695 696.Lend_\@: 697.endm 698 699/** 700 * idtentry - Macro to generate entry stubs for simple IDT entries 701 * @vector: Vector number 702 * @asmsym: ASM symbol for the entry point 703 * @cfunc: C function to be called 704 * @has_error_code: Hardware pushed error code on stack 705 */ 706.macro idtentry vector asmsym cfunc has_error_code:req 707SYM_CODE_START(\asmsym) 708 ASM_CLAC 709 cld 710 711 .if \has_error_code == 0 712 pushl $0 /* Clear the error code */ 713 .endif 714 715 /* Push the C-function address into the GS slot */ 716 pushl $\cfunc 717 /* Invoke the common exception entry */ 718 jmp handle_exception 719SYM_CODE_END(\asmsym) 720.endm 721 722.macro idtentry_irq vector cfunc 723 .p2align CONFIG_X86_L1_CACHE_SHIFT 724SYM_CODE_START_LOCAL(asm_\cfunc) 725 ASM_CLAC 726 SAVE_ALL switch_stacks=1 727 ENCODE_FRAME_POINTER 728 movl %esp, %eax 729 movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */ 730 movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */ 731 call \cfunc 732 jmp handle_exception_return 733SYM_CODE_END(asm_\cfunc) 734.endm 735 736.macro idtentry_sysvec vector cfunc 737 idtentry \vector asm_\cfunc \cfunc has_error_code=0 738.endm 739 740/* 741 * Include the defines which emit the idt entries which are shared 742 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 743 * so the stacktrace boundary checks work. 744 */ 745 .align 16 746 .globl __irqentry_text_start 747__irqentry_text_start: 748 749#include <asm/idtentry.h> 750 751 .align 16 752 .globl __irqentry_text_end 753__irqentry_text_end: 754 755/* 756 * %eax: prev task 757 * %edx: next task 758 */ 759.pushsection .text, "ax" 760SYM_CODE_START(__switch_to_asm) 761 /* 762 * Save callee-saved registers 763 * This must match the order in struct inactive_task_frame 764 */ 765 pushl %ebp 766 pushl %ebx 767 pushl %edi 768 pushl %esi 769 /* 770 * Flags are saved to prevent AC leakage. This could go 771 * away if objtool would have 32bit support to verify 772 * the STAC/CLAC correctness. 773 */ 774 pushfl 775 776 /* switch stack */ 777 movl %esp, TASK_threadsp(%eax) 778 movl TASK_threadsp(%edx), %esp 779 780#ifdef CONFIG_STACKPROTECTOR 781 movl TASK_stack_canary(%edx), %ebx 782 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset 783#endif 784 785 /* 786 * When switching from a shallower to a deeper call stack 787 * the RSB may either underflow or use entries populated 788 * with userspace addresses. On CPUs where those concerns 789 * exist, overwrite the RSB with entries which capture 790 * speculative execution to prevent attack. 791 */ 792 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 793 794 /* Restore flags or the incoming task to restore AC state. */ 795 popfl 796 /* restore callee-saved registers */ 797 popl %esi 798 popl %edi 799 popl %ebx 800 popl %ebp 801 802 jmp __switch_to 803SYM_CODE_END(__switch_to_asm) 804.popsection 805 806/* 807 * The unwinder expects the last frame on the stack to always be at the same 808 * offset from the end of the page, which allows it to validate the stack. 809 * Calling schedule_tail() directly would break that convention because its an 810 * asmlinkage function so its argument has to be pushed on the stack. This 811 * wrapper creates a proper "end of stack" frame header before the call. 812 */ 813.pushsection .text, "ax" 814SYM_FUNC_START(schedule_tail_wrapper) 815 FRAME_BEGIN 816 817 pushl %eax 818 call schedule_tail 819 popl %eax 820 821 FRAME_END 822 RET 823SYM_FUNC_END(schedule_tail_wrapper) 824.popsection 825 826/* 827 * A newly forked process directly context switches into this address. 828 * 829 * eax: prev task we switched from 830 * ebx: kernel thread func (NULL for user thread) 831 * edi: kernel thread arg 832 */ 833.pushsection .text, "ax" 834SYM_CODE_START(ret_from_fork) 835 call schedule_tail_wrapper 836 837 testl %ebx, %ebx 838 jnz 1f /* kernel threads are uncommon */ 839 8402: 841 /* When we fork, we trace the syscall return in the child, too. */ 842 movl %esp, %eax 843 call syscall_exit_to_user_mode 844 jmp .Lsyscall_32_done 845 846 /* kernel thread */ 8471: movl %edi, %eax 848 CALL_NOSPEC ebx 849 /* 850 * A kernel thread is allowed to return here after successfully 851 * calling kernel_execve(). Exit to userspace to complete the execve() 852 * syscall. 853 */ 854 movl $0, PT_EAX(%esp) 855 jmp 2b 856SYM_CODE_END(ret_from_fork) 857.popsection 858 859SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) 860/* 861 * All code from here through __end_SYSENTER_singlestep_region is subject 862 * to being single-stepped if a user program sets TF and executes SYSENTER. 863 * There is absolutely nothing that we can do to prevent this from happening 864 * (thanks Intel!). To keep our handling of this situation as simple as 865 * possible, we handle TF just like AC and NT, except that our #DB handler 866 * will ignore all of the single-step traps generated in this range. 867 */ 868 869/* 870 * 32-bit SYSENTER entry. 871 * 872 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here 873 * if X86_FEATURE_SEP is available. This is the preferred system call 874 * entry on 32-bit systems. 875 * 876 * The SYSENTER instruction, in principle, should *only* occur in the 877 * vDSO. In practice, a small number of Android devices were shipped 878 * with a copy of Bionic that inlined a SYSENTER instruction. This 879 * never happened in any of Google's Bionic versions -- it only happened 880 * in a narrow range of Intel-provided versions. 881 * 882 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. 883 * IF and VM in RFLAGS are cleared (IOW: interrupts are off). 884 * SYSENTER does not save anything on the stack, 885 * and does not save old EIP (!!!), ESP, or EFLAGS. 886 * 887 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting 888 * user and/or vm86 state), we explicitly disable the SYSENTER 889 * instruction in vm86 mode by reprogramming the MSRs. 890 * 891 * Arguments: 892 * eax system call number 893 * ebx arg1 894 * ecx arg2 895 * edx arg3 896 * esi arg4 897 * edi arg5 898 * ebp user stack 899 * 0(%ebp) arg6 900 */ 901SYM_FUNC_START(entry_SYSENTER_32) 902 /* 903 * On entry-stack with all userspace-regs live - save and 904 * restore eflags and %eax to use it as scratch-reg for the cr3 905 * switch. 906 */ 907 pushfl 908 pushl %eax 909 BUG_IF_WRONG_CR3 no_user_check=1 910 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax 911 popl %eax 912 popfl 913 914 /* Stack empty again, switch to task stack */ 915 movl TSS_entry2task_stack(%esp), %esp 916 917.Lsysenter_past_esp: 918 pushl $__USER_DS /* pt_regs->ss */ 919 pushl $0 /* pt_regs->sp (placeholder) */ 920 pushfl /* pt_regs->flags (except IF = 0) */ 921 pushl $__USER_CS /* pt_regs->cs */ 922 pushl $0 /* pt_regs->ip = 0 (placeholder) */ 923 pushl %eax /* pt_regs->orig_ax */ 924 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ 925 926 /* 927 * SYSENTER doesn't filter flags, so we need to clear NT, AC 928 * and TF ourselves. To save a few cycles, we can check whether 929 * either was set instead of doing an unconditional popfq. 930 * This needs to happen before enabling interrupts so that 931 * we don't get preempted with NT set. 932 * 933 * If TF is set, we will single-step all the way to here -- do_debug 934 * will ignore all the traps. (Yes, this is slow, but so is 935 * single-stepping in general. This allows us to avoid having 936 * a more complicated code to handle the case where a user program 937 * forces us to single-step through the SYSENTER entry code.) 938 * 939 * NB.: .Lsysenter_fix_flags is a label with the code under it moved 940 * out-of-line as an optimization: NT is unlikely to be set in the 941 * majority of the cases and instead of polluting the I$ unnecessarily, 942 * we're keeping that code behind a branch which will predict as 943 * not-taken and therefore its instructions won't be fetched. 944 */ 945 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) 946 jnz .Lsysenter_fix_flags 947.Lsysenter_flags_fixed: 948 949 movl %esp, %eax 950 call do_SYSENTER_32 951 testl %eax, %eax 952 jz .Lsyscall_32_done 953 954 STACKLEAK_ERASE 955 956 /* Opportunistic SYSEXIT */ 957 958 /* 959 * Setup entry stack - we keep the pointer in %eax and do the 960 * switch after almost all user-state is restored. 961 */ 962 963 /* Load entry stack pointer and allocate frame for eflags/eax */ 964 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax 965 subl $(2*4), %eax 966 967 /* Copy eflags and eax to entry stack */ 968 movl PT_EFLAGS(%esp), %edi 969 movl PT_EAX(%esp), %esi 970 movl %edi, (%eax) 971 movl %esi, 4(%eax) 972 973 /* Restore user registers and segments */ 974 movl PT_EIP(%esp), %edx /* pt_regs->ip */ 975 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 9761: mov PT_FS(%esp), %fs 977 PTGS_TO_GS 978 979 popl %ebx /* pt_regs->bx */ 980 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ 981 popl %esi /* pt_regs->si */ 982 popl %edi /* pt_regs->di */ 983 popl %ebp /* pt_regs->bp */ 984 985 /* Switch to entry stack */ 986 movl %eax, %esp 987 988 /* Now ready to switch the cr3 */ 989 SWITCH_TO_USER_CR3 scratch_reg=%eax 990 991 /* 992 * Restore all flags except IF. (We restore IF separately because 993 * STI gives a one-instruction window in which we won't be interrupted, 994 * whereas POPF does not.) 995 */ 996 btrl $X86_EFLAGS_IF_BIT, (%esp) 997 BUG_IF_WRONG_CR3 no_user_check=1 998 popfl 999 popl %eax 1000 1001 /* 1002 * Return back to the vDSO, which will pop ecx and edx. 1003 * Don't bother with DS and ES (they already contain __USER_DS). 1004 */ 1005 sti 1006 sysexit 1007 1008.pushsection .fixup, "ax" 10092: movl $0, PT_FS(%esp) 1010 jmp 1b 1011.popsection 1012 _ASM_EXTABLE(1b, 2b) 1013 PTGS_TO_GS_EX 1014 1015.Lsysenter_fix_flags: 1016 pushl $X86_EFLAGS_FIXED 1017 popfl 1018 jmp .Lsysenter_flags_fixed 1019SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) 1020SYM_FUNC_END(entry_SYSENTER_32) 1021 1022/* 1023 * 32-bit legacy system call entry. 1024 * 1025 * 32-bit x86 Linux system calls traditionally used the INT $0x80 1026 * instruction. INT $0x80 lands here. 1027 * 1028 * This entry point can be used by any 32-bit perform system calls. 1029 * Instances of INT $0x80 can be found inline in various programs and 1030 * libraries. It is also used by the vDSO's __kernel_vsyscall 1031 * fallback for hardware that doesn't support a faster entry method. 1032 * Restarted 32-bit system calls also fall back to INT $0x80 1033 * regardless of what instruction was originally used to do the system 1034 * call. (64-bit programs can use INT $0x80 as well, but they can 1035 * only run on 64-bit kernels and therefore land in 1036 * entry_INT80_compat.) 1037 * 1038 * This is considered a slow path. It is not used by most libc 1039 * implementations on modern hardware except during process startup. 1040 * 1041 * Arguments: 1042 * eax system call number 1043 * ebx arg1 1044 * ecx arg2 1045 * edx arg3 1046 * esi arg4 1047 * edi arg5 1048 * ebp arg6 1049 */ 1050SYM_FUNC_START(entry_INT80_32) 1051 ASM_CLAC 1052 pushl %eax /* pt_regs->orig_ax */ 1053 1054 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ 1055 1056 movl %esp, %eax 1057 call do_int80_syscall_32 1058.Lsyscall_32_done: 1059 STACKLEAK_ERASE 1060 1061restore_all_switch_stack: 1062 SWITCH_TO_ENTRY_STACK 1063 CHECK_AND_APPLY_ESPFIX 1064 1065 /* Switch back to user CR3 */ 1066 SWITCH_TO_USER_CR3 scratch_reg=%eax 1067 1068 BUG_IF_WRONG_CR3 1069 1070 /* Restore user state */ 1071 RESTORE_REGS pop=4 # skip orig_eax/error_code 1072.Lirq_return: 1073 /* 1074 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 1075 * when returning from IPI handler and when returning from 1076 * scheduler to user-space. 1077 */ 1078 INTERRUPT_RETURN 1079 1080.section .fixup, "ax" 1081SYM_CODE_START(asm_iret_error) 1082 pushl $0 # no error code 1083 pushl $iret_error 1084 1085#ifdef CONFIG_DEBUG_ENTRY 1086 /* 1087 * The stack-frame here is the one that iret faulted on, so its a 1088 * return-to-user frame. We are on kernel-cr3 because we come here from 1089 * the fixup code. This confuses the CR3 checker, so switch to user-cr3 1090 * as the checker expects it. 1091 */ 1092 pushl %eax 1093 SWITCH_TO_USER_CR3 scratch_reg=%eax 1094 popl %eax 1095#endif 1096 1097 jmp handle_exception 1098SYM_CODE_END(asm_iret_error) 1099.previous 1100 _ASM_EXTABLE(.Lirq_return, asm_iret_error) 1101SYM_FUNC_END(entry_INT80_32) 1102 1103.macro FIXUP_ESPFIX_STACK 1104/* 1105 * Switch back for ESPFIX stack to the normal zerobased stack 1106 * 1107 * We can't call C functions using the ESPFIX stack. This code reads 1108 * the high word of the segment base from the GDT and swiches to the 1109 * normal stack and adjusts ESP with the matching offset. 1110 * 1111 * We might be on user CR3 here, so percpu data is not mapped and we can't 1112 * access the GDT through the percpu segment. Instead, use SGDT to find 1113 * the cpu_entry_area alias of the GDT. 1114 */ 1115#ifdef CONFIG_X86_ESPFIX32 1116 /* fixup the stack */ 1117 pushl %ecx 1118 subl $2*4, %esp 1119 sgdt (%esp) 1120 movl 2(%esp), %ecx /* GDT address */ 1121 /* 1122 * Careful: ECX is a linear pointer, so we need to force base 1123 * zero. %cs is the only known-linear segment we have right now. 1124 */ 1125 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */ 1126 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */ 1127 shl $16, %eax 1128 addl $2*4, %esp 1129 popl %ecx 1130 addl %esp, %eax /* the adjusted stack pointer */ 1131 pushl $__KERNEL_DS 1132 pushl %eax 1133 lss (%esp), %esp /* switch to the normal stack segment */ 1134#endif 1135.endm 1136 1137.macro UNWIND_ESPFIX_STACK 1138 /* It's safe to clobber %eax, all other regs need to be preserved */ 1139#ifdef CONFIG_X86_ESPFIX32 1140 movl %ss, %eax 1141 /* see if on espfix stack */ 1142 cmpw $__ESPFIX_SS, %ax 1143 jne .Lno_fixup_\@ 1144 /* switch to normal stack */ 1145 FIXUP_ESPFIX_STACK 1146.Lno_fixup_\@: 1147#endif 1148.endm 1149 1150SYM_CODE_START_LOCAL_NOALIGN(handle_exception) 1151 /* the function address is in %gs's slot on the stack */ 1152 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 1153 ENCODE_FRAME_POINTER 1154 1155 /* fixup %gs */ 1156 GS_TO_REG %ecx 1157 movl PT_GS(%esp), %edi # get the function address 1158 REG_TO_PTGS %ecx 1159 SET_KERNEL_GS %ecx 1160 1161 /* fixup orig %eax */ 1162 movl PT_ORIG_EAX(%esp), %edx # get the error code 1163 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart 1164 1165 movl %esp, %eax # pt_regs pointer 1166 CALL_NOSPEC edi 1167 1168handle_exception_return: 1169#ifdef CONFIG_VM86 1170 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS 1171 movb PT_CS(%esp), %al 1172 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax 1173#else 1174 /* 1175 * We can be coming here from child spawned by kernel_thread(). 1176 */ 1177 movl PT_CS(%esp), %eax 1178 andl $SEGMENT_RPL_MASK, %eax 1179#endif 1180 cmpl $USER_RPL, %eax # returning to v8086 or userspace ? 1181 jnb ret_to_user 1182 1183 PARANOID_EXIT_TO_KERNEL_MODE 1184 BUG_IF_WRONG_CR3 1185 RESTORE_REGS 4 1186 jmp .Lirq_return 1187 1188ret_to_user: 1189 movl %esp, %eax 1190 jmp restore_all_switch_stack 1191SYM_CODE_END(handle_exception) 1192 1193SYM_CODE_START(asm_exc_double_fault) 11941: 1195 /* 1196 * This is a task gate handler, not an interrupt gate handler. 1197 * The error code is on the stack, but the stack is otherwise 1198 * empty. Interrupts are off. Our state is sane with the following 1199 * exceptions: 1200 * 1201 * - CR0.TS is set. "TS" literally means "task switched". 1202 * - EFLAGS.NT is set because we're a "nested task". 1203 * - The doublefault TSS has back_link set and has been marked busy. 1204 * - TR points to the doublefault TSS and the normal TSS is busy. 1205 * - CR3 is the normal kernel PGD. This would be delightful, except 1206 * that the CPU didn't bother to save the old CR3 anywhere. This 1207 * would make it very awkward to return back to the context we came 1208 * from. 1209 * 1210 * The rest of EFLAGS is sanitized for us, so we don't need to 1211 * worry about AC or DF. 1212 * 1213 * Don't even bother popping the error code. It's always zero, 1214 * and ignoring it makes us a bit more robust against buggy 1215 * hypervisor task gate implementations. 1216 * 1217 * We will manually undo the task switch instead of doing a 1218 * task-switching IRET. 1219 */ 1220 1221 clts /* clear CR0.TS */ 1222 pushl $X86_EFLAGS_FIXED 1223 popfl /* clear EFLAGS.NT */ 1224 1225 call doublefault_shim 1226 1227 /* We don't support returning, so we have no IRET here. */ 12281: 1229 hlt 1230 jmp 1b 1231SYM_CODE_END(asm_exc_double_fault) 1232 1233/* 1234 * NMI is doubly nasty. It can happen on the first instruction of 1235 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning 1236 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 1237 * switched stacks. We handle both conditions by simply checking whether we 1238 * interrupted kernel code running on the SYSENTER stack. 1239 */ 1240SYM_CODE_START(asm_exc_nmi) 1241 ASM_CLAC 1242 1243#ifdef CONFIG_X86_ESPFIX32 1244 /* 1245 * ESPFIX_SS is only ever set on the return to user path 1246 * after we've switched to the entry stack. 1247 */ 1248 pushl %eax 1249 movl %ss, %eax 1250 cmpw $__ESPFIX_SS, %ax 1251 popl %eax 1252 je .Lnmi_espfix_stack 1253#endif 1254 1255 pushl %eax # pt_regs->orig_ax 1256 SAVE_ALL_NMI cr3_reg=%edi 1257 ENCODE_FRAME_POINTER 1258 xorl %edx, %edx # zero error code 1259 movl %esp, %eax # pt_regs pointer 1260 1261 /* Are we currently on the SYSENTER stack? */ 1262 movl PER_CPU_VAR(cpu_entry_area), %ecx 1263 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx 1264 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ 1265 cmpl $SIZEOF_entry_stack, %ecx 1266 jb .Lnmi_from_sysenter_stack 1267 1268 /* Not on SYSENTER stack. */ 1269 call exc_nmi 1270 jmp .Lnmi_return 1271 1272.Lnmi_from_sysenter_stack: 1273 /* 1274 * We're on the SYSENTER stack. Switch off. No one (not even debug) 1275 * is using the thread stack right now, so it's safe for us to use it. 1276 */ 1277 movl %esp, %ebx 1278 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp 1279 call exc_nmi 1280 movl %ebx, %esp 1281 1282.Lnmi_return: 1283#ifdef CONFIG_X86_ESPFIX32 1284 testl $CS_FROM_ESPFIX, PT_CS(%esp) 1285 jnz .Lnmi_from_espfix 1286#endif 1287 1288 CHECK_AND_APPLY_ESPFIX 1289 RESTORE_ALL_NMI cr3_reg=%edi pop=4 1290 jmp .Lirq_return 1291 1292#ifdef CONFIG_X86_ESPFIX32 1293.Lnmi_espfix_stack: 1294 /* 1295 * Create the pointer to LSS back 1296 */ 1297 pushl %ss 1298 pushl %esp 1299 addl $4, (%esp) 1300 1301 /* Copy the (short) IRET frame */ 1302 pushl 4*4(%esp) # flags 1303 pushl 4*4(%esp) # cs 1304 pushl 4*4(%esp) # ip 1305 1306 pushl %eax # orig_ax 1307 1308 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1 1309 ENCODE_FRAME_POINTER 1310 1311 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */ 1312 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp) 1313 1314 xorl %edx, %edx # zero error code 1315 movl %esp, %eax # pt_regs pointer 1316 jmp .Lnmi_from_sysenter_stack 1317 1318.Lnmi_from_espfix: 1319 RESTORE_ALL_NMI cr3_reg=%edi 1320 /* 1321 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to 1322 * fix up the gap and long frame: 1323 * 1324 * 3 - original frame (exception) 1325 * 2 - ESPFIX block (above) 1326 * 6 - gap (FIXUP_FRAME) 1327 * 5 - long frame (FIXUP_FRAME) 1328 * 1 - orig_ax 1329 */ 1330 lss (1+5+6)*4(%esp), %esp # back to espfix stack 1331 jmp .Lirq_return 1332#endif 1333SYM_CODE_END(asm_exc_nmi) 1334 1335.pushsection .text, "ax" 1336SYM_CODE_START(rewind_stack_do_exit) 1337 /* Prevent any naive code from trying to unwind to our caller. */ 1338 xorl %ebp, %ebp 1339 1340 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi 1341 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp 1342 1343 call do_exit 13441: jmp 1b 1345SYM_CODE_END(rewind_stack_do_exit) 1346.popsection 1347