1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38
39 static struct equiv_cpu_table {
40 unsigned int num_entries;
41 struct equiv_cpu_entry *entry;
42 } equiv_table;
43
44 /*
45 * This points to the current valid container of microcode patches which we will
46 * save from the initrd/builtin before jettisoning its contents. @mc is the
47 * microcode patch we found to match.
48 */
49 struct cont_desc {
50 struct microcode_amd *mc;
51 u32 cpuid_1_eax;
52 u32 psize;
53 u8 *data;
54 size_t size;
55 };
56
57 static u32 ucode_new_rev;
58 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
59
60 /*
61 * Microcode patch container file is prepended to the initrd in cpio
62 * format. See Documentation/x86/microcode.rst
63 */
64 static const char
65 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66
find_equiv_id(struct equiv_cpu_table * et,u32 sig)67 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
68 {
69 unsigned int i;
70
71 if (!et || !et->num_entries)
72 return 0;
73
74 for (i = 0; i < et->num_entries; i++) {
75 struct equiv_cpu_entry *e = &et->entry[i];
76
77 if (sig == e->installed_cpu)
78 return e->equiv_cpu;
79
80 e++;
81 }
82 return 0;
83 }
84
85 /*
86 * Check whether there is a valid microcode container file at the beginning
87 * of @buf of size @buf_size. Set @early to use this function in the early path.
88 */
verify_container(const u8 * buf,size_t buf_size,bool early)89 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
90 {
91 u32 cont_magic;
92
93 if (buf_size <= CONTAINER_HDR_SZ) {
94 if (!early)
95 pr_debug("Truncated microcode container header.\n");
96
97 return false;
98 }
99
100 cont_magic = *(const u32 *)buf;
101 if (cont_magic != UCODE_MAGIC) {
102 if (!early)
103 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
104
105 return false;
106 }
107
108 return true;
109 }
110
111 /*
112 * Check whether there is a valid, non-truncated CPU equivalence table at the
113 * beginning of @buf of size @buf_size. Set @early to use this function in the
114 * early path.
115 */
verify_equivalence_table(const u8 * buf,size_t buf_size,bool early)116 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
117 {
118 const u32 *hdr = (const u32 *)buf;
119 u32 cont_type, equiv_tbl_len;
120
121 if (!verify_container(buf, buf_size, early))
122 return false;
123
124 cont_type = hdr[1];
125 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
126 if (!early)
127 pr_debug("Wrong microcode container equivalence table type: %u.\n",
128 cont_type);
129
130 return false;
131 }
132
133 buf_size -= CONTAINER_HDR_SZ;
134
135 equiv_tbl_len = hdr[2];
136 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
137 buf_size < equiv_tbl_len) {
138 if (!early)
139 pr_debug("Truncated equivalence table.\n");
140
141 return false;
142 }
143
144 return true;
145 }
146
147 /*
148 * Check whether there is a valid, non-truncated microcode patch section at the
149 * beginning of @buf of size @buf_size. Set @early to use this function in the
150 * early path.
151 *
152 * On success, @sh_psize returns the patch size according to the section header,
153 * to the caller.
154 */
155 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize,bool early)156 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
157 {
158 u32 p_type, p_size;
159 const u32 *hdr;
160
161 if (buf_size < SECTION_HDR_SIZE) {
162 if (!early)
163 pr_debug("Truncated patch section.\n");
164
165 return false;
166 }
167
168 hdr = (const u32 *)buf;
169 p_type = hdr[0];
170 p_size = hdr[1];
171
172 if (p_type != UCODE_UCODE_TYPE) {
173 if (!early)
174 pr_debug("Invalid type field (0x%x) in container file section header.\n",
175 p_type);
176
177 return false;
178 }
179
180 if (p_size < sizeof(struct microcode_header_amd)) {
181 if (!early)
182 pr_debug("Patch of size %u too short.\n", p_size);
183
184 return false;
185 }
186
187 *sh_psize = p_size;
188
189 return true;
190 }
191
192 /*
193 * Check whether the passed remaining file @buf_size is large enough to contain
194 * a patch of the indicated @sh_psize (and also whether this size does not
195 * exceed the per-family maximum). @sh_psize is the size read from the section
196 * header.
197 */
__verify_patch_size(u8 family,u32 sh_psize,size_t buf_size)198 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
199 {
200 u32 max_size;
201
202 if (family >= 0x15)
203 return min_t(u32, sh_psize, buf_size);
204
205 #define F1XH_MPB_MAX_SIZE 2048
206 #define F14H_MPB_MAX_SIZE 1824
207
208 switch (family) {
209 case 0x10 ... 0x12:
210 max_size = F1XH_MPB_MAX_SIZE;
211 break;
212 case 0x14:
213 max_size = F14H_MPB_MAX_SIZE;
214 break;
215 default:
216 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
217 return 0;
218 break;
219 }
220
221 if (sh_psize > min_t(u32, buf_size, max_size))
222 return 0;
223
224 return sh_psize;
225 }
226
227 /*
228 * Verify the patch in @buf.
229 *
230 * Returns:
231 * negative: on error
232 * positive: patch is not for this family, skip it
233 * 0: success
234 */
235 static int
verify_patch(u8 family,const u8 * buf,size_t buf_size,u32 * patch_size,bool early)236 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
237 {
238 struct microcode_header_amd *mc_hdr;
239 unsigned int ret;
240 u32 sh_psize;
241 u16 proc_id;
242 u8 patch_fam;
243
244 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
245 return -1;
246
247 /*
248 * The section header length is not included in this indicated size
249 * but is present in the leftover file length so we need to subtract
250 * it before passing this value to the function below.
251 */
252 buf_size -= SECTION_HDR_SIZE;
253
254 /*
255 * Check if the remaining buffer is big enough to contain a patch of
256 * size sh_psize, as the section claims.
257 */
258 if (buf_size < sh_psize) {
259 if (!early)
260 pr_debug("Patch of size %u truncated.\n", sh_psize);
261
262 return -1;
263 }
264
265 ret = __verify_patch_size(family, sh_psize, buf_size);
266 if (!ret) {
267 if (!early)
268 pr_debug("Per-family patch size mismatch.\n");
269 return -1;
270 }
271
272 *patch_size = sh_psize;
273
274 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
275 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
276 if (!early)
277 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
278 return -1;
279 }
280
281 proc_id = mc_hdr->processor_rev_id;
282 patch_fam = 0xf + (proc_id >> 12);
283 if (patch_fam != family)
284 return 1;
285
286 return 0;
287 }
288
289 /*
290 * This scans the ucode blob for the proper container as we can have multiple
291 * containers glued together. Returns the equivalence ID from the equivalence
292 * table or 0 if none found.
293 * Returns the amount of bytes consumed while scanning. @desc contains all the
294 * data we're going to use in later stages of the application.
295 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)296 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
297 {
298 struct equiv_cpu_table table;
299 size_t orig_size = size;
300 u32 *hdr = (u32 *)ucode;
301 u16 eq_id;
302 u8 *buf;
303
304 if (!verify_equivalence_table(ucode, size, true))
305 return 0;
306
307 buf = ucode;
308
309 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
310 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
311
312 /*
313 * Find the equivalence ID of our CPU in this table. Even if this table
314 * doesn't contain a patch for the CPU, scan through the whole container
315 * so that it can be skipped in case there are other containers appended.
316 */
317 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
318
319 buf += hdr[2] + CONTAINER_HDR_SZ;
320 size -= hdr[2] + CONTAINER_HDR_SZ;
321
322 /*
323 * Scan through the rest of the container to find where it ends. We do
324 * some basic sanity-checking too.
325 */
326 while (size > 0) {
327 struct microcode_amd *mc;
328 u32 patch_size;
329 int ret;
330
331 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
332 if (ret < 0) {
333 /*
334 * Patch verification failed, skip to the next
335 * container, if there's one:
336 */
337 goto out;
338 } else if (ret > 0) {
339 goto skip;
340 }
341
342 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
343 if (eq_id == mc->hdr.processor_rev_id) {
344 desc->psize = patch_size;
345 desc->mc = mc;
346 }
347
348 skip:
349 /* Skip patch section header too: */
350 buf += patch_size + SECTION_HDR_SIZE;
351 size -= patch_size + SECTION_HDR_SIZE;
352 }
353
354 /*
355 * If we have found a patch (desc->mc), it means we're looking at the
356 * container which has a patch for this CPU so return 0 to mean, @ucode
357 * already points to the proper container. Otherwise, we return the size
358 * we scanned so that we can advance to the next container in the
359 * buffer.
360 */
361 if (desc->mc) {
362 desc->data = ucode;
363 desc->size = orig_size - size;
364
365 return 0;
366 }
367
368 out:
369 return orig_size - size;
370 }
371
372 /*
373 * Scan the ucode blob for the proper container as we can have multiple
374 * containers glued together.
375 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)376 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
377 {
378 while (size) {
379 size_t s = parse_container(ucode, size, desc);
380 if (!s)
381 return;
382
383 /* catch wraparound */
384 if (size >= s) {
385 ucode += s;
386 size -= s;
387 } else {
388 return;
389 }
390 }
391 }
392
__apply_microcode_amd(struct microcode_amd * mc)393 static int __apply_microcode_amd(struct microcode_amd *mc)
394 {
395 u32 rev, dummy;
396
397 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
398
399 /* verify patch application was successful */
400 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
401 if (rev != mc->hdr.patch_id)
402 return -1;
403
404 return 0;
405 }
406
407 /*
408 * Early load occurs before we can vmalloc(). So we look for the microcode
409 * patch container file in initrd, traverse equivalent cpu table, look for a
410 * matching microcode patch, and update, all in initrd memory in place.
411 * When vmalloc() is available for use later -- on 64-bit during first AP load,
412 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
413 * load_microcode_amd() to save equivalent cpu table and microcode patches in
414 * kernel heap memory.
415 *
416 * Returns true if container found (sets @desc), false otherwise.
417 */
418 static bool
apply_microcode_early_amd(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)419 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
420 {
421 struct cont_desc desc = { 0 };
422 u8 (*patch)[PATCH_MAX_SIZE];
423 struct microcode_amd *mc;
424 u32 rev, dummy, *new_rev;
425 bool ret = false;
426
427 #ifdef CONFIG_X86_32
428 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
429 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
430 #else
431 new_rev = &ucode_new_rev;
432 patch = &amd_ucode_patch;
433 #endif
434
435 desc.cpuid_1_eax = cpuid_1_eax;
436
437 scan_containers(ucode, size, &desc);
438
439 mc = desc.mc;
440 if (!mc)
441 return ret;
442
443 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
444
445 /*
446 * Allow application of the same revision to pick up SMT-specific
447 * changes even if the revision of the other SMT thread is already
448 * up-to-date.
449 */
450 if (rev > mc->hdr.patch_id)
451 return ret;
452
453 if (!__apply_microcode_amd(mc)) {
454 *new_rev = mc->hdr.patch_id;
455 ret = true;
456
457 if (save_patch)
458 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
459 }
460
461 return ret;
462 }
463
get_builtin_microcode(struct cpio_data * cp,unsigned int family)464 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
465 {
466 #ifdef CONFIG_X86_64
467 char fw_name[36] = "amd-ucode/microcode_amd.bin";
468
469 if (family >= 0x15)
470 snprintf(fw_name, sizeof(fw_name),
471 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
472
473 return get_builtin_firmware(cp, fw_name);
474 #else
475 return false;
476 #endif
477 }
478
__load_ucode_amd(unsigned int cpuid_1_eax,struct cpio_data * ret)479 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
480 {
481 struct ucode_cpu_info *uci;
482 struct cpio_data cp;
483 const char *path;
484 bool use_pa;
485
486 if (IS_ENABLED(CONFIG_X86_32)) {
487 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
488 path = (const char *)__pa_nodebug(ucode_path);
489 use_pa = true;
490 } else {
491 uci = ucode_cpu_info;
492 path = ucode_path;
493 use_pa = false;
494 }
495
496 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
497 cp = find_microcode_in_initrd(path, use_pa);
498
499 /* Needed in load_microcode_amd() */
500 uci->cpu_sig.sig = cpuid_1_eax;
501
502 *ret = cp;
503 }
504
load_ucode_amd_bsp(unsigned int cpuid_1_eax)505 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
506 {
507 struct cpio_data cp = { };
508
509 __load_ucode_amd(cpuid_1_eax, &cp);
510 if (!(cp.data && cp.size))
511 return;
512
513 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
514 }
515
load_ucode_amd_ap(unsigned int cpuid_1_eax)516 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
517 {
518 struct microcode_amd *mc;
519 struct cpio_data cp;
520 u32 *new_rev, rev, dummy;
521
522 if (IS_ENABLED(CONFIG_X86_32)) {
523 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
524 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
525 } else {
526 mc = (struct microcode_amd *)amd_ucode_patch;
527 new_rev = &ucode_new_rev;
528 }
529
530 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
531
532 /*
533 * Check whether a new patch has been saved already. Also, allow application of
534 * the same revision in order to pick up SMT-thread-specific configuration even
535 * if the sibling SMT thread already has an up-to-date revision.
536 */
537 if (*new_rev && rev <= mc->hdr.patch_id) {
538 if (!__apply_microcode_amd(mc)) {
539 *new_rev = mc->hdr.patch_id;
540 return;
541 }
542 }
543
544 __load_ucode_amd(cpuid_1_eax, &cp);
545 if (!(cp.data && cp.size))
546 return;
547
548 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
549 }
550
551 static enum ucode_state
552 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
553
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)554 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
555 {
556 struct cont_desc desc = { 0 };
557 enum ucode_state ret;
558 struct cpio_data cp;
559
560 cp = find_microcode_in_initrd(ucode_path, false);
561 if (!(cp.data && cp.size))
562 return -EINVAL;
563
564 desc.cpuid_1_eax = cpuid_1_eax;
565
566 scan_containers(cp.data, cp.size, &desc);
567 if (!desc.mc)
568 return -EINVAL;
569
570 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
571 if (ret > UCODE_UPDATED)
572 return -EINVAL;
573
574 return 0;
575 }
576
reload_ucode_amd(void)577 void reload_ucode_amd(void)
578 {
579 struct microcode_amd *mc;
580 u32 rev, dummy __always_unused;
581
582 mc = (struct microcode_amd *)amd_ucode_patch;
583
584 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
585
586 if (rev < mc->hdr.patch_id) {
587 if (!__apply_microcode_amd(mc)) {
588 ucode_new_rev = mc->hdr.patch_id;
589 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
590 }
591 }
592 }
__find_equiv_id(unsigned int cpu)593 static u16 __find_equiv_id(unsigned int cpu)
594 {
595 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
596 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
597 }
598
599 /*
600 * a small, trivial cache of per-family ucode patches
601 */
cache_find_patch(u16 equiv_cpu)602 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
603 {
604 struct ucode_patch *p;
605
606 list_for_each_entry(p, µcode_cache, plist)
607 if (p->equiv_cpu == equiv_cpu)
608 return p;
609 return NULL;
610 }
611
update_cache(struct ucode_patch * new_patch)612 static void update_cache(struct ucode_patch *new_patch)
613 {
614 struct ucode_patch *p;
615
616 list_for_each_entry(p, µcode_cache, plist) {
617 if (p->equiv_cpu == new_patch->equiv_cpu) {
618 if (p->patch_id >= new_patch->patch_id) {
619 /* we already have the latest patch */
620 kfree(new_patch->data);
621 kfree(new_patch);
622 return;
623 }
624
625 list_replace(&p->plist, &new_patch->plist);
626 kfree(p->data);
627 kfree(p);
628 return;
629 }
630 }
631 /* no patch found, add it */
632 list_add_tail(&new_patch->plist, µcode_cache);
633 }
634
free_cache(void)635 static void free_cache(void)
636 {
637 struct ucode_patch *p, *tmp;
638
639 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
640 __list_del(p->plist.prev, p->plist.next);
641 kfree(p->data);
642 kfree(p);
643 }
644 }
645
find_patch(unsigned int cpu)646 static struct ucode_patch *find_patch(unsigned int cpu)
647 {
648 u16 equiv_id;
649
650 equiv_id = __find_equiv_id(cpu);
651 if (!equiv_id)
652 return NULL;
653
654 return cache_find_patch(equiv_id);
655 }
656
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)657 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
658 {
659 struct cpuinfo_x86 *c = &cpu_data(cpu);
660 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
661 struct ucode_patch *p;
662
663 csig->sig = cpuid_eax(0x00000001);
664 csig->rev = c->microcode;
665
666 /*
667 * a patch could have been loaded early, set uci->mc so that
668 * mc_bp_resume() can call apply_microcode()
669 */
670 p = find_patch(cpu);
671 if (p && (p->patch_id == csig->rev))
672 uci->mc = p->data;
673
674 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
675
676 return 0;
677 }
678
apply_microcode_amd(int cpu)679 static enum ucode_state apply_microcode_amd(int cpu)
680 {
681 struct cpuinfo_x86 *c = &cpu_data(cpu);
682 struct microcode_amd *mc_amd;
683 struct ucode_cpu_info *uci;
684 struct ucode_patch *p;
685 enum ucode_state ret;
686 u32 rev, dummy __always_unused;
687
688 BUG_ON(raw_smp_processor_id() != cpu);
689
690 uci = ucode_cpu_info + cpu;
691
692 p = find_patch(cpu);
693 if (!p)
694 return UCODE_NFOUND;
695
696 mc_amd = p->data;
697 uci->mc = p->data;
698
699 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
700
701 /* need to apply patch? */
702 if (rev >= mc_amd->hdr.patch_id) {
703 ret = UCODE_OK;
704 goto out;
705 }
706
707 if (__apply_microcode_amd(mc_amd)) {
708 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
709 cpu, mc_amd->hdr.patch_id);
710 return UCODE_ERROR;
711 }
712
713 rev = mc_amd->hdr.patch_id;
714 ret = UCODE_UPDATED;
715
716 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
717
718 out:
719 uci->cpu_sig.rev = rev;
720 c->microcode = rev;
721
722 /* Update boot_cpu_data's revision too, if we're on the BSP: */
723 if (c->cpu_index == boot_cpu_data.cpu_index)
724 boot_cpu_data.microcode = rev;
725
726 return ret;
727 }
728
install_equiv_cpu_table(const u8 * buf,size_t buf_size)729 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
730 {
731 u32 equiv_tbl_len;
732 const u32 *hdr;
733
734 if (!verify_equivalence_table(buf, buf_size, false))
735 return 0;
736
737 hdr = (const u32 *)buf;
738 equiv_tbl_len = hdr[2];
739
740 equiv_table.entry = vmalloc(equiv_tbl_len);
741 if (!equiv_table.entry) {
742 pr_err("failed to allocate equivalent CPU table\n");
743 return 0;
744 }
745
746 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
747 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
748
749 /* add header length */
750 return equiv_tbl_len + CONTAINER_HDR_SZ;
751 }
752
free_equiv_cpu_table(void)753 static void free_equiv_cpu_table(void)
754 {
755 vfree(equiv_table.entry);
756 memset(&equiv_table, 0, sizeof(equiv_table));
757 }
758
cleanup(void)759 static void cleanup(void)
760 {
761 free_equiv_cpu_table();
762 free_cache();
763 }
764
765 /*
766 * Return a non-negative value even if some of the checks failed so that
767 * we can skip over the next patch. If we return a negative value, we
768 * signal a grave error like a memory allocation has failed and the
769 * driver cannot continue functioning normally. In such cases, we tear
770 * down everything we've used up so far and exit.
771 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)772 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
773 unsigned int *patch_size)
774 {
775 struct microcode_header_amd *mc_hdr;
776 struct ucode_patch *patch;
777 u16 proc_id;
778 int ret;
779
780 ret = verify_patch(family, fw, leftover, patch_size, false);
781 if (ret)
782 return ret;
783
784 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
785 if (!patch) {
786 pr_err("Patch allocation failure.\n");
787 return -EINVAL;
788 }
789
790 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
791 if (!patch->data) {
792 pr_err("Patch data allocation failure.\n");
793 kfree(patch);
794 return -EINVAL;
795 }
796 patch->size = *patch_size;
797
798 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
799 proc_id = mc_hdr->processor_rev_id;
800
801 INIT_LIST_HEAD(&patch->plist);
802 patch->patch_id = mc_hdr->patch_id;
803 patch->equiv_cpu = proc_id;
804
805 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
806 __func__, patch->patch_id, proc_id);
807
808 /* ... and add to cache. */
809 update_cache(patch);
810
811 return 0;
812 }
813
__load_microcode_amd(u8 family,const u8 * data,size_t size)814 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
815 size_t size)
816 {
817 u8 *fw = (u8 *)data;
818 size_t offset;
819
820 offset = install_equiv_cpu_table(data, size);
821 if (!offset)
822 return UCODE_ERROR;
823
824 fw += offset;
825 size -= offset;
826
827 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
828 pr_err("invalid type field in container file section header\n");
829 free_equiv_cpu_table();
830 return UCODE_ERROR;
831 }
832
833 while (size > 0) {
834 unsigned int crnt_size = 0;
835 int ret;
836
837 ret = verify_and_add_patch(family, fw, size, &crnt_size);
838 if (ret < 0)
839 return UCODE_ERROR;
840
841 fw += crnt_size + SECTION_HDR_SIZE;
842 size -= (crnt_size + SECTION_HDR_SIZE);
843 }
844
845 return UCODE_OK;
846 }
847
848 static enum ucode_state
load_microcode_amd(bool save,u8 family,const u8 * data,size_t size)849 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
850 {
851 struct ucode_patch *p;
852 enum ucode_state ret;
853
854 /* free old equiv table */
855 free_equiv_cpu_table();
856
857 ret = __load_microcode_amd(family, data, size);
858 if (ret != UCODE_OK) {
859 cleanup();
860 return ret;
861 }
862
863 p = find_patch(0);
864 if (!p) {
865 return ret;
866 } else {
867 if (boot_cpu_data.microcode >= p->patch_id)
868 return ret;
869
870 ret = UCODE_NEW;
871 }
872
873 /* save BSP's matching patch for early load */
874 if (!save)
875 return ret;
876
877 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
878 memcpy(amd_ucode_patch, p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
879
880 return ret;
881 }
882
883 /*
884 * AMD microcode firmware naming convention, up to family 15h they are in
885 * the legacy file:
886 *
887 * amd-ucode/microcode_amd.bin
888 *
889 * This legacy file is always smaller than 2K in size.
890 *
891 * Beginning with family 15h, they are in family-specific firmware files:
892 *
893 * amd-ucode/microcode_amd_fam15h.bin
894 * amd-ucode/microcode_amd_fam16h.bin
895 * ...
896 *
897 * These might be larger than 2K.
898 */
request_microcode_amd(int cpu,struct device * device,bool refresh_fw)899 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
900 bool refresh_fw)
901 {
902 char fw_name[36] = "amd-ucode/microcode_amd.bin";
903 struct cpuinfo_x86 *c = &cpu_data(cpu);
904 bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
905 enum ucode_state ret = UCODE_NFOUND;
906 const struct firmware *fw;
907
908 /* reload ucode container only on the boot cpu */
909 if (!refresh_fw || !bsp)
910 return UCODE_OK;
911
912 if (c->x86 >= 0x15)
913 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
914
915 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
916 pr_debug("failed to load file %s\n", fw_name);
917 goto out;
918 }
919
920 ret = UCODE_ERROR;
921 if (!verify_container(fw->data, fw->size, false))
922 goto fw_release;
923
924 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
925
926 fw_release:
927 release_firmware(fw);
928
929 out:
930 return ret;
931 }
932
933 static enum ucode_state
request_microcode_user(int cpu,const void __user * buf,size_t size)934 request_microcode_user(int cpu, const void __user *buf, size_t size)
935 {
936 return UCODE_ERROR;
937 }
938
microcode_fini_cpu_amd(int cpu)939 static void microcode_fini_cpu_amd(int cpu)
940 {
941 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
942
943 uci->mc = NULL;
944 }
945
946 static struct microcode_ops microcode_amd_ops = {
947 .request_microcode_user = request_microcode_user,
948 .request_microcode_fw = request_microcode_amd,
949 .collect_cpu_info = collect_cpu_info_amd,
950 .apply_microcode = apply_microcode_amd,
951 .microcode_fini_cpu = microcode_fini_cpu_amd,
952 };
953
init_amd_microcode(void)954 struct microcode_ops * __init init_amd_microcode(void)
955 {
956 struct cpuinfo_x86 *c = &boot_cpu_data;
957
958 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
959 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
960 return NULL;
961 }
962
963 if (ucode_new_rev)
964 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
965 ucode_new_rev);
966
967 return µcode_amd_ops;
968 }
969
exit_amd_microcode(void)970 void __exit exit_amd_microcode(void)
971 {
972 cleanup();
973 }
974